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Abstract

We present a new method for the unsupervised detection of geometric anomalies in high-
resolution 3D point clouds. In particular, we propose an adaptation of the established
student-teacher anomaly detection framework to three dimensions. A student network
is trained to match the output of a pretrained teacher network on anomaly-free point
clouds. When applied to test data, regression errors between the teacher and the student
allow reliable localization of anomalous structures. To construct an expressive teacher
network that extracts dense local geometric descriptors, we introduce a novel self-supervised
pretraining strategy. The teacher is trained by reconstructing local receptive fields and
does not require annotations. Extensive experiments on the comprehensive MVTec 3D
Anomaly Detection dataset highlight the effectiveness of our approach, which outperforms
the next-best method by a large margin. Ablation studies show that our approach meets
the requirements of practical applications regarding performance, runtime, and memory
consumption.

1. Introduction

In recent years, significant progress has been made in the field of 3D computer vision in
various research areas such as 3D classification, 3D semantic segmentation, and 3D object
recognition. Many new methods build on earlier achievements in their counterparts in 2D,
which operate with natural image data. However, the transition from 2D to 3D poses
additional challenges, e.g., the need to deal with unordered point clouds and sensor noise.
This has led to the development of new network architectures and training protocols specific
to three dimensions.

We consider the challenging task of unsupervised anomaly detection and localization in
3D point clouds. The goal is to detect data points that deviate significantly from a training
set of exclusively anomaly-free samples. This problem has important applications in various
fields, such as industrial inspection (Bergmann et al., 2021, 2022; Carrera et al., 2017; Song
and Yan, 2013), autonomous driving (Blum et al., 2019; Hendrycks et al., 2019), and medical
imaging (Bakas et al., 2017; Baur et al., 2019; Menze et al., 2015). It has received consider-
able attention in 2D, where models are typically trained on color or grayscale images with
established and well-studied architectures based on convolutional neural networks. In 3D,
this problem is still comparatively unexplored and only a small number of methods exists.
In this work, following approaches in other computer vision areas, we draw inspiration from
recent advances in 2D anomaly detection to devise a powerful 3D method.
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Figure 1: Qualitative results of our method on the MVTec 3D Anomaly Detection dataset.
It reliably localizes geometric anomalies in test point clouds, while being only trained on
anomaly-free samples. Top row: Anomaly scores for each 3D point predicted by our algo-
rithm. Bottom row: Ground truth annotations of anomalous points in red.

More specifically, we build on the success of using descriptors from pretrained neural net-
works for unsupervised anomaly detection in 2D. An established protocol is to extract these
descriptors as intermediate features from networks trained on the ImageNet (Krizhevsky
et al., 2012) dataset. Models based on pretrained features were shown to perform bet-
ter than ones trained with random weight initializations (Bergmann et al., 2020; Burlina
et al., 2019; Cohen and Hoshen, 2020). In particular, they outperform methods based on
convolutional autoencoders or generative adversarial networks.

So far, there is no established pretraining protocol for unsupervised anomaly detection in
3D point clouds. Existing work addresses the extraction of local 3D features that are highly
task-specific. For point cloud registration, feature extractors often heavily downsample
the input data or operate only on a small number of input points. This makes them
ill-suited for anomaly localization in 3D. In this work, we develop a novel approach for
pretraining local geometric descriptors that transfer well to this task. We then use this
pretraining strategy to introduce a new method that outperforms existing approaches in
the localization of geometric anomalies in high-resolution 3D point clouds. In particular,
our key contributions are:

e We present 3D Student-Teacher (3D-ST), the first method for unsupervised anomaly
detection that operates directly on 3D point clouds. Our method is trained only on
anomaly-free data and it localizes geometric anomalies in high-resolution test samples
with a single forward pass. We propose an adaptation of a student-teacher framework
for anomaly detection to three dimensions. A student network is trained to match deep
local geometric descriptors of a pretrained teacher network. During inference, anomaly
scores are derived from the regression errors between the student’s predictions and the
teacher’s targets. Our method sets a new state of the art on the recently introduced
MVTec 3D-AD dataset. It performs significantly better than existing methods that
use voxel grids and depth images.



e We develop a self-supervised training protocol that allows the teacher network to learn
generic local geometric descriptors that transfer well to the 3D anomaly detection task.
The teacher extracts a geometric descriptor for each input point by aggregating local
features within a limited receptive field. A decoder network is trained to reconstruct
the local geometry encoded by the descriptors. Our pretraining strategy provides
explicit control over the receptive field and dense feature extraction for a large number
of input points. This allows us to compute anomaly scores for high-resolution point
clouds without the need for intermediate subsampling.

2. Related Work

Our work touches on several aspects of computer vision, namely unsupervised detection of
anomalies in two and three dimensions and extraction of deep local geometric descriptors
for 3D data.

2.1 Anomaly Detection in 2D

There is a large body of work on the unsupervised detection of anomalies in two dimensions,
i.e., in RGB or grayscale images. Ehret et al. (2019) and Pang et al. (2021) give comprehen-
sive overviews. Some of the existing methods are trained from scratch with random weight
initialization, in particular, those based on convolutional autoencoders (AEs) (Bergmann
et al., 2019; Hong and Choe, 2020; Liu et al., 2020; Venkataramanan et al., 2020; Wang
et al., 2020) or generative adversarial networks (GANs) (Carrara et al., 2021; Potter et al.,
2020; Schlegl et al., 2019).

A different class of methods leverage descriptors from pretrained networks for anomaly
detection (Bergmann et al., 2020; Cohen and Hoshen, 2020; Defard et al., 2021; Gudovskiy
et al., 2022; Mishra et al., 2020; Reiss et al., 2021; Rippel et al., 2021). The key idea
behind these approaches is that anomalous regions produce descriptors that differ from the
ones without anomalies. These methods tend to perform better than methods trained from
scratch, which motivates us to transfer this idea to the 3D domain.

Bergmann et al. (2020) propose a student-teacher framework for 2D anomaly detection.
A teacher network is pretrained on the ImageNet dataset to output descriptors represented
by feature maps. Each descriptor captures the content of a local region within the input
image. For anomaly detection, an ensemble of student networks is trained on anomaly-free
images to reproduce the descriptors of the pretrained teacher. During inference, anomalies
are detected when the students produce increased regression errors and predictive variances.
Closely following this idea, Salehi et al. (2021) train a single student network to match
multiple feature maps of a single teacher.

2.2 Anomaly Detection in 3D

To date, there are very few methods that address the task of unsupervised anomaly detection
in 3D data. None of them leverages the descriptiveness of feature vectors from pretrained
networks.

Simarro Viana et al. (2021) propose Voxel f~AnoGAN, which is an extension of the 2D
f-AnoGAN model (Schlegl et al., 2019) to 3D voxel grids. A GAN is trained on anomaly-free
data samples. Afterwards, an encoder is trained to predict the latent vectors of anomaly-free
voxel grids that, when passed through the generator network, reconstruct the input data.



During inference, anomaly scores are derived by a per-voxel comparison of the input to the
reconstruction. Bengs et al. (2021) introduce a method based on convolutional autoencoders
that also operates on 3D voxel grids. A variational autoencoder is trained to reconstruct
input samples through a low-dimensional bottleneck. Again, anomaly scores are derived by
comparing each voxel element of the input to its reconstruction.

Recently, Bergmann et al. (2022) introduced MVTec 3D-AD, a comprehensive dataset
for the evaluation of 3D anomaly detection algorithms. So far, this is the only public dataset
specifically designed for this task. They show that the existing methods do not perform well
on challenging high-resolution point clouds and that there is a need for the development of
new methods for this task.

2.3 Learning Deep 3D Descriptors

Geometric feature extraction is commonly used in 3D applications such as 3D registration
or 3D pose estimation. The community has recently shifted from designing hand-crafted
descriptors (Salti et al., 2014; Tombari et al., 2010) to learning-based approaches.

One line of work learns low-dimensional descriptors on local 3D patches cropped from
larger input point clouds. In 3DMatch (Zeng et al., 2017) and PPFNet (Deng et al., 2018b),
supervised metric learning is used to learn embeddings from annotated 3D correspondences.
PPF-FoldNet (Deng et al., 2018a) pursues an unsupervised strategy where an autoencoder
is trained on point pair features extracted from the local patches. Similarly, Kehl et al.
(2016) introduce an autoencoder that is trained on patches of RGB-D images to obtain
local features. These methods have the disadvantage that a separate patch needs to be
cropped and processed for each feature. This quickly becomes computationally intractable
for a large number of points.

To mitigate this problem, recent 3D feature extractors attempt to densely compute fea-
tures for high-resolution inputs. Choy et al. (2019) propose FCGF, a fully convolutional
approach to local geometric feature extraction for 3D registration. They design a network
with sparse convolutions to efficiently processes high-resolution voxel data. Given a large
number of precisely annotated local correspondences, their approach is trained using con-
trastive losses that encourage matching local geometries to be close in feature space. Point-
Contrast (Xie et al., 2020) learns descriptors for 3D registration in a self-supervised fashion
and does not rely on human annotations. Correspondences are automatically derived by
augmenting a pair of overlapping views from a single 3D scan. While being computationally
efficient, these methods require a prior voxelization that can lead to discretization inaccura-
cies. Furthermore, all of the discussed methods are designed to produce feature spaces that
are ideally invariant to 3D rotations of the input data. In unsupervised anomaly detection,
however, anomalies can manifest themselves precisely through locally rotated geometric
structures. Such differences should therefore be reflected in the extracted feature vectors.
This calls for the development of a different pretraining strategy that is sensitive to local
rotations.

3. Student-Teacher Anomaly Detection in Point Clouds

In this section, we introduce 3D Student-Teacher (3D-ST), a versatile framework for the
unsupervised detection and localization of geometric anomalies in high-resolution 3D point
clouds. We build on the recent success of leveraging local descriptors from pretrained net-
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Figure 2: (a) Training of our proposed 3D-ST method on anomaly-free point clouds. A
student network S is trained against the local 3D descriptors of a pretrained teacher network
T. (b) Computation of anomaly scores during inference. Anomaly scores are derived by
computing the regression error between the student and the teacher network. Increased
regression errors correspond to anomalous 3D points.

works for anomaly detection and propose an adaptation of the 2D student-teacher method
(Bergmann et al., 2020) to 3D data.

Given a training dataset of anomaly-free input point clouds, our goal is to create a model
that can localize anomalous regions in test point clouds, i.e., to assign a real-valued anomaly
score to each point. To achieve this, we design a dense feature extraction network 7', called
teacher network, that computes local geometric features for arbitrary point clouds. For
anomaly detection, a student network S is trained on the anomaly-free point clouds against
the descriptors obtained from 7. During inference, increased regression errors between S
and T indicate anomalous points. An overview of our approach is illustrated in Figure 2.

To pretrain the teacher, we present a self-supervised protocol. It works on any generic
auxiliary 3D point cloud dataset and requires no human annotations.

3.1 Self-Supervised Learning of Dense Local Geometric Descriptors

We begin by describing how to construct a descriptive teacher network 7. An overview
of our pretraining protocol is displayed in Figure 3. Given an input point cloud P C R?
containing n 3D points, its purpose is to produce a d-dimensional feature vector f, € R4
for every p € P. The vector fp, describes the local geometry around the point p, i.e., the
geometry within its receptive field.

Local Feature Aggregation. The network architecture of T' has two key requirements.
First, it should be able to efficiently process high-resolution point clouds by computing
a feature vector for each input point without downsampling the input data. Second, it
requires explicit control over the receptive field of the feature vectors. In particular, it
has to be possible to efficiently compute all points within the receptive field of an output
descriptor.

To meet these requirements, we construct the k-nearest neighbor graph of the input point
cloud and initialize f, = 0. We then pass the input sample through a series of residual
blocks, where each block updates the feature vector of each 3D point p from f, € R? to
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Figure 3: Overview of our proposed self-supervised pretraining strategy. A teacher network
is trained to output local geometric descriptors for each 3D point in the input sample with a
single forward pass. Simultaneously, a decoder network decodes randomly sampled descrip-
tors of the teacher and attempts to decode the local receptive field around its respective
input point.

fp € R%. These blocks are inspired by RandLA-Net (Hu et al., 2020, 2021), an efficient
and lightweight neural architecture for semantic segmentation of large-scale point clouds.
In semantic segmentation tasks, the absolute position of a point is often related to its class,
e.g., in autonomous driving datasets. Here, we want our model to produce features that
describe the local geometry of an object independent of its absolute location. We therefore
make the residual blocks translation-invariant by removing any dependency on absolute
coordinates. This significantly increases the performance when used for anomaly detection
as underlined by the results of our experiments in Section 4.

The architecture of our residual blocks is visualized in Figure 4(a). The input features are
first passed through a shared MLP, followed by two local feature aggregation (LFA) blocks.
The output features are added to the input after processing both by an additional shared
MLP. The features are transformed by a series of residual blocks and a final shared MLP
with a single hidden layer that maintains the dimension of the descriptors, i.e., fp € R,

The purpose of the LFA block is to aggregate the geometric information from the local
vicinity of each input point. To this end, it computes the nearest neighbors knn(p) =
{pP1,p2,...,pr} of all p € P and a set of local geometric features G for each point pair
defined by

G(p,pj) = (p—p;) © ||(p— pj)ll2 where j € {1,...,k}. (1)

The operator ® denotes the concatenation operation and |[|-||2 denotes the L?-norm. Since G
only depends on the difference vectors between neighboring points, our network is by design
invariant to translations of the input data. Our experiments show that this invariance of our
local feature extractor is crucial for anomaly detection performance. Therefore, we make
this small but important change to the LFA block. A schematic description of such a block
is given in Figure 4(b).

For each LFA block, the set of geometric features G(p, p;) is passed through a shared
MLP producing feature vectors of dimension drra. These are concatenated with the set of
input features {fp,,..., fp,}- The output feature vector of the LFA block fp is obtained
by an average-pooling operation of the concatenated features, yielding a feature vector of
dimension 2dy,pa.
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Figure 4: Overview of our network architecture. (a) The local feature aggregation block
aggregates geometric information of surrounding points. (b) Residual block that performs
a series of local feature aggregation steps to update each points feature vector. (c) Compu-
tation of the receptive field for each input point.

Reconstructing Local Receptive Fields. To pretrain 7T in a self-supervised fashion,
we propose to employ a network D that decodes the local receptive field of a feature vector.

The design of our network architecture allows an efficient computation of all points
within the receptive field R(p) of a point p, i.e., all points that affect the feature vector
fp- Each LFA block depends on the features of the surrounding nearest neighbors knn(p).
Whenever an LFA block is executed, R(p) grows by one hop in the nearest-neighbor graph.
The receptive field can therefore be obtained by iteratively traversing the nearest neighbor
graph:

L
R(p) = U knn' (p), where knnl(p) = U knn(q) (2)
1=0 g€knn' ! (p)

and knn® = {p}. L denotes the total number of LFA blocks in the network. Figure 4(c)
visualizes this definition of the receptive field.

The decoder D : R? — R3*™ upsamples a feature vector to produce m 3D points by
applying an MLP. For pretraining, we extract descriptors from an input point cloud by
passing it through the local feature extractor. We then randomly sample a set of points
Q from the input point cloud. For each p € @, we compute the receptive fields R(p)
and pass their respective feature vectors through the decoder. To train D, we minimize
the Chamfer distance (Barrow et al., 1977) between the decoded points and the receptive
fields. Since our network architecture is not aware of the absolute coordinates of p, we
additionally compute the mean p of all p € R(p) and subtract it from each point, yielding
the set R(p) = R(p) — p. The loss function for our self-supervised training procedure can
then be written as:

1

Lc(D) = Ql

> Chamfer(D(£,), R(p)). (3)
PEQ

Data Normalization. In order for our teacher network to be applied to any point cloud
not included in the pretraining dataset, some form of data normalization is required. Since
our network operates on the distance vectors of neighboring points, we choose to normalize



the input data with respect to these distances. More specifically, we compute the average
distance between each point and its nearest neighbors over the entire training set, i.e.,

PpEP gcknn(p

We then scale the coordinates of each data sample in the pretraining dataset by 1/s. This
allows us to apply the teacher network to arbitrary point cloud datasets, as long as the
same data normalization technique is used.

3.2 Matching Geometric Features for 3D Anomaly Detection

Finally, we describe how to employ the pretrained teacher network 7' to train a student
network S for anomaly detection. Given a dataset of anomaly-free point clouds, we first
calculate the scaling factor s for this dataset as defined in (4). The weights of T' remain
constant during the entire anomaly detection training. S exhibits the identical network ar-
chitecture as T and is initialized with uniformly distributed random weights. Each training
point cloud P; C R3 is passed through both networks, 7" and S, to compute dense features
fg and fg for all p € P, respectively. The weights of S are optimized to reproduce the
geometric descriptors of T' by computing the feature-wise L2-distance:

Lsr(S |P’ STFS — (fF — ) diag(o) 7[5 (5)
pEP;
We transform the teacher features to be centered around 0 with unit standard deviation.
This requires the computation of the component-wise means g € R% and standard deviations
o € R? of all teacher features over the whole training set. We denote the inverse of the
diagonal matrix filled with the entries of o by diag(o)~!.

During inference, anomaly scores are derived for each point p € P; in a test point
cloud P; ¢ R3. They are given by the regression errors between the respective features
of the student and the teacher network, i.e., ||f1*,g - (fg — p) diag(o)~Y|. The intuition
behind this is that anomalous geometries produce features that the student network has
not observed during training, and is hence unable to reproduce. Large regression errors
indicate anomalous geometries.

4. Experiments

To demonstrate the effectiveness of our approach, we perform extensive experiments on the
recently released MVTec 3D Anomaly Detection (MVTec 3D-AD) dataset (Bergmann et al.,
2022). This dataset was designed to evaluate methods for the unsupervised detection of
geometric anomalies in point cloud data (PCD). Currently, this is the only publicly available
comprehensive dataset for this task. It contains over 4000 high-resolution 3D scans of 10
object categories of industrially manufactured products. The task is to train a model on
anomaly-free samples and to localize anomalies that occur as defects on the manufactured
products during inference.

4.1 Experiment Setup

We benchmark the performance of our 3D-ST method against existing methods for unsu-
pervised 3D anomaly detection. In particular, we follow the initial benchmark on MVTec



3D-AD and compare 3D-ST against the Voxel f~AnoGAN, the Voxel Autoencoder, and the
Voxel Variation Model. The benchmark also includes their respective counterparts that
process depth images instead of voxel grids by exchanging 3D with 2D convolutions. The
GAN- and autoencoder-based methods derive anomaly scores by a per-pixel or per-voxel
comparison of their reconstructions to the input samples. The Variation Model is a shallow
machine learning model that computes the per-pixel or per-voxel means and standard de-
viations over the training set. During inference, anomaly scores are obtained by computing
the per-pixel or per-voxel Mahalanobis distance from a test sample to the training distribu-
tion. We employ the same training and evaluation protocols and hyperparameters setting
as listed in (Bergmann et al., 2022).

Teacher Pretraining. To pretrain the teacher network of our method (cf. Section 3.1),
we generate synthetic 3D scenes using objects of the ModelNet10 dataset (Wu et al., 2015).
It consists of over 5000 3D models divided into 10 different object categories.

We generate a scene of our pretraining dataset by randomly selecting 10 samples from
ModelNet10 and scaling the longest side of their bounding box to 1. The objects are
rotated around each 3D axis with angles sampled uniformly from the interval [0, 27]. Each
object is placed at a random location sampled uniformly from [—3,3]3. Point clouds are
created by selecting n points from the scene using farthest point sampling (Moenning and
Dodgson, 2003). The training and validation dataset consist of 1000 and 50 point clouds,
respectively. Our experiments show that using such a synthetic dataset for pretraining
yields local descriptors that are well suited for 3D anomaly detection. In our ablation
studies, we additionally investigate the use of real-world datasets from different domains
for pretraining, namely Semantic KITTI (Behley et al., 2019; Geiger et al., 2012), MV Tec
ITODD (Drost et al., 2017), and 3DMatch (Zeng et al., 2017).

The teacher network T comnsists of 4 residual blocks and processes n = 64000 input
points. We perform experiments using two different feature dimensions d € {64,128}. The
shared MLPs in all network blocks are implemented with a single dense layer, followed by
a LeakyReLU activation with a negative slope of 0.2. The input and output dimensions of
each shared MLP are given in Figure 4. For local feature aggregation, a nearest neighbor
graph with k = 32 neighbors is constructed. The pretraining runs for 250 epochs using
the Adam optimizer with an initial learning rate of 1072 and a weight decay of 1076. At
each training step, a single input sample is fed through the teacher network. To generate
reconstructions of local receptive fields, 16 randomly selected descriptors from the output of
T are passed through the decoder network D, which is implemented as an MLP with input
dimension d, two hidden layers of dimension 128, and an output layer that reconstructs
m = 1024 points. Each hidden layer is followed by a LeakyReLU activation with negative
slope of 0.05. After the training, we select the model with the lowest validation error as the
teacher network.

Anomaly Detection. The student network .S in our 3D-ST method has the same network
architecture as the teacher. It is trained for 100 epochs on the anomaly-free training split
of the MVTec 3D-AD dataset. We train with a batch size of 1. This is equivalent to
processing a large number of local patches per iteration due to the limited receptive field
of the employed networks. We use Adam with an initial learning rate of 10~3 and weight
decay 107°. Each point cloud is reduced to n = 64000 input points using farthest point
sampling. For inference, we select the student network with the lowest validation error.
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Table 1: Anomaly detection results for each evaluated method and dataset category. The
area under the PRO curve is reported for an integration limit of 0.3. The best performing
method is highlighted in boldface.

The evaluation on MVTec 3D-AD requires to predict an anomaly score for each pixel
in the original (x,y, z) images. To do this, we apply harmonic interpolation (Evans, 2010)
to the pixels that were not assigned anomaly scores by our method. We follow the stan-
dard evaluation protocol of MVTec 3D-AD and compute the per-region overlap (PRO)
(Bergmann et al., 2021) and the corresponding false positive rate for successively increasing
anomaly thresholds. We then report the area under the PRO curve (AU-PRO) integrated
up to a false positive rate of 30%. We normalize the resulting values to the interval [0, 1].

4.2 Experiment Results

Table 1 shows quantitative results of each evaluated method on every object category of
MVTec 3D-AD. The top three rows list the performance of the voxel-based methods. The
following three rows list the performance of the respective methods on 2D depth images.
The bottom two rows show the performance of our 3D-ST method on 3D point cloud data,
evaluated for two different descriptor dimensions d € {64,128}. Our method performs sig-
nificantly better than all other methods on every dataset category. Increasing the descriptor
dimension from 64 to 128 yields a slight overall improvement of 1.5 percentage points. The
latter outperforms the previously leading method by 25.0 points.

Qualitative results of our method are shown in Figure 1. 3D-ST manages to localize
anomalies over a range of different object categories, such as the crack in the bagel, the
contamination on the rope and the tire, or the cut in the foam and the potato. Additional
qualitative results for each object category are shown in Appendix B.

The MVTec 3D-AD paper states that real-world anomaly detection applications require
particularly low false positive rates. We therefore report the mean performance of all evalu-
ated methods when varying the integration limit of the PRO curve in Figure 5. Our method
outperforms all other evaluated methods for any chosen integration limit. The relative dif-
ference in performance is particularly large for lower integration limits. This makes our
approach well-suited for practical applications. Exact values for several integration limits
can be found in Appendix A.

4.3 Ablation Studies

We additionally perform various ablation studies with respect to the key hyperparameters
of our proposed method. Again, the exact values for each experiment can be found in
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Figure 5: Anomaly detection performance of each evaluated method for varying integration
limits. The performance at an integration limit of 0.3 is marked by a vertical line. In real-
world scenarios, the performance at lower integration limits is of particular importance.

Appendix A. Figure 6 shows the dependency of the mean performance of our method on
the number of input points n, the feature dimension d, or the number of nearest neighbor
points k used for local feature aggregation. We additionally visualize the inference time
and the memory consumption of each model during training and evaluation!. We find
that our method is insensitive to the choice of each hyperparameter. In particular, the
mean performance of each evaluated model outperforms the best performing competing
model from the baseline experiments by a large margin. The mean performance of our
model grows monotonically with respect to each considered hyperparameter. It eventually
saturates, whereas the inference time and memory consumption continue to increase super-
linearly.

Feature Space of the Teacher Network. We depict the effectiveness of our pretrain-
ing strategy in Figure 7. The left bar plot shows the mean performance with respect to
changes in the training strategy of our method. The first bar indicates how the performance
changes when we initialize the teacher’s weights randomly and perform no pretraining. As
expected, the performance drops significantly. The second bar shows the performance when
concatenating the absolute point coordinates of each 3D point to the local feature aggre-
gation function G, as proposed in (Hu et al., 2020). This no longer makes our network
translation invariant and decreases the performance. This indicates that translation invari-
ance is indeed important for our network architecture and that our modification to the local
feature aggregation module has a significant impact. The third bar shows the performance
of our method when trying to additionally incorporate rotation invariance. We achieve this
by augmentation of the training data with randomly sampled rotations such that locally
rotated geometries are also considered as anomaly-free. In this setting, the performance
is still significantly below our method, which indicates that sensitivity to local rotations is
beneficial for 3D anomaly detection.

Pretraining Dataset. In most of our experiments, we use synthetically generated scenes
created from objects from the ModelNet10 dataset as described above. Our pretraining

1. All models were implemented using the PyTorch library (Paszke et al., 2019). Inference times and
memory consumption were measured on an NVIDIA Tesla V100 GPU.

11
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Figure 6: Performance of our method when changing various key hyperparameters, i.e., the
number of input points p, the feature dimension d of the student and teacher networks, and
the number of nearest neighbors k used for local feature aggregation.

strategy does not require any human annotations and can operate on arbitrary input point
clouds. We are thus interested in whether the performance varies when using different
pretraining datasets. As first experiment, we randomly select 1000 training scenes from
the Semantic KITTI autonomous driving dataset, which is captured with a LIDAR sensor.
Secondly, we pretrain a teacher on all samples of 3DMatch, an indoor dataset originally
designed for point cloud registration. Finally, we use all samples of the MVTec ITODD
dataset, an industrial dataset originally designed for 3D pose estimation. The center bar
chart in Figure 7 shows the mean performance of our method when using these three
datasets for pretraining, compared to our baseline model. We find that our method does
not strongly depend on the specific dataset chosen for pretraining when using ITODD or
3DMatch. We observe a slight performance gap for the KITTI dataset, which is likely due
to the large domain shift.

Feature Extractor. We additionally test the performance of our method when our pre-
trained teacher network is replaced by descriptors obtained from different feature extractors.
In particular, we compare against features obtained from PPFFold-Net (Deng et al., 2018a)
and FCGF (Choy et al., 2019). For both, we use publicly available pretrained models.?
PPF-FoldNet outputs a single 512-dimensional descriptor for patches cropped from a local
neighborhood of 1024 points around each input point. Since it requires patch-based feature
extraction, producing descriptors for a large number of input points becomes prohibitively
slow. We therefore only extract 1000 descriptors for each point cloud with PPF-FoldNet.
FCGF outputs 32-dimensionsal descriptors and was pretrained in a supervised fashion on
the 3DMatch dataset by finding correspondences for 3D registration. Since it requires a
prior voxelization of the input data, we select a voxel size of 3.5 mm and extract descriptors
for 64000 points.

We train our student network to match the features extracted from these pretrained
networks instead of our proposed teacher network. The feature dimension of the output
layer of our student network is adapted to match the feature dimension of the descriptors.

2. https://github.com/XuyangBai/PPF-FoldNet
https://github.com/chrischoy/FCGF
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Figure 7: Performance of our method when making changes to the pretraining strategy
of the teacher network 7. We experiment with a random teacher initialization, adding
absolute point coordinates, rotation invariant features, and different pretraining datasets.

The results are shown in the right bar plot in Figure 7. Transferring the features of both
networks yields better performance than the Voxel GAN, which is the previously best-
performing method that was trained from scratch. This underlines the effectiveness of
using pretrained geometric descriptors for 3D anomaly detection. Both extractors do not
reach the performance of our proposed pretraining strategy that is specifically designed for
the anomaly detection problem.

5. Conclusion

We propose 3D-ST, a new method for the challenging problem of unsupervised anomaly
detection in 3D point clouds. Our approach is trained exclusively on anomaly-free samples.
During inference, it localizes geometric structures that deviate from the ones present in the
training set. Existing methods such as convolutional autoencoders or generative adversarial
networks are trained from random weight initializations. In contrast to this, our method
leverages the descriptiveness of deep local geometric features extracted from a network
pretrained on an auxiliary 3D dataset. In particular, we propose an adaptation of student-
teacher anomaly detection from 2D to 3D. To address the lack of pretraining protocols for
3D anomaly detection, we introduce a self-supervised strategy. This way, we create teacher
networks that produce dense local geometric descriptors for arbitrary 3D point clouds. The
teacher network is pretrained by reconstructing local receptive fields. For anomaly detection,
a student network matches the geometric descriptors of the teacher on anomaly-free data.
During inference, anomaly scores are derived for each 3D point by computing the regression
error between its associated student and teacher descriptors. Extensive experiments on
the MVTec 3D Anomaly Detection dataset show that our method outperforms all existing
methods by a large margin. We performed various ablation studies that additionally showed
that our method is computationally efficient, and robust to the choice of hyperparameters
and pretraining datasets used.

Acknowledgements. We would like to thank Bertram Drost, Carsten Steger, Markus
Glitzner, and the entire research team at MVTec Software GmbH for valuable discussions.
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Appendix A. Additional Information on Ablation Experiments

For reference, we provide numerical values of the results of our ablation studies that corre-
spond to the line- and barplots in our main manuscript.

A.1 Lower Integration Limits

In our paper, quantitative results are reported as the AU-PRO where the PRO values are
integrated over the false positive rates (FPR). In the majority of our experiments, we limit
the FPR by an upper integration limit of 0.3. In order to enable a comparison at lower
integration limits, we list the performance of our method at four different integration limits
{0.01,0.05,0.10,0.20} in Table 2. The first four row show the performance of our model
with a descriptor dimension of d = 64. The bottom four rows show the corresponding
performance of our model with feature dimension d = 128. These values are also depicted
in the line plot shown in Figure 5.

1nt<iigélai‘;10n bagel ;?;111(:1 carrot cookie dowel foam peach potato rope  tire | mean
0.01 0.361 0.019 0.690 0.461 0.147 0.232 0433 0.762 0.558 0.008 | 0.367

3 0.05 0.718 0.095 0.909 0.699 0.481 0.428 0.735 0.934 0.841 0.083 | 0.592
g 0.10 0.832 0.177 0.954 0.791 0.662 0.505 0.837 0.966 0.910 0.187 | 0.682
0.20 0.910 0.322 0.977 0.869 0.815 0.578 0.909 0.983 0.952 0.364 | 0.768

o 0.01 0.438 0.023 0.710 0.500 0.239 0.278 0.511 0.791 0.630 0.015 | 0.414
q 0.05 0.776 0.114 0.917 0.741 0581 0456 0.773 0.933 0.876 0.113 | 0.628
I 0.10 0.867 0.200 0.957 0.824 0.738 0.521 0.858 0.964 0.932 0.223 | 0.709
= 0.20 0.927 0.352 0979 0.891 0.858 0.584 0.920 0.982 0.965 0.399 | 0.786

Table 2: Performance of our method for various integration limits for each dataset category
of the MVTec 3D-AD dataset.

A.2 Varying Key Model Hyperparameters

We analyzed the dependency of the anomaly detection performance of our method on the
number of input points, the feature dimension of the geometric descriptors, and the number
of nearest neighbors used for local feature aggregation. In Table 3, we provide the numerical
values for this ablation study. The values correspond to the line plots in Figure 6.

Performance Number of Points Feature Dimension Nearest Neighbors
Metric 16 32 64 128 | 16 32 64 128 256 | 8 16 32 64
Localization .

(AUPRO) | 0759 0803 0818 08210740 0785 0818 0833 0.833 | 0755 0804 0818 0821
ITHIECIES)C 0.014 0.026 0.049 0.080 | 0.017 0.028 0.049 0.093 0.189 | 0.020 0.030 0.049 0.080
Training 229 333 580 7.87 | 2.06 354 589 1098 21.13| 243 398 589 10.86
Mem. (GB)

Inference 171 215 271 347 | 175 224 271 514 881 | 1.79 228 271 4.76
Mem. (GB)

Table 3: Ablation study on various hyperparameters of our proposed method.
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A.3 Modifying the Training Strategy

We further experimented with different training strategies applied to our proposed approach.
We tested a randomly initialized teacher network, adding absolute point coordinates to the
model, and incorporating rotation invariance to the anomaly detection training. We then
investigated different pretraining datasets and pretrained feature extractors. The numerical
values for these experiments are listed in Table 4. These values correspond to the bar plots

in Figure 7.

Training Pretraining Feature
Strategy AU-PRO Dataset AU-PRO Extractor AU-PRO
Random 0.278 | ITODD 0.820 | FOGF 0.719
Weights
Absolute

. 0.505 3DMatch 0.819 PPF-FoldNet 0.682
Coordinates
Rotation 0.650 | KITTI 0.735 ] ;
Invariance

Table 4: Performance of our method when making various changes to the training strategy.
The AU-PRO is reported curve up to an integration limit of 0.3.
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Appendix B. Additional Qualitative Results

Figure 8 shows additional qualitative results of our method for each dataset category of the
MVTec 3D-AD dataset for which our method reliably localizes anomalies.

carrot cookie

foam peach potato rope tire

Anomaly Score

Figure 8: Additional qualitative results of our method on the MVTec 3D-AD dataset. Top
row: Anomaly scores for each 3D point predicted by our algorithm. Bottom row: Ground
truth annotations of anomalous points in red.
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