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Abstract

In this paper we study the problem of estimating the
semi-generalized pose of a partially calibrated camera, i.e.,
the pose of a perspective camera with unknown focal length
w.r.t. a generalized camera, from a hybrid set of 2D-2D and
2D-3D point correspondences. We study all possible cam-
era configurations within the generalized camera system.
To derive practical solvers to previously unsolved challeng-
ing configurations, we test different parameterizations as
well as different solving strategies based on state-of-the-
art methods for generating efficient polynomial solvers. We
evaluate the three most promising solvers, i.e., the H51f
solver with five 2D-2D correspondences and one 2D-3D
correspondence viewed by the same camera inside gener-
alized camera, the H32f solver with three 2D-2D and two
2D-3D correspondences, and the H13f solver with one 2D-
2D and three 2D-3D correspondences, on synthetic and real
data. We show that in the presence of noise in the 3D points
these solvers provide better estimates than the correspond-
ing absolute pose solvers.

1. Introduction

Estimating camera geometry, i.e., absolute or relative pose
and internal camera calibration, is a fundamental problem
in computer vision with many applications, e.g., in camera
calibration [35, 47], structure-from-motion (SfM) [34, 36,
41, 45], localization [3, 31, 32], visual odometry [25, 26],
and image retrieval [29, 44].

Camera geometry solvers are usually used inside
RANSAC-style hypothesis-and-test frameworks [10]. For
efficiency, it is therefore important to employ minimal
solvers that generate the solution from a minimal number
of point correspondences. Minimal relative and absolute
pose problems have been extensively studied for decades
with many solutions for calibrated cameras [10, 27, 28],

Figure 1. An illustration of the problem configuration.

partially calibrated cameras with unknown focal length
[4, 19, 20, 22, 38], cameras with unknown radial distortion
[6, 17, 18, 22], and solutions assuming known gravity di-
rection [9, 16, 33]. The minimal solvers to these problems
are based on different parameterizations and different solu-
tion methods. E.g., the absolute pose problem for a camera
with unknown focal length has been solved based on ratio
of distances [4], the 3.5pt formulations from [22, 46], and
a solution based on the Cayley parameterization of rotation
that is solved using the extremely efficient 3Q3 solver [19].
Generalized camera: All above-mentioned algorithms as-
sume the central perspective projection model (potentially
with radial distortion). Recently, several minimal solutions
for generalized cameras were proposed. A generalized cam-
era [30] can be represented by a arbitrary set of rays with,
in general, different projection centers. This camera model
has many applications, e.g., in SfM [48] and visual localiza-
tion [37, 43], where we either work with multi-camera sys-
tems or we have to register a new camera (a query image)
to a set of cameras with known poses modeled as a general-
ized camera composed of the known perspective ones. The
latter case is called the semi-generalized pose estimation
problem. In many situations, estimating the camera pose
w.r.t. the generalized camera leads to more accurate poses
compared to estimates from pair-wise epipolar geometries,
especially thanks to a larger field-of-view of the general-
ized camera [40]. Moreover, in contrast to pinhole epipolar
geometry, the scale of the translation can be recovered.
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While the problem of estimating the absolute pose of a
generalized camera can be solved very efficiently using the
3Q3 solver [19] (the final solver runs in a few µs), the prob-
lem of estimating the relative pose of two generalized cam-
eras is significantly more complex [39]. This problem re-
sults in a complex system of 15 polynomial equations with
64 solutions and with a Gröbner basis solver [39] that is
infeasible for real-time applications. Recently, several solu-
tions to different semi-generalized relative pose problems
were proposed. In [48], the authors considered a semi-
generalized epipolar geometry problem, i.e., the problem
of estimating the relative pose together with the scale of
the translation between one perspective and one generalized
camera from 2D-2D correspondences. Due to the complex
geometry of the problem, minimal solutions to only four
different configurations were presented, i.e., the E5+1 and
E4+2 solvers for calibrated pinhole cameras, and the Ef6+1

and Ef5+2 solvers for pinhole cameras with unknown focal
length. Here, a generalized camera consists of multiple per-
spective ones. 4+2 denotes a configuration where four point
correspondences come from one of these perspective cam-
eras and the remaining two correspondences come from one
or two other perspective cameras. The proposed E4+2 and
Ef5+2 solvers were impractical for real-time applications
since they perform eliminations of huge matrices and have
running times of 1.2ms and 13.6ms, respectively. Recently,
[2] showed that for planar scenes, the semi-generalized rel-
ative pose problem can be, after using suitable parameter-
izations and after eliminating some unknowns, solved effi-
ciently by finding the roots of a single variable polynomial.
The authors proposed such efficient minimal solutions for
calibrated and partially-calibrated semi-generalized homog-
raphy estimation and all different configurations of 2D-2D
correspondences in a generalized camera.

Hybrid correspondences: In [13], the authors suggested to
use combinations of 2D-2D and 2D-3D correspondences,
i.e., hybrid correspondences, for visual localization. Us-
ing hybrid correspondences has several advantages. While a
2D-2D correspondence provides only one constraint on the
camera geometry, a 2D-3D correspondence provides two
constraints and therefore decreases the number of corre-
spondences needed for pose estimation. On the other hand,
3D points may not be available for many 2D detections in
the query image, i.e., it is not possible to triangulate these
points, or these 3D points can be noisy. Thus, a combination
of 2D-2D and 2D-3D correspondences may bring a benefit
from both and, as shown in [7], can result in better pose
estimates. [13] listed all possible minimal configurations of
hybrid point correspondences for semi-generalized pose es-
timation for calibrated, partially calibrated (unknown focal
length) and uncalibrated perspective cameras w.r.t. a gener-
alized camera. While the authors estimated the number of
solutions for all cases, they proposed solvers for only sev-

eral simple configurations, including configurations where
all 2D points are observed by one camera inside the gen-
eralized camera or the calibrated case with two 2D-2D and
two 2D-3D correspondences. They also suggested a solu-
tion to the case of uncalibrated cameras with one 2D-2D
correspondences and five 2D-3D correspondences.

Recently, [7] proposed minimal solutions to several
problems of estimating the pose of calibrated cameras, and
cameras with known vertical direction, from hybrid point
correspondences. These solutions assume that both cam-
eras are generalized, i.e., a fully generalized case. The final
solvers were mostly obtained using the automatic genera-
tor based on Gröbner bases [15]. Together with the pro-
posed minimal solvers for calibrated cameras, a RANSAC-
based approach that is automatically selecting the “best”
type of solver for each RANSAC iteration was presented.
The solver to be used in the next iteration is selected in a
data-driven way using a probability-guided sampling strat-
egy, allowing it to adapt to the quality of the provided cor-
respondences. The paper showed that properly combin-
ing different types of correspondences and different camera
pose solvers for such correspondences can bring a signifi-
cant benefit in the performance of RANSAC. Even though
some of the proposed solvers are efficient, even for cali-
brated cameras there already are configurations that result
in large solvers, e.g., the solver that uses four 2D-2D and
one 2D-3D correspondence and which has to perform elim-
ination of a matrix of size 244× 277.

In this paper, we study challenging unsolved problems
for estimating the semi-generalized pose of a partially cal-
ibrated camera, i.e., the pose of a perspective camera with
unknown focal length w.r.t. a generalized camera, from a hy-
brid set of 2D-2D and 2D-3D point correspondences. The
proposed solvers fill the gaps that still remain in the arsenal
of minimal solvers and provide new alternatives for pose es-
timation of a camera with unknown focal length1 that can be
efficiently used inside the hybrid RANSAC framework [7].
We assume a semi-generalized case, compared to the fully
generalized case considered in [7], since this scenario ap-
pears more often in applications, e.g., in visual localization,
and results in simpler and faster solvers. The main contri-
butions of the paper are:

1. We propose solutions to all possible minimal point
configurations for semi-generalized pose estimation of
a partially calibrated camera from a hybrid set of 2D-
2D and 2D-3D point correspondences. The proposed
solvers include (i) the H51f solvers with five 2D-2D
correspondences and one 2D-3D correspondence, (ii)
the H32f solvers with three 2D-2D and two 2D-3D
correspondences, and (iii) the H13f solvers with one
2D-2D correspondence and three 2D-3D correspon-

1Note that in many applications, the only intrinsic parameter of a fully
uncalibrated camera that needs to be estimated is the unknown focal length.



dences. In all three cases we consider all possible cam-
era configurations within the generalized camera.

2. To derive efficient and stable solvers for all challeng-
ing configurations, we test different parameterizations
of the problem e.g., using the essential matrix, homo-
graphies, quaternions, and the Cayley parameteriza-
tion of rotation, as well as different solution strate-
gies based on state-of-the-art methods for generat-
ing efficient polynomial solvers, e.g., the elimination
ideal method [20], heuristic-based basis sampling ap-
proach [23] and resultants [1]2.

3. We test the most practical solvers on synthetic as well
as real data. We show that in the presence of noise in
3D points and for special type of motions, e.g., forward
motion, these solvers provide better estimates than cor-
responding absolute pose solvers.

2. Problem formulation
Let us consider a camera setup as depicted in Fig. 1. We
denote the pinhole query camera as P and the generalized
camera as G. The generalized camera G is assumed to be
fully calibrated, and it consists of a set of pinhole cameras
denoted as {G1,G2, . . . ,Gk}. In this paper, we consider P
to be partially calibrated. Its calibration matrix is of the
form K = diag(f, f, 1) with unknown focal length f . We
use the upper index to denote a coordinate system. We con-
sider two different coordinate systems for the generalized
camera G: the local coordinate system of the generalized
camera G as a single entity, and the local coordinate sys-
tems of each of the pinhole cameras, Gi. Let RGi , tGi denote
the rotation and translation required to align the local co-
ordinate system of Gi to the local coordinate system of the
generalized camera G. Let RG, tG denote the rotation and
translation required to align the local coordinate system of
G to the local coordinate system of P: Let XP ∈ R3 and
XG ∈ R3 be the coordinates of the point X in the local co-
ordinate system of P and the local coordinate system of G,
respectively. It holds that XP = RGX

G + tG.
For such a camera setup, our goal is to estimate the rota-

tion RG ∈ SO(3) and the translation tG ∈ R3 between the
generalized camera G and the perspective camera P , i.e., to
align the local coordinate system of G with the local coor-
dinate system of P . Additionally we also need to estimate
the focal length f of the camera P . For the sake of brevity,
we replace RG with R and tG with t.

Let us assume a 3D point Xj observed by the per-
spective camera P and the camera Gi, i.e., the i-th con-
stituent perspective camera from the generalized camera G.

2Finding a feasible formulation, i.e., one leading to a practical solu-
tion, and deriving an efficient and stable solver to the resulting polynomial
system usually requires many non-trivial “tricks” and a good knowledge of
both camera and algebraic geometry. Thus, studying different formulations
and testing different solution strategies itself is an important contribution.

Let us denote the image points detected in P and Gi as
pj = [xj , yj , 1]

> and gij = [xGi
j , y

Gi
j , 1]

>, respectively.
With this notation, the coordinates of the 3D point Xj in
the local coordinate system of P are

XP
j = αjK

−1pj , (1)

where K is the calibration matrix of the camera P and αj

represents the depth of the point Xj in P . A similar rela-
tionship holds for the coordinates of the 3D point Xj in the
local coordinate system of Gi as

XGi
j = βijK

−1
Gi

gij , (2)

where KGi
is the calibration matrix of the camera Gi and

βij represents the depth of the point Xj in Gi. To obtain
the relationship between XP

j and XGi
j we have to transform

them into the same coordinate system, i.e., in this case the
local coordinate system of P . This gives us

R(βijRGiK
−1
Gi

gij + tGi) + t = αjK
−1pj . (3)

Note that here we use the fact that R = RG and t = tG. Since
in our case RGi

, tGi
and KGi

are known, for better readability
we substitute qij = RGi

K−1Gi
gij and obtain

R(βijqij + tGi) + t = αjK
−1pj . (4)

This denotes the constraint imposed by a 2D-2D correspon-
dence pj ↔ (qij , tGi

). Similarly, if we have a 2D-3D cor-
respondence between a 2D point pj and a 3D point XG

j in
the local coordinate system of the generalized camera G,
then the resulting constraint is

RXG
j + t = αjK

−1pj . (5)

3. Minimal solvers
The problem of semi-generalized pose from hybrid point
correspondences has seven degrees of freedom (d.o.f.),
three each for R and t, and one for f . From the constraint (4)
induced by each 2D-2D point correspondence, we can elim-
inate the depths αj and βij to obtain

(pj)
> [KRqij ]× (KRtGi

+ Kt) = 0 , (6)

where the notation [a]× indicates the skew-symmetric ma-
trix of the vector a ∈ R3. Thus, each 2D-2D point corre-
spondence gives us one equation. Similarly, from the con-
straint (5) induced by each 2D-3D point correspondence,
we can eliminate the depth αj to obtain

[pj ]× (KRXG
j + Kt) = 0 , (7)

which gives us two linearly independent equations.
A hybrid point configuration (m,n) consists of m 2D-

2D and n 2D-3D point correspondences. It results in a total



ofm+2n linearly independent equations. Since in this case
we have 7 d.o.f., for any hybrid point configuration (m,n)
to lead to a minimal problem, we require that m+ 2n = 7.
We denote the solver for such a hybrid point configuration
(m,n) as Hmnf in this paper.

A given hybrid point configuration (m,n) can have dif-
ferent configurations of the generalized camera G, based on
the largest number k ≤ m of 2D-2D correspondences de-
tected by the same pinhole camera Gi within the generalized
camera G. For brevity we denote such a case as [k].
Parameterizations: For all configurations we generated
solvers using three different types of parameterizations:

• Rotation & translation (R&t): This parameterization
correspond to Eqs. (6) and (7). Here we tested Cayley
and quaternion-based parameterizations of the rotation
matrix R. For the quaternion representation, inspired
by [49], we use a four variable reparameterization of
the product KR. This is important for removing sym-
metries and halving the number of solutions. We de-
note the initial polynomial system as E.

• Homography (H): We tested this parameterization for
all configurations with at least three 2D-2D correspon-
dences coming from the same camera Gi3 or three 2D-
3D correspondences. Such three correspondences de-
fine a plane and thus a 3× 3 homography matrix H in-
duced by this plane. Three correspondences give us six
linear equations in the elements of H and thus can be
used to parameterize H using a three dimensional null
space. Here, the initial system E is defined by this pa-
rameterization, together with equations coming from
the decomposition of the homography matrix H and the
equations from the remaining correspondences.

• Fundamental matrix (F): We tested this parameteri-
zation for configurations where we have five or six
2D-2D correspondences coming from the same cam-
era Gi4. Since each such correspondence gives us a
linear constraint on the fundamental matrix F, we can
parameterize it using a four resp. three dimensional
null space. Here, the initial system E is defined by this
parameterization, together with the equations coming
from the decomposition of F and those induced by the
remaining point correspondences.

To simplify the initial system of equationsE in each config-
uration and parameterization, we tried to eliminate different
variables using the elimination ideal method [20]. We also
tried out different transformations of the coordinate sys-
tems for the generalized camera G and the pinhole camera
P . To solve the resulting system of polynomial equations,

3Note, that here we can project 3D points to the camera Gi to obtain
a 2D-2D point correspondence. This means that the only case where this
parameterization is not applicable is H51f [1].

4We can again project 3D points to the camera Gi to obtain a 2D-2D
point correspondence.

Problem #sols Gen. cam. GB [23] Res. [1] Param. 2D-2D 2D-3D

H13f 12 [1] 70× 82 91× 91 H 1 3
H32f 26 [1],[2],[3] 289× 315 − R&t 3 2
H51f 56 [1] 506× 562 537× 537 R&t 5 1
H51f 50 [2],[3] 511× 561 374× 374 R&t 5 1
H51f 38 [4] 390× 428 243× 243 R&t 5 1
H51f 9 [5] 9× 18 10× 10 F 5 1

Table 1. Partially calibrated semi-generalized pose solvers for hy-
brid point correspondences. Hmnf denotes a case withm 2D-2D
point correspondences and n 2D-3D point correspondences. [k]
denotes a case where no more than k 2D-2D correspondences are
detected by a camera Gi within the generalized camera G.

we used two state-of-the-art algebraic methods for gener-
ating efficient polynomial solvers, i.e., the Gröbner basis
method [21] including the basis sampling strategy [23] and
the hidden variable resultant-based method [1].

This results in huge number of different combinations
of different parameterizations, point configurations, solu-
tion strategies, and solvers that we generated. In the paper,
we present the fastest solvers among all generated solvers
for each hybrid point configuration (m,n) and all possi-
ble generalized camera configurations [k]. These solvers
are summarized in Tab. 1. Note that we have not studied
the (7, 0) case because our goal in this paper is to study
hybrid point configurations with at least one 2D-3D point
correspondence. The first two columns in this table report
the solver/problem name and the number of solutions5 of
the given configuration and its particular formulation, the
third column lists the feasible configurations of cameras in
a generalized camera that can be solved using the particular
solver, the fourth and the fifth columns list the size of the
smallest/fastest solver, generated using the basis sampling
strategy [23] (elimination template matrix size), resp. the
resultant-based method [1] (Generalized Eigenvalue Prob-
lem size), the sixth column is the parameterization of the
problem that leads to this solver, and the last two columns
depict the hybrid point configuration.

Next, we describe the fastest solvers for each studied hy-
brid point configuration, i.e., H13f , H32f , and H51f .

3.1. H13f

In this case we have one 2D-2D point correspondence
p1 ↔ (q11, tG1

) and three 2D-3D point correspondences
pj ↔ XG

j , j = 2, . . . , 4, and therefore only one hy-
brid point configuration, i.e., the configuration [1]. For this
configuration, the parameterization that led to the smallest
solver is the Homography parameterization.

In this case, the three 3D points XG
j , j = 2, . . . , 4, define

5Note that for some problems, the reported number of solutions does
not correspond to the number of solutions presented in [13]. The reason
for this is two-fold, first of all [13] did not consider possible symmetries,
and second, in some problems the authors computed solutions to the case
where both the perspective and the generalized camera have a common
unknown focal length. However, this scenario is impractical.



a plane in the local coordinate system of the generalized
camera G. Let us denote this plane as π and its vector as
N, encoding both the direction of the plane normal and the
distance from the origin. Therefore

XG
j ∈ π =⇒ N>XG

j + 1 = 0 , j = 2, . . . , 4 . (8)

Coordinate system transform: W.l.o.g., we can rotate
and translate the coordinate system of G such that N =[
0 0 d

]>
, d 6= 0 and tG1

=
[
0 0 0

]>
. W.l.o.g., we

can also rotate the coordinate system of the pinhole camera
P such that q11 =

[
1 0 1

]>
.

Null-space parameterization of HK: Let us define the ho-
mography induced by the three 2D-3D point correspon-
dences between the coordinate systems of G andP via point
transfer through the plane π. Denoting the homography ma-
trix as H ∈ R3×3 we can write

H = R− tN> . (9)

The constraints imposed by a 2D-3D point correspondence,
of the form (5), become

HXG
j = αjK

−1pj , j = 2, . . . 4 . (10)

Let us write tK = Kt and HK = KH. Then Eqs. (9) and (10)
can be rewritten as

HK = K(R− tN>) = KR− tKN
> (11)

HKX
G
j = αjpj , j = 2, . . . 4 . (12)

Eq. (12) gives us six linear equations in the nine elements of
HK. From these equations we can obtain a three-dimensional
nullspace parameterization of the matrix HK. Thus, we can
express HK as a function of three unknown variables, n1, n2
and n3. In fact, we can express HK as

HK = n1N1 + n2N2 + n3N3 , (13)

where N1, N2 and N3 are the matrix forms of the basis vectors
of the null space.

Constraint on HK: Now we derive constraints on the matrix
HK. We can rewrite Eq. (11) as

R = K−1(HK + tKN
>) . (14)

Since R ∈ SO(3), we have RR> = R>R = I. Thus we have
the following set of constraints from Eq. (14):

K−1
(
HK + tKN

>) (HK + tKN
>)> K−> = I ,

(HK + tKN
>)>K−>K−1(HK + tKN

>) = I . (15)

Due to the proposed coordinate system transform, the con-
straint (6) for the 2D-2D point correspondence becomes

p>1 [KRq11]× Kt = 0. (16)

Substituting R from Eq. (14) into Eq. (16), we have

((HK + tKN
>)q11)

> [tK]× p1 = 0 . (17)

The equations in (15) and (17) are the constraints on the un-
known quantities, HK, tK, and K, and the known quantities,
N =

[
0 0 d

]>
and p1 =

[
x1 y1 1

]>
. Let us de-

fine the ideal generated by these equations as I ⊂ C [ε] [8],
where ε contains the nine unknowns from HK, three from tK,
the inverse of the focal length w = 1

f , and d, x1, and y1.
Note that x1, y1, and d are known and here we treat them
as known symbolic variables. Now, we can use the elimi-
nation ideal technique [20] to eliminate three unknowns of
tK and w from this ideal. I.e., we compute an elimination
ideal I1 that contains polynomials only in nine unknown
variables from HK and three known variables, d, x1, and
y1. Note, that this elimination ideal can be computed of-
fline using some algebraic geometry software like Macaulay
2 [11]. We found that such an elimination ideal is generated
by eight polynomials (two of degree 3, one of degree 4, and
five of degree 8) in 12 variables (nine unknown and three
known). For more details on elimination ideals see [8, 20].

Substituting the three-variable parameterization of HK
from Eq. (13) into the generators of the ideal I1, we ob-
tain a system of eight equations in three unknowns. Us-
ing Macaulay 2 [11], we verified that this system has up to
12 solutions. This system defines the minimal formulation
for the H13f case. We used two state-of-the-art algebraic
methods, i.e., the Gröbner basis-based automatic genera-
tor [21] including the basis sampling strategy [23] as well
as the resultant-based generator [1], to generate solvers for
this system of eight equations in three unknowns. We found
that smaller solvers can be obtained if, instead of using all
eight equations, we use only six equations (two of degree 3,
one of degree 4, and three of degree 8). Using the Gröbner
basis method with the basis sampling strategy [23], the gen-
erated solver was of size 77 × 89, while the one generated
using the resultant-based method [1] was of size 91 × 91.
We report these solver sizes in Tab. 1.

Extracting pose from H: Once we have computed the so-
lutions to HK, we can estimate the value of w = 1/f from
the Eq. (15) through variable elimination and substitution.
From w, we can then compute the calibration matrix K and
subsequently the homography matrix H = K−1HK. An im-
portant step here is to efficiently extract the relative pose,
i.e., the rotation matrix R and the translation vector t from H.
Our chosen coordinate system transformation plays a cru-
cial role here. Substituting N =

[
0 0 d

]>
in Eq. (9), we

have
R = H+ t

[
0 0 d

]
. (18)

Writing H =
[
h1 h2 h3

]
, the rotation matrix R can be

computed as

R =
[
h1 h2 [h1]× h2

]
. (19)



Again, from Eq. (18) and the computed values of H, the
translation vector t can be computed as

t =
1

d
([h1]× h2 − h3) . (20)

3.2. H32f

In the second configuration, we have three 2D-2D point cor-
respondences pj ↔ (qij , tGi) and two 2D-3D point cor-
respondences pj ↔ XG

j . Thus, there are three possible
generalized camera configurations, i.e., [1], [2] and [3]. For
all three camera configurations, we obtained the smallest
solvers using the Rotation & translation parameterization.
Such a parameterization for H32f was already proposed
in [13], where the authors suggested to use a coordinate
transformation resulting in a system of five equations in five
variables with 52 solutions. This system is, however, com-
plex and it leads to a huge solver6. In order to generate a
feasible solver with fewer solutions, in this paper, we repa-
rameterized the product KR. Next, we review the coordinate
transformation and the parameterization proposed in [13]
and then describe our proposed solver. We obtain the same
solver for all three configurations [1], [2] and [3].

Coordinate system transform: W.l.o.g., we can translate
and rotate the coordinate system of G such that XG

4 =[
0 0 1

]>
and XG

5 =
[
0 0 0

]>
. Moreover, we can

rotate the coordinate system of the pinhole camera P such
that p5 =

[
1 0 1

]>
.

By this coordinate system transform, the constraint (5)
for the fifth point correspondence p5 ↔ XG

5 leads to

R

00
0

+ t = α5K
−1

10
1

 =⇒ Kt = α5

10
1

 . (21)

Substituting the above expression of Kt in the constraints
for the 2D-2D point correspondences and the fourth 2D-3D
point correspondence, we obtain

(KRpj)
> [qij ]× (KRtgi + α5

10
1

) = 0 , (22)

[q4]× (KRX4 + α5

10
1

) = 0 , (23)

where i ∈ {1, 2, 3} and j = 1, . . . , 3. The constraints (22)
and (23) together give us a set of five equations in the quan-
tities K, R, and α5. We parameterized the rotation matrix
R using quaternions. We have five unknowns, one for the
calibration matrix K, three for the rotation matrix R and one
for α5. Using the automatic generator [21,23], we obtained
a large solver of size 1866× 1918 and with 52 solutions.

6This solver was not presented in [13] and only the parameterization
was discussed.

Our approach: To simplify this solver, we reparameter-
ize the product KR as a function of four new variables,
r1, r2, r3 and r4. This reparameterization is described in
the SM. With this reparameterization, the constraints (22)
and (23) give us a set of five equations in five variables
r1, r2, r3, r4, and α5. The two linearly independent equa-
tions from (23) are linear in r1 and r2. Hence both these
variables can be expressed as functions of the other three
variables, r3, r4, and α5. Substituting these expressions of
r1 and r2 in Eq. (22), we obtain a system of three equa-
tions in three variables r3, r4, and α5, each of degree eight.
Let us denote the polynomial set as E = {e1, e2, e3}.
The ideal I ∈ C [r3, r4, α5] generated by E is not zero-
dimensional [8]. Specifically, if α5 = 0 & r23 + r24 − 1 = 0,
or r23 + r24 = 0, we have a set of trivial solutions to E = 07.

In order to generate a solver from E, we have to remove
those solutions of E = 0 where α5 = 0 & r23 + r24 − 1 = 0
or r23 + r

2
4 = 0. This can be achieved by saturating the ideal

I w.r.t. α5 and r23+r
2
4 [8]. This saturation results to a solver

of size 475× 501 generated using the generator [21, 24].
To generate a smaller solver, we want to avoid saturating

w.r.t. α5 and also avoid adding an extra variable. Thus, we
augmentE with extra polynomials which vanish on all non-
trivial solutions to E = 0 but not if α5 = 0 & r23+r

2
4−1 =

0. We next show how to generate such polynomials. The
form of the i-th polynomial in E is

ei = (r23 + r24 − 1)φi + α5ψi , (24)

where φi and ψi are polynomials in r3, r4, α5. Then, the set
of equations E = 0 can be written in matrix form as

Mb =

φ1 ψ1

φ2 ψ2

φ3 ψ3


3×2

[
r23 + r24 − 1

α5

]
2×1

= 03×1 . (25)

The determinant of each 2 × 2 submatrix of M vanishes
only for those solutions of E = 0 such that α5 6= 0 or
r23 + r24 − 1 6= 0. We have a total of three such determi-
nant expressions, each a polynomial of degree ten in the
variables r3, r4, and α5, out of which two are linearly in-
dependent. Let us denote the augmented system consist-
ing of E and two of these polynomials as Ea. This sys-
tem has 26 solutions and does not contain solutions where
α5 = 0 & r23 + r24 − 1 = 0. The ideal Ia generated by Ea

now has trivial solutions only if r23 + r24 = 0. Therefore,
we saturate Ia w.r.t. r23 + r24 and use Gröbner basis-based
method with heuristic sampling [23] to obtain a solver of
size 289 × 315. We failed to generate a solver using the
resultant-based approach [1].

7The resulting possible degeneracies for α5 = 0 & r23 + r24 − 1 = 0
and r23 + r24 = 0 can be avoided by a random rotation of the camera P .



3.3. H51f

In this scenario, we have five 2D-2D point correspondences
pj ↔ (qij , tGi) and one 2D-3D point correspondence
p6 ↔ XG

6, which together give us a set F of 7 equations.
For this case we have 5 possible generalized camera con-
figurations, i.e., [1], . . . , [5]. We first study the first four
configurations.

To solve these configurations we again tested three dif-
ferent groups of parameterizations, i.e., R&t, H, and F

together with different simplification, reparameterizations,
eliminations and solution strategies. It turns out that the
configurations [1], [2], [3], and [4] are the most challeng-
ing configurations among all those studied in this work.
For these problems the smallest solvers were generated us-
ing the Rotation & translation parameterization. However,
even after different reparameterizations and simplifications
these solvers are huge. The sizes of the elimination tem-
plate matrices for the smallest obtained solvers for these
four camera configurations of H51f are listed in Tab. 1.
More details about these solvers and parameterizations can
be found in the SM.

H51f [5]: In contrast to configurations [1], . . . , [4], if all
5 correspondences are detected by the same camera pair,
we have the simplest scenario. In this case, the problem
is reduced to the problem of estimating the relative pose
between two pinhole cameras from 6 2D-2D point corre-
spondences, where the sixth correspondence is obtained by
projecting the 3D point into the camera Gi. This is followed
by the scale estimation from the remaining constraint given
by the 2D-3D point correspondence. Such a solution was
already proposed in [12]. However, there the authors sug-
gested to use the 6pt solver [38] for two-sided common fo-
cal length and therefore they reported 15 solutions. This
configuration is not practical since G is usually calibrated
and moreover, it usually doesn’t have the same focal length
as the query camera. In [12], the authors did not test the
proposed solver.

In this paper, we consider a more practical scenario
where G is calibrated. This results in estimating the es-
sential matrix and the focal length of P from six 2D-
2D correspondences, known as the one-sided focal length
problem [5]. This problem has nine solutions. To solve
this problem we use the Gröbner basis-based solver pro-
posed in [20], which eliminates the unknown focal length
using the elimination ideal method and thus results in a
smaller elimination template matrix of size 9×18 compared
to [5]. Using the resultant-based generator [1], we obtained
a solver of size 10× 10.

4. Synthetic experiments
For our synthetic scene tests, we generated 5K 3D scenes
with known ground truth parameters. In each scene, the

KingsCollege OldHospital ShopFacade StMarysChurch

Solver +LO +LO +LO +LO Runtime

P4Pf 41.1 70.3 33.0 52.2 79.6 89.3 59.2 83.8 0.06
P3.5Pf 50.4 69.4 36.8 55.5 83.5 95.1 72.1 82.6 0.08
H13f 61.5 69.4 45.1 57.7 92.2 95.1 76.4 83.8 0.75
H51f [5] 42.9 70.8 36.3 46.7 82.5 89.3 62.3 82.8 0.19
P35Pf +H13f +H51f [5] 60.9 69.4 47.3 55.5 86.4 90.3 77.4 83.2 0.75

Table 2. Hybrid Localization on Cambridge Landmarks. The
table shows the percentage of camera poses localized within 1◦

and 0.5m. In the table we show the results of both vanilla
RANSAC and LO-RANSAC. For a fair comparison the model
scoring in RANSAC is the same for all methods (taking into ac-
count both 2D-2D and 2D-3D correspondences). The best result is
highlighted in bold, and the second-best is underlined. Table also
shows the median runtime for RANSAC in seconds.

3D points were randomly distributed within a cube of size
10× 10× 10. Each 3D point was projected on up to 6 cam-
eras with realistic focal lengths. Five of these cameras rep-
resented the generalized camera G and one camera was con-
sidered as the pinhole camera P . The orientations and posi-
tions of the cameras were selected at random such that they
looked towards the origin from a random distance, varying
from 15 to 25, from the scene. Images had the resolution
of 1000 × 1000 px. We added Gaussian noise to the posi-
tions of the 3D points with the standard deviation σ varying
as a % of their depths to simulate the different quality of
keypoints used for the triangulation of these 3D points. To
simulate the noise in 2D-2D correspondences, we added 2
px image noise. More experiments, e.g., for increasing im-
age noise and fixed 3D point noise are in the SM.

We evaluated the stability of the proposed H32f , H13f
and the H51f [5] solvers w.r.t. the SOTA absolute pose
solver P4Pf [19]. The graphs for synthetic experiments
with increasing noise in the 3D points are provided in Fig.
2. We considered 3 different camera motions in our tests,
i.e., random, forward and sideways. For each motion, we
measured the error in the estimated rotation R, translation t
(in SM), and the focal length f , by varying the amount of
noise in the 3D points. Note that we tested two derivations
of our proposed H13f solver, the one based on the Gröbner
basis [23] and one based on resultants [1]. Both solvers have
different numerical properties and sizes. Note from Fig. 2,
that in the presence of increasing 3D point noise, for all
three motions, the Gröbner basis-based H51f [5] solver and
the proposed H32f and H13f solvers (both Gröbner basis-
based and resultant-based) have much better stability than
the SOTA P4Pf absolute pose solver, with the H51f [5]
solver slightly outperforming the H32f and H13f solvers.
The reason for this behavior is that our hybrid solvers are
not only using 2D-3D correspondences, unlike the P4Pf
solver. We also observe that the resultant-based solver for
H13f has similar or slightly better stability compared to
that of the Gröbner basis-based solver for H13f .
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Figure 2. Error in rotation (Row 1) and focal length (Row 2) in the presence of increasing 3D point noise. Three camera motions
considered : random motion (a,d), forward motion (b,e), and sideways motion (c,f). Numerical stability of solvers for noiseless data and
random motion (Row 3). Our hybrid solvers are more robust to 3D point noise than the P4Pf absolute pose solver.

5. Real experiments

We evaluate the proposed H13f and H51f [5] solvers in
a hybrid localization framework and consider four scenes
from the Cambridge Landmarks [14] dataset. We did not
test our proposed H32f solver as its template size makes
it less practical for real-time use as compared to the other
proposed solvers. For each query image, we establish ten-
tative 2D-2D correspondences to the top-20 retrieved map
images based on the DenseVLAD [42] image descriptor.
From transitive matching we take all triangulated points as
2D-3D correspondences, and additionally add all 2D-2D
correspondences that are either not triangulated, or have a
track length less than 5 (as these are potentially less cer-
tain 3D points). We apply the solvers in the hybrid LO-
RANSAC from [7], minimizing reprojection error (2D-3D)

and Sampson error (2D-2D). We compare with the point-
based solvers P4Pf [19] and P3.5Pf [21], as well as
employing all solvers together in the hybrid framework
from [7]. Tab. 2 shows the percentage of queries within
1◦ and 0.5m. To highlight the differences between the ac-
curacy of the solvers, we show the results both with and
without local refinement in RANSAC. It can be seen that
the proposed H13f solver is least affected by noise and re-
turns the most accurate solutions.

6. Conclusion

In this paper, we studied the challenging problem of esti-
mating the semi-genera-lized pose from hybrid point cor-
respondences for partially-calibrated cameras. By testing
different parameterizations, elimination techniques and so-



lution strategies, solvers to all minimal configurations of
2D-2D and 2D-3D correspondences, i.e., H13f , H32f and
H51f , and all possible camera configurations within the
generalized camera, are derived. The most practical solvers
are evaluated on synthetic and real scenes, showing the ben-
efits of hybrid estimation compared to classical 2D-3D ap-
proaches. Our solvers fill gaps in the arsenal of minimal
solvers and can be used inside hybrid RANSAC [7].
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Heikkilä. Computing stable resultant-based minimal
solvers by hiding a variable. In 2020 25th Inter-
national Conference on Pattern Recognition (ICPR),
pages 6104–6111, 2021.

[2] Snehal Bhayani, Torsten Sattler, Daniel Barath, Patrik
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