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Abstract

The state-of-the-art for monocular 3D human pose esti-
mation in videos is dominated by the paradigm of 2D-to-
3D pose uplifting. While the uplifting methods themselves
are rather efficient, the true computational complexity de-
pends on the per-frame 2D pose estimation. In this paper,
we present a Transformer-based pose uplifting scheme that
can operate on temporally sparse 2D pose sequences but
still produce temporally dense 3D pose estimates. We show
how masked token modeling can be utilized for temporal
upsampling within Transformer blocks. This allows to de-
couple the sampling rate of input 2D poses and the target
frame rate of the video and drastically decreases the total
computational complexity. Additionally, we explore the op-
tion of pre-training on large motion capture archives, which
has been largely neglected so far. We evaluate our method
on two popular benchmark datasets: Human3.6M and MPI-
INF-3DHP. With an MPJPE of 45.0 mm and 46.9 mm, re-
spectively, our proposed method can compete with the state-
of-the-art while reducing inference time by a factor of 12.
This enables real-time throughput with variable consumer
hardware in stationary and mobile applications. We re-
lease our code and models at https://github.com/
goldbricklemon/uplift-upsample-3dhpe

1. Introduction

Following the huge advancements in 2D human pose es-
timation (HPE) over the last years, much research has been
dedicated to monocular 3D HPE. Reconstructing the loca-
tions of human joints or other body landmarks in 3D space
from a single RGB camera has huge potential, with appli-
cations in computer animation [39, 38, 42], action recog-
nition [34, 56, 30, 23, 5], or posture and motion analysis
[54, 41, 52]. Monocular 3D HPE becomes even more rele-
vant when the complete process can be handled on mobile
computers or smartphones. It opens up yet another field of
control and interaction applications [12, 18].
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Figure 1: Spatial precision (MPJPE) and per-frame com-
putational complexity (FLOPs) for different pose uplifting
methods on Human3.6M (lower is better). The measured
FLOPs include the necessary 2D pose estimation, here with
CPN [6]. +PT denotes pre-training on motion capture data.

Current methods for 3D HPE in videos mainly follow
the paradigm of 2D-to-3D pose uplifting [36, 11, 51]. This
two-stage approach consistently leads to the highest spatial
precision on common 3D HPE benchmarks [19, 37]. It uti-
lizes an existing image-based 2D HPE model to generate
2D poses for every single video frame. Then, a separate
uplifting model is trained to estimate the 3D poses for a
sequence of frames based on only the sequential 2D pose
estimates [2, 40, 28, 55, 53, 49, 16]. Since the 2D poses are
a rather compact input description, the uplifting paradigm
allows for models that operate on very long input sequences
that can span multiple seconds in high frame rate record-
ings [45, 4, 25, 26]. This is otherwise hardly possible when
directly operating on the raw video frames [20, 21]. Ongo-
ing research mainly focuses on further improving the spa-
tial precision of 3D pose estimates. Some recent work also
analyzes the computational complexity of the uplifting pro-
cess itself, but fails to capture the true complexity for pos-
sible applications [58, 44, 57]. This comes from the depen-
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Figure 2: We extract 2D poses at a fixed key-frame interval and transform them into pose tokens. After padding this sequence
with a learnable upsampling token, our Transformer network generates dense 3D pose predictions at the target frame rate.
During inference, we only use the prediction for the central frame and the entire video is processed in sliding-window fashion.

dence on 2D HPE models with high spatial precision, such
as Mask R-CNN [15], CPN [6] or HRNet [7]. The total
complexity of 3D HPE via pose uplifting is typically dom-
inated by the initial 2D pose estimation process (see Fig-
ure 1). This prohibits applications where real-time through-
put on compute- and power-limited consumer hardware is
required.

In this paper, our main goal is to reduce the overall com-
plexity by limiting the 2D pose estimation to a small frac-
tion of video frames. Existing uplifting models on 2D pose
sequences always have the same rate of input and output
poses [40, 4, 58]. In contrast, we present a Transformer-
based architecture that can operate on temporally sparse in-
put poses but still generate dense 3D pose sequences at the
target frame rate. Inspired by the masked token modeling
in Transformer architectures [9, 46, 29, 44], we present a
tokenization mechanism that allows to upsample the tem-
poral sequence representation within our uplifting Trans-
former. Missing 2D pose estimates in the input sequence
are replaced by position-aware upsampling tokens. These
tokens are jointly transformed into 3D pose estimates for
their respective video frames via self-attention over the en-
tire sequence (see Figure 2). This greatly reduces the com-
putational complexity and makes our model more flexi-
ble regarding the effective input frame rate in potential
applications. In fact, the sampling rate of 2D poses can
even be adapted based on the expected or observed motion
speed. Since training only require annotated 3D pose se-
quences but no video recordings, we additionally explore
pre-training on large-scale motion capture archives. We
evaluate its benefits for our and existing Transformer ar-
chitectures and show how it can counter the adverse ef-
fects of sparse input sequences. In summary, our contribu-
tions are: (1) We propose a joint uplifting and upsampling
Transformer architecture that can generate temporally dense

3D pose predictions from sparse sequences of 2D poses;
(2) We evaluate the effect of Transformer pre-training on
motion capture data; (3) We show that our method leads to
smoother and more precise 3D pose estimates than direct
interpolation on sparse output sequences from competing
methods. At the same time, it reduces inference time by at
least factor 12 and supports different input frame rates dur-
ing inference. To the best of our knowledge, this is the first
paper to explicitly address efficient 2D-to-3D pose uplifting
in videos with a sparse-to-dense prediction scheme as well
as direct pre-training on large-scale motion capture data.

2. Related Work
2D-to-3D Pose Uplifting in Videos Recent work on 2D-
to-3D pose uplifting in videos either uses temporal convo-
lutional networks (TCN) [1], graph convolutional networks
(GCN) [8] or Transformer networks [50]. Pavllo et al. [40]
introduce a TCN-based uplifting model that can leverage
long input sequences and partially labeled data. Extensions
for this model focus on attention mechanisms [31] or dif-
ferent pose representations [55, 4]. Cai et al. [2] propose
a GCN-based method that explicitly models dependencies
between locally related human joints over space and time
and performs well on short input sequences. This frame-
work is extended with either fixed [53] or input-conditioned
non-local dependencies [16]. Most recently, Transformer
architectures from the vision domain are adapted for pose
uplifting. Zheng et al. [58] introduce a Transformer archi-
tecture for temporal uplifting with self-attention over space
or time. Li et al. [25] use a strided Transformer block to
handle longer input sequences more efficiently. Zhang et
al. [57] propose a joint-wise temporal attention block for
smaller and more efficient uplifting Transformers. We fol-
low the trend of Transformer-based uplifting and use build-
ing blocks from [58, 25] to form a deeper architecture that



is designed for sparse input sequences.

Efficient 3D HPE Most existing work on efficient 3D
HPE focuses on end-to-end vision models for single im-
ages. Mehta et al. [39] propose a custom CNN with real-
time capabilities on consumer GPUs. Hwang et al. [18]
use CNN model compression to learn a very efficient model
for mobile devices. These methods lack reasoning over
multiple video frames, which is crucial for countering the
2D-to-3D ambiguity of monocular 3D pose reconstruc-
tion [25, 57]. Mehta et al. [38] propose a real-time capa-
ble mixed CNN/MLP architecture to predict single-frame
3D poses with additional temporal skeleton fitting. In the
scope of temporal 2D-to-3D pose uplifting, most methods
are rather efficient with real-time speed on consumer hard-
ware [40, 44, 57]. This, however, does not factor in the com-
putational requirements for the initial per-frame 2D pose
estimation. In combination, the uplifting itself accounts for
only a fraction of the total complexity. We address this issue
and show that pose uplifting on sparse input sequences can
easily reach real-time throughput (i.e. with some constant
delay) while maintaining spatial prediction accuracy.

Data Augmentation and Pre-Training 3D HPE has the
common difficulty that datasets with paired video and 3D
pose data are scarce and have limited variability in vi-
sual appearance and human motion. 2D-to-3D pose up-
lifting methods have the advantage that paired data is not
required [11, 51]. This allows for data augmentation strate-
gies on 3D motion sequences alone. Li et al. [24] use evo-
lutionary operators to generate variations of existing 3D
poses. Gong et al. [14] use a generative model to create
plausible new 3D poses. Both methods are limited to single
poses, however. Gong et al. [13] use a hallucination model
to predict a new motion sequence from a given start and end
pose, which is then refined by a dynamic skeleton model
within a physics simulation. In the scope of pre-training,
Transformer architectures are known to benefit from train-
ing on large-scale datasets, including Transformers in the
vision domain [3, 10, 48]. Shan et al. [44] show how an up-
lifting Transformer can be trained with the pre-text task of
2D pose sequence reconstruction. In contrast, we evaluate
the benefits of pre-training on archives of unpaired motion
capture data, for our and existing Transformer architectures.

3. Method

Our method follows the common 2D-to-3D pose uplift-
ing approach: Given a video recording V with frame indices
S = {1, . . . , |V |}, we use an off-the-shelf 2D HPE model
to obtain 2D input poses {pt}t∈S .1 Each pose pt ∈ RJ×2

1We use this notation to describe an ordered sequence.

is described by the normalized 2D image coordinates 2 of
J designated human joints. We discard the detection scores
or any other occlusion information that the 2D HPE model
might provide. The goal is to recover the actual 3D pose
P gt
t ∈ RJ×3, i.e. the metric camera coordinates of every

joint, for every single video frame. Our main focus lies on
using only a subset of input 2D poses at equidistant key-
frames Sin = {t|t mod sin = 0}t∈S with input stride sin.
At the same time, we want to generate 3D pose predictions
at a higher rate, i.e. with a smaller output stride sout < sin,
at frame indices Sout = {t|t mod sout = 0}t∈S . For sim-
plicity, we will assume sin = k · sout, k ∈ N, such that
Sin ⊆ Sout. Ideally, with sout = 1, we can predict dense
3D poses at the full frame rate. Figure 2 depicts an example
with Sin = {1, 5, 9, . . . } and Sout = {1, 2, 3, . . . }.

3.1. Uncoupling of Input and Output Sample Rate

Existing uplifting methods have an identical input/output
sample rate of 2D/3D poses [40, 4, 58]. Each model is opti-
mized for a fixed input rate. When trained on sub-sampled
input poses with stride sin > 1, the model can only predict
3D poses at an equal output stride sout = sin. To obtain
predictions at the full frame rate, we can use bilinear in-
terpolation between 3D poses at adjacent key-frames. This
naive method has two drawbacks: First, each model is still
optimized for a single, now reduced, frame rate. This lacks
flexibility regarding applications with different input frame
rates or variable computational resources. Second, using
large values for sin will increasingly deteriorate the predic-
tions at the full frame rate. Simple bilinear interpolation
cannot reconstruct the actual human motion between two
key-frames. Next, we describe our proposed architecture
that can circumvent both issues by uncoupling sin and sout.

3.2. Joint Uplifting and Upsampling

Our solution follows the recent trend of 2D pose se-
quence uplifting with Transformer networks [58]. The self-
attentive nature of Transformers has shown to be well suited
to leverage relationships between individual joints of a sin-
gle human pose [27] and within long sequences of poses
in time [25, 57]. The main design criterion for our uplift-
ing network is a comparatively deeper architecture that can
operate on variably sparse input sequences. It has to con-
currently handle pose uplifting and temporal upsampling.
At the same time, the model should stay efficient in train-
ing and inference. Similar to most temporal pose uplifting
methods, our model operates on 2D pose sequences with
fixed length N = 2n + 1, n ∈ N. Each sequence covers
frame indices SN = {t − n, . . . , t + n} around an output
frame t ∈ Sout. Since our Transformer-based model ag-
gregates information from the entire sequence, its temporal

2We assume known camera intrinsics and map 2D coordinates to
[−1, 1] while preserving the aspect ratio.
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Figure 3: Instantiation of our architecture, with N = 9, input stride sin = 4 and output stride sout = 1. The spatial
and temporal Transformer use a learnable positional embedding (PE) and vanilla Transformer blocks with multi-head self-
attention (MHA). The strided Transformer employs strided convolution with stride rk and kernel size 3. PT denotes a pose
token x̃i, UT the learnable upsampling token.

receptive field [40] equals N . However, due to key-frame
sub-sampling, the actual input to our model is comprised of
only the key-frame 2D poses p with:

p = {pi|i ∈ Sin ∩ SN}. (1)

The effective input sequence length is therefore reduced to
Nin := |p| ≤ N−1

sin
+ 1. During training, the model gen-

erates intermediate 3D pose predictions P ′i ∈ RJ×3 for all
output frames within the temporal receptive field:

P′ = {P ′i |i ∈ Sout ∩ SN}. (2)

Additionally, the 3D pose for the central frame t is fur-
ther refined to its final prediction Pt. During evaluation,
only this central prediction is used. We utilize three dis-
tinct Transformer sub-networks from recent literature that,
in combination, fit our main design goals. Figure 3 provides
an overview of our architecture.

Joint-Wise Spatial Transformer The first sub-network
is shared between all input poses and operates on each pose
individually. It uses self-attention across individual joints
to form a strong pose representation for the subsequent sub-
networks. Each input pose pi is first linearly mapped to an
initial joint-wise embedding xi ∈ RJ×djoint . After adding a
positional embedding to encode the type of each joint, we
use Kjoint spatial Transformer blocks [58] that operate on
the sequence of joint embeddings. The output is the joint-
aware per-pose embedding x′i ∈ RJ×djoint . It is subsequently
condensed into a 1D encoding x̃i ∈ Rdtemp . We refer to all
x̃i as our initial pose tokens.

Pose-Wise Temporal Transformer The second sub-
network uses vanilla Transformer blocks with self-attention
across the temporal sequence of pose tokens. This building
block is a quasi-standard in recent Transformer-based up-
lifting methods [58, 25, 44]. We extend its usual objective
of direct 3D pose reconstruction for key-frame poses within
the input sequence. We want to generate smooth and tem-
porally consistent 3D poses for all output frames within the
temporal receptive field. We present a simple modification
that enables simultaneous uplifting and upsampling within
the temporal Transformer blocks. First, we recombine the
key-frame pose tokens x̃i from the spatial Transformer into
a temporal sequence. We then pad this sequence to target
length Nout := |P′|. For this, we adopt the masked token
modeling of Transformers [29, 44] and introduce an upsam-
pling token u ∈ Rdtemp . It is a learnable parameter that is ini-
tialized randomly and optimized during training. This token
acts as a placeholder at all non-key-frame indices. Figure 2
depicts this gap-filling process. The elements of the padded
token sequence y = {yi|i ∈ Sout ∩ SN} are then defined as

yi =

{
x̃i if i ∈ Sin,

u else.
(3)

In contrast to [44], the token u not only encodes a pre-text
task of input reconstruction, but rather the reconstruction
of the upsampled sequence in output space. A second po-
sitional embedding ensures that, in particular, each instan-
tiation of the upsampling token is conditioned on its rela-
tive frame index. We feed the token sequence to a stack
of Ktemp vanilla Transformer blocks. We restrict any atten-
tion within the first Transformer block to the pose tokens,
since the initial upsampling tokens do not carry input re-



lated information. This is implemented by only computing
self-attention keys and values [50] from the pose tokens.
The output y′ ∈ RNout×dtemp after the last Transformer block
encodes the uplifted and upsampled 3D poses for all out-
put frames. We use a single linear mapping to obtain the
intermediate 3D pose predictions P′.

Sequence Reduction for Single-Frame Output One
main drawback of vanilla Transformer blocks is the
quadratic complexity w.r.t. the sequence length. Stacking
a large number of vanilla Transformer blocks at full tem-
poral resolution does not align with our goal of an over-
all efficient model. Ultimately, our model is designed for
a symmetric N -to-1 prediction scheme during evaluation.
This operation mode commonly delivers superior results, as
the prediction for the central sequence index is based on an
equal amount of past and future information [58, 44]. To
further refine the pose prediction specifically for the central
index t, it is not necessary to keep the full sequence repre-
sentation of length Nout. Our third sub-network therefore
incrementally reduces the previous sequence representation
y′, until only the refined output for the central sequence
index remains. This allows us to add additional temporal
self-attention blocks, but keep the overall complexity fea-
sible. We utilize Kstride strided Transformer blocks [25],
which use strided convolutions instead of a simple MLP.
The details are depicted in Figure 3. Each block k reduces
the sequence length by stride factor rk. We choose all rk
such that the output z after the last block is z ∈ R1×dtemp . A
single linear mapping generates the final 3D pose prediction
Pt ∈ RJ×3 for the central sequence index.

Sequence and Center Supervision The entire architec-
ture is trained with two separate objectives. We use the
center frame loss Lcenter to minimize the root-relative mean
per-joint position error (MPJPE) [19] of the refined 3D pose
prediction for central target frame t:

Lcenter =
1

J

J∑
j=1

‖(Pt,j − Pt,r)− (P gt
t,j − P

gt
t,r)‖2, (4)

where the pelvis is commonly used as the designated root
joint r. Additionally, we define the MPJPE sequence loss
Lseq on the intermediate 3D pose predictions P ′i for the en-
tire upsampled sequence:

Lseq =
1

J ·Nout

∑
i∈Sout∩SN

J∑
j=1

‖(P ′i,j−P ′i,r)−(P
gt
i,j−P

gt
i,r)‖2.

(5)
This form of full-sequence supervision encourages tempo-
rally stable predictions [25, 57], which is especially impor-
tant in our setting of sparse input sequences. The total loss
is the weighted sum α1Lseq + α2Lcenter.

Training and Inference We optimize our model for a
fixed output stride sout, but for multiple input strides sin si-
multaneously. Thus, it supports different input frame rates,
depending on the application and the available hardware.
During training, we utilize 3D pose annotations at the full
frame rate and generate all possible key-frame sequences
around each frame index t ∈ S . For inference, only the
key-frame poses starting at the first video frame are avail-
able and we apply our model at every output frame t ∈ Sout.
In case of sout > 1, 3D pose predictions at the full frame rate
are obtained via bilinear interpolation. We always evaluate
at the full video frame rate for fair comparison.

3.3. MoCap Pre-Training

In order to further unlock the potential of Transformer ar-
chitectures in 2D-to-3D pose uplifting, we additionally ex-
plore the effects of pre-training on large-scale motion cap-
ture data. In this work, we utilize the AMASS [35] meta-
dataset. It is a collection of a wide variety of existing motion
capture datasets with over 60 hours of human motion. The
raw motion capture data has been re-targeted to generate a
detailed 3D mesh model of the captured person in compact
SMPL parameterization [32]. We reduce the mesh to the
target set of J joints. Each joint’s 3D location is expressed
as a weighted linear combination of a small set of mesh ver-
tices. The mixing weights can either be directly optimized
on data [22] or created by a small number of hand anno-
tations. Finally, we project the 3D pose sequences to 2D
space with randomly selected virtual cameras. For simplic-
ity, we use the same camera parameters from our final target
datasets. The resulting 2D-3D pose sequence pairs can then
be directly used for training. Note that the 2D poses are
perfect projections and thus without errors. Our model will
adjust to the error cases of a 2D pose estimation model dur-
ing subsequent fine-tuning.

4. Experiments
We evaluate our proposed method on two well-known

3D HPE datasets and compare it with the current state-of-
the-art in 2D-to-3D pose uplifting. We also conduct a series
of ablation experiments to reveal the impact of sparse input
sequences, explicit upsampling and large-scale pre-training
on spatial accuracy and inference efficiency. Additional ex-
periments on multi-stride training, augmentation strategies
and architecture components as well as qualitative examples
can be found in the supplementary material.

4.1. Datasets

Human3.6M [19] is the most common dataset for indoor
3D HPE. It consists of 11 actors performing 15 different
actions each. They are recorded by four stationary RGB
cameras at 50 Hz. We follow the standard evaluation
protocol from previous work [36, 11, 40, 58]: Five subjects



Table 1: Results on Human3.6M with CPN [6] 2D poses. We evaluate according to Protocol 1 (MPJPE, top) and Protocol 2
(P-MPJPE, bottom). Best results are bold, second best results are underlined. (*) uses the refinement module from [2]. +PT
denotes MoCap pre-training on AMASS.

MPJPE (mm)↓ Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Cai et al. [2] ICCV’19 (N = 7)(*) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8
Pavllo et al. [40] CVPR’19 (N = 243) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Xu et al. [55] CVPR’20 (N = 9) 37.4 43.5 42.7 42.7 46.6 59.7 41.3 45.1 52.7 60.2 45.8 43.1 47.7 33.7 37.1 45.6
Zheng et al. [58] ICCV’21 (N = 81) 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
Shan et al. [45] MM’21 (N = 243) 40.8 44.5 41.4 42.7 46.3 55.6 41.8 41.9 53.7 60.8 45.0 41.5 44.8 30.8 31.9 44.3
Chen et al. [4] TCSVT’21 (N = 243) 41.4 43.5 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1
Li et al. [25] TMM’22 (N = 351)(*) 40.3 43.3 40.2 42.3 45.6 52.3 41.8 40.5 55.9 60.6 44.2 43.0 44.2 30.0 30.2 43.7
Hu et al. [16] MM’21 (N = 96) 38.0 43.3 39.1 39.4 45.8 53.6 41.4 41.4 55.5 61.9 44.6 41.9 44.5 31.6 29.4 43.4
Li et al. [26] CVPR’22 (N = 351) 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
Shan et al. [44] arXiv’22 (N = 243)(*) 38.4 42.1 39.8 40.2 45.2 48.9 40.4 38.3 53.8 57.3 43.9 41.6 42.2 29.3 29.3 42.1
Zhang et al. [57] CVPR’22 (N = 243) 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9

Ours (N = 351), sin = sout = 5 41.8 45.5 41.8 44.2 48.4 54.2 43.7 43.1 58.9 66.3 46.1 43.7 46.0 30.9 31.2 45.7
Ours (N = 351), sin = sout = 5 (*) 39.6 43.8 40.2 42.4 46.5 53.9 42.3 42.5 55.7 62.3 45.1 43.0 44.7 30.1 30.8 44.2
Ours (N = 351), sin = sout = 5, + PT 40.6 42.7 38.5 41.1 45.2 48.7 41.5 41.0 53.3 61.3 43.3 41.0 42.3 30.0 29.0 42.6
Ours (N = 351), sin = sout = 5, + PT (*) 38.6 41.0 37.6 39.7 44.2 47.9 40.9 39.8 51.7 60.3 43.1 41.1 41.6 28.4 29.2 41.7
Ours (N = 351), sin = 20, sout = 5 45.4 47.9 43.4 47.2 49.6 55.9 46.4 45.4 59.9 66.7 47.5 45.5 49.8 33.0 33.8 47.8
Ours (N = 351), sin = 20, sout = 5, + PT 44.5 45.1 40.3 44.6 46.3 50.7 44.4 43.7 54.6 62.3 44.9 43.1 47.0 32.3 31.9 45.0

P-MPJPE (mm)↓ Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Cai et al. [2] ICCV’19 (N = 7)(*) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0
Pavllo et al. [40] CVPR’19 (N = 243) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Xu et al. [55] CVPR’20 (N = 9) 31.0 34.8 34.7 34.4 36.2 43.9 31.6 33.5 42.3 49.0 37.1 33.0 39.1 26.9 31.9 36.2
Chen et al. [4] TCSVT’21 (N = 243) 33.1 35.3 33.4 35.9 36.1 41.7 32.8 33.3 42.6 49.4 37.0 32.7 36.5 25.5 27.9 35.6
Li et al. [25] TMM’22 (N = 351)(*) 32.7 35.5 32.5 35.4 35.9 41.6 33.0 31.9 45.1 50.1 36.3 33.5 35.1 23.9 25.0 35.2
Li et al. [26] CVPR’22 (N = 351) 31.5 34.9 32.8 33.6 35.3 39.6 32.0 32.2 43.5 48.7 36.4 32.6 34.3 23.9 25.1 34.4
Shan et al. [45] MM’21 (N = 243) 32.5 36.2 33.2 35.3 35.6 42.1 32.6 31.9 42.6 47.9 36.6 32.1 34.8 24.2 25.8 35.0
Zheng et al. [58] ICCV’21 (N = 81) 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6
Shan et al. [44] arXiv’22 (N = 243) 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4
Hu et al. [16] MM’21 (N = 96) 29.8 34.4 31.9 31.5 35.1 40.0 30.3 30.8 42.6 49.0 35.9 31.8 35.0 25.7 23.6 33.8
Zhang et al. [57] CVPR’22 (N = 243) 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6

Ours (N = 351), sin = sout = 5 (*) 32.7 36.1 33.4 36.0 36.1 42.0 33.3 33.1 45.4 50.7 37.0 34.1 35.9 24.4 25.4 35.7
Ours (N = 351), sin = sout = 5, + PT (*) 31.6 33.7 31.8 33.3 34.7 38.7 32.2 31.2 41.9 48.9 35.5 32.6 33.7 23.4 24.0 33.8
Ours (N = 351), sin = 20, sout = 5 37.6 38.9 36.0 39.4 38.2 44.1 36.4 35.2 48.3 52.9 38.6 35.8 39.6 26.8 27.5 38.4
Ours (N = 351), sin = 20, sout = 5, + PT 36.4 36.5 33.0 37.1 36.4 40.1 34.8 34.3 45.0 50.1 36.9 34.2 37.9 26.5 25.8 36.3

(S1, S5, S6, S7, S8) are used for training, while evaluation
is performed on two subjects (S9, S11). We use 2D poses
from a fine-tuned CPN [6] during training and evaluation.

MPI-INF-3DHP [37] is a smaller but more challeng-
ing dataset for single-person 3D HPE with more diversity
in motion, viewpoints and environments. The training data
consists of eight actors performing various actions in a
green screen studio with 14 RGB cameras. The evaluation
data consists of indoor and outdoor recordings of six actors
from a single camera. We sample all recordings to a
common frame rate of 25 Hz. Since some test-set videos
are at 50 Hz, we use additional bilinear upsampling on
the estimated 3D poses to evaluate on the full frame rate.
We use ground truth 2D poses in all experiments for best
comparison with existing work.

Metrics We evaluate results on Human3.6M with the
MPJPE metric [19] (Equation 4). We additionally report
the N-MPJPE [43] and P-MPJPE [36], i.e. the MPJPE after
scale or procrustes alignment. Evaluation with MPJPE

and P-MPJPE is often referred to as Protocol 1 and 2,
respectively. For MPI-INF-3DHP, we report the MPJPE,
the percentage of correct keypoints (PCK) at a maximum
misplacement of 150 mm and the area under the curve
(AUC) with a threshold range of 5-150 mm [37].

4.2. Implementation Details

We instantiate our architecture with Kjoint = 4, Ktemp =
4 and Kstrided = 3 Transformer blocks, with an internal rep-
resentation size of djoint = 32 and dtemp = 348. The spatial
and temporal Transformer use stochastic depth [17] with a
drop rate of 0.1. We evaluate temporal receptive fields of
N ∈ {81, 351}. For N = 351, we use sout = 5 and train
on variable input strides sin ∈ [5, 10, 20]. For N = 81, we
use sout = 2 and sin ∈ [4, 10, 20]. For best results, we ex-
tend our architecture with the 3D pose refinement module
from [2]. It uses camera intrinsics for reprojection to im-
prove the orientation of some 3D pose estimates. Our model
is trained with AdamW [33] for 120 epochs and a batch size
of 512. We employ standard data augmentation with hori-
zontal flipping of input poses during training and evalua-



Table 2: MPI-INF-3DHP results on ground truth 2D poses.

Method PCK↑ AUC↑ MPJPE↓

Pavllo et al. [40] CVPR’19 (N = 81) 86.0 51.9 84.0
Chen et al. [4] TCSVT’21 (N = 81) 87.9 54.0 78.8
Zheng et al. [58] ICCV’21 (N = 9) 88.6 56.4 77.1
Wang et al. [53] ECCV’20 (N = 96) 86.9 62.1 68.1
Li et al. [26] CVPR’22 (N = 9) 93.8 63.3 58.0
Zhang et al. [57] CVPR’22 (N = 27) 94.4 66.5 54.9
Hu et al. [16] MM’21 (N = 96) 97.9 69.5 42.5
Shan et al. [44] arXiv’22 (N = 81) 97.9 75.8 32.2

Ours (N = 81), sin = 10, sout = 2 95.4 67.6 46.9
Ours (N = 81), sin = 10, sout = 2, + PT +1.7 +2.4 -5.7

tion. Specifically, we use within-batch augmentation, where
the second half of each mini-batch is the flip-augmented
version of the first half. We use an initial learning rate of
4e−5, with an exponential decay by 0.99 per epoch. The
same schedule is applied to the initial weight decay of 4e−6.
The loss weights are fixed at α1 = α2 = 0.5. All experi-
ments are conducted on a single NVIDIA A100 GPU.

4.3. Results

We compare our method against recent work and the cur-
rent state-of-the-art. Note that all comparative results use
2D poses at the full frame rate. Table 1 shows the results
on Human3.6M. We first evaluate our architecture with a
key-frame stride of sin = 5 and no internal upsampling
(sin = sout). The full-rate 3D poses are obtained with bilin-
ear upsampling. Starting at a base MPJPE of 45.7 mm, ad-
ditional reprojection refinement improves spatial accuracy
to 44.2 mm. We can see that our architecture can gener-
ate competitive results despite requiring 5 times less input
poses. When adding MoCap pre-training (+PT), we can
further improve results by 2–3 mm. Similar behaviour can
be seen for P-MPJPE results. Since we use additional data
in this experiment, we do not claim our architecture being
better than existing ones. It simply reveals that pre-training
can easily compensate the reduced rate of input poses. In
order to further reduce the input rate of 2D poses for even
larger efficiency gains, we make use of our joint uplift-
ing and upsampling mechanism. With an input stride of
sin = 20, we achieve a base MPJPE of 47.8 mm. Reduc-
ing 2D poses to only 2.5 Hz thus leads to an increase by
∼ 2 mm in MPJPE. But again, with additional pre-training,
we can reduce this negative effect to a large extent and ob-
tain competitive results with 45.0 mm MPJPE. At the same
time, we are 20 times more efficient in the expensive but
required 2D pose estimation and only require a fifth of the
forward passes for the uplifting model.

Table 2 shows our results on MPI-INF-3DHP. Our
method is even closer to the state-of-the-art on this more

Table 3: Results on Human3.6M with N = 81 and varying
input strides sin. Results are shown for poses on key-frames
as well as all frames at 50 Hz.

MPJPE / N-MPJPE / P-MPJPE ↓
Method sin Key-frames All frames

Strided Transformer [25]

4

49.3 / 47.7 / 38.7 49.4 / 47.8 / 38.7
Pose Former [58] 47.7 / 46.3 /37.6 47.7 / 46.3 / 37.6
Ours, sout = sin 47.6 / 46.0 / 37.3 47.7 / 46.0 / 37.4
Ours, sout = 2 47.6 / 46.0 / 37.3 47.4 / 45.8 / 37.1

Strided Transformer [25]

10

51.4 / 49.4 / 40.2 52.0 / 50.0 / 40.8
Pose Former [58] 48.8 / 46.9 / 38.0 49.3 / 47.4 / 38.5
Ours, sout = sin 47.5 / 45.8 / 37.1 48.1 / 46.3 / 37.6
Ours, sout = 2 47.5 / 45.8 / 37.1 47.9 / 46.1 / 37.4

Strided Transformer [25]

20

54.4 / 52.4 / 42.2 57.7 / 55.7 / 45.4
Pose Former [58] 48.6 / 47.2 / 38.2 52.0 / 50.6 / 41.4
Ours, sout = sin 48.1 / 46.4 / 37.6 51.6 / 49.6 / 40.8
Ours, sout = 2 48.1 / 46.4 / 37.6 49.9 / 48.1 / 39.2

challenging dataset. With a setting of sin = 10 and record-
ings in 25 Hz, we again only require input poses at 2.5 Hz.
Despite this huge reduction in complexity, we are able to
achieve the currently third best PCK, AUC and MPJPE
with 95.4, 67.6 and 46.9 mm, respectively. This confirms
the competitiveness of our method despite the constraint
of sparse input pose sequences. Additional MoCap pre-
training leads to further improvement of 2.4 (AUC) and
5.7 mm (MPJPE). Thus, independent of the target dataset,
additional pre-training can reliably improve the spatial pre-
cision of 3D pose estimates from sparse 2D poses.

4.4. Ablation Study

We additionally explore how sparse input sequences and
MoCap pre-training individually influence our architecture
compared to existing uplifting Transformers with similar
building blocks. Here, we use a smaller receptive field of
N = 81 and no refinement module [2]. For easier ablation,
we adjust the training recipe of our model as well as the
original recipes for the comparative methods in [58, 25] by
a small set of common changes: We adopt a batch size of
256 and train for the full number of reported epochs without
early stopping. We additionally use an exponentially mov-
ing average of the model weights [47] to reduce fluctuations
in evaluation results.

Sparse Input Sequences Table 3 shows results on Hu-
man3.6M with varying input strides sin. For Pose For-
mer [58] and Strided Transformer [25], where sout = sin,
we adopt bilinear interpolation between output poses at ad-
jacent key-frames to obtain the full-rate 3D poses. We
evaluate our model with bilinear (sout = sin) and learned
(sout = 2) upsampling. At a moderate input stride of
sin = 4, we observe no difference in prediction quality be-



Table 4: Computational complexity in contrast to best MPJPE on Human3.6M. FLOPs are reported for a single forward pass
of the uplifting model. We also report the poses per second (PPS) for a video frame rate of 50 Hz on an NVIDIA 1080Ti.

Method # Params FLOPs↓ PPS (w/o CPN) ↑ PPS (w/ CPN) ↑ MPJPE (mm)↓

Strided Transformer [25] (N = 351) 4.34 M 2142 M 208 32 43.7
Pose Former [58] (N = 81) 9.60 M 1358 M 248 33 44.3
Ours (N = 81), sin = 10, sout = 2, + PT 10.36 M 543 M 334 179 45.5
Ours (N = 351), sin = 20, sout = 5, + PT 10.39 M 966 M 827 399 45.0

Table 5: Results on Human3.6M with N = 81, with and
without pre-training (PT) on AMASS.

MPJPE / N-MPJPE / P-MPJPE ↓
Method #Params w/o PT w/ PT

Strided Transformer [25] 4.06 M 48.1 / 46.6 / 37.7 47.7 / 46.2 / 37.5
Pose Former [58] 9.60 M 47.4 / 46.0 / 37.4 46.0 / 44.5 / 36.1
Ours, sin = sout = 2 10.36 M 47.5 / 45.4 / 36.8 45.7 / 44.2 / 35.8

tween full frame rate poses and key-frame poses for all three
architectures. With increasing input stride, Strided Trans-
former results deteriorate notably in both key-frame and all-
frame performance. It shows that this architecture is only
suitable for long and dense input sequences. Pose Former
shows more stable key-frame results, but the full frame rate
predictions increasingly suffer from bilinear interpolation.
Our architecture, as a deeper combination of the former two,
achieves lower spatial precision loss on key-frames with in-
creasing input stride. This advantage carries over to full
frame rate results, but pure bilinear interpolation stays a
limiting factor for high input strides (sin = 20). Finally, our
explicit Transformer-based upsampling leads to a notably
smaller gap between key-frame and all-frame performance
on all metrics. It is better suited for temporally consistent,
full frame rate 3D HPE on sparse input sequences. At the
same time, we have a single flexible model that supports
different input rates of 2D poses. Existing methods, includ-
ing Pose Former and Strided Transformer, require a separate
model for each input rate.

MoCap Pre-Training Table 5 depicts results on Hu-
man3.6M, with and without MoCap pre-training on
AMASS. In this experiment we assume dense input se-
quences. We compare the direct influence of pre-training
on the different Transformer-based architectures. We ob-
serve that all three uplifting Transformer architectures can
improve on the target dataset with additional pre-training.
Strided Transformer, with its much lower network capac-
ity, shows only marginal gains. Our architecture achieves a
similar MPJPE on pure Human3.6M training compared to
Pose Former, but improves the most from pre-training. This

shows the benefits of the deeper architecture at an otherwise
comparable number of parameters.

Computational Complexity Finally, we compare the
computational complexity of our method in Table 4. When
looking at the uplifting alone, a single forward pass with
N = 351 requires similar FLOPs compared to Pose For-
mer and its much smaller sequence length. Our uplifting
model requires a forward pass for every sout-th frame only,
however. Since the architecture is deeper and thus has more
sequential computations, we achieve an uplifting speed-up
of roughly×4 with sout = 5. When we factor in the compu-
tational complexity of the a-priori 2D pose estimation, the
true gain in efficiency becomes apparent (see also Figure 1).
Using CPN to generate input 2D poses, Pose Former and
Strided Transformer can no longer meet real-time through-
put. Since our model only requires input poses for every sin-
th frame, we observe a total speed-up of ×12 for sin = 20,
such that 50 Hz videos can easily be processed with real-
time throughput on a mid-range consumer GPU. This esti-
mate in speed-up is still rather pessimistic, since we mea-
sure CPN inference time for tight image crops. The over-
head for per-frame person detection is not included here.
The more 2D pose estimation dominates the total complex-
ity, the more the speed-up factor will converge towards sin.

5. Conclusion
We presented a Transformer-based 2D-to-3D pose uplift-

ing model for efficient 3D human pose estimation in videos.
It uses building blocks from existing uplifting Transform-
ers to form a deeper architecture that operates on sparse
input sequences. With a joint uplifting and upsampling
Transformer module, the sparse 2D poses are translated into
dense 3D pose predictions. This reduces the overall com-
plexity but allows for temporally consistent 3D poses at the
target frame rate of the video. At the same time, we can
train and deploy a single flexible model that can operate on
different input frame rates. The adverse effects of sparse
input sequences can be greatly reduced with pre-training on
large-scale motion capture archives. Our experiments re-
veal a speed-up by factor 12 while still being competitive in
spatial precision with current state-of-the art methods.



Supplementary Material

In the following, we provide additional experiments and
qualitative results to further validate our design choices.
This includes experiments on upsampling token attention,
multi-stride training, within-batch augmentation and archi-
tecture components. We additionally discuss limitations of
our method and areas of future work.

A. Multi-Stride Training
By default, all our models are trained on multiple input

strides sin simultaneously. We first take a closer look at the
effects of multi-stride training.

A.1. Single- vs. Multi-Stride Models

Multi-stride training has the benefit of a more flexible
model that can operate on different input sample rates of
2D poses. We evaluate, whether this flexibility comes at
the cost of reduced spatial precision. Table 6 compares a
multi-stride model to separate single-stride models that are
trained on one specific input stride sin = sout each. The
results on Human3.6M [19] show that multi-stride training
even improves 3D pose estimates. For small input strides,
single and multi-stride models are on par and show no real
advantage of either training mode regarding spatial accu-
racy. With increasing sin, multi-stride training can con-
sistently outperform the single-stride counterpart, on key-
frame poses as well as all-frame results. Thus, when aiming
for very efficient operation with long input strides, multi-
stride training leads to better uplifting and upsampling in
3D output space.

A.2. Upsampling Token Attention

At the beginning of the very first temporal Transformer
block, none of the upsampling tokens carry any input-
related information. They are only conditioned on their rel-
ative frame index. Therefore, any attention to the upsam-
pling tokens will not lead to meaningful information ex-
change or gain. In contrast, there is even the risk of de-
teriorating the information carried by the actual pose to-
kens. To counter this effect, we only allow attention to
upsampling tokens from the second temporal Transformer
block onward. At this stage, all tokens carry input-related
information to some degree. We refer to this as deferred
upsampling token attention (DUTA). Table 6 shows re-
sults for our multi-stride model on Human3.6M, with and
without DUTA. The results clearly show the necessity for
DUTA, as it outperforms the vanilla variant with uncon-
strained cross-token attention on all inputs strides and met-
rics. The most notable difference occurs when evaluating
with sin = 4. In this setting, training without DUTA leads
to worse key-frame performance compared to all-frame re-

Table 6: Comparison of single- (SS) and multi-stride (MS)
training on Human3.6M. All models are trained with N =
81 and sout = 2. The MS models are trained on all input
strides sin ∈ {4, 10, 20} simultaneously. By default, models
use deferred upsampling token attention (DUTA) within the
temporal Transformer. Results are reported for poses on
key-frames as well as all frames at 50 Hz.

MPJPE / N-MPJPE / P-MPJPE ↓
sin Key-frames All frames

SS, w/o DUTA 4 47.9 / 45.8 / 37.1 47.9 / 45.8 / 37.1
SS 4 47.9 / 45.8 / 37.1 47.9 / 45.8 / 37.1
MS, w/o DUTA 4 59.7 / 54.0 / 43.8 52.7 / 49.0 / 39.6
MS 4 47.6 / 46.0 / 37.3 47.4 / 45.8 / 37.1

SS, w/o DUTA 10 48.0 / 46.1 / 37.4 48.2 / 46.3 / 37.6
SS 10 47.8 / 45.9 / 37.1 48.0 / 46.1 / 37.3
MS, w/o DUTA 10 49.9 / 47.7 / 38.6 48.2 / 46.3 / 37.5
MS 10 47.5 / 45.8 / 37.1 47.9 / 46.1 / 37.4

SS, w/o DUTA 20 49.3 / 47.1 / 38.1 50.6 / 48.4 / 39.3
SS 20 50.1 / 47.4 / 38.4 51.5 / 48.8 / 39.6
MS, w/o DUTA 20 49.4 / 47.4 / 38.5 52.1 / 49.8 / 40.5
MS 20 48.2 / 46.4 / 37.6 49.9 / 48.1 / 39.2

sults. This shows that the pose token representation heavily
suffers from unconstrained attention within the first tempo-
ral Transformer block. The negative effects are less severe
for larger sin, but there is still a clear performance gap to the
DUTA variant. Thus, delaying the full cross-token attention
is a crucial design choice for stable results over different
input strides. Table 6 also shows the influence of DUTA
on single-stride models. For single-stride training, the ra-
tio between pose and upsampling tokens stays the same for
all training examples. The results reveal no clear advantage
or disadvantage when training with DUTA in this setting.
This shows that DUTA is only required for a variable ratio
of pose and upsampling tokens with multi-stride training.
Figure 4 depicts exemplary token attention within the first
temporal Transformer block of a multi-stride model. With
DUTA, temporal attention shows reasonable token-local in-
formation aggregation as often seen in the early stages of
a temporal Transformer. Without DUTA, temporal atten-
tion is uniformly spread over a distant subset of pose tokens
as well as intermediate upsampling tokens. This seems to
greatly hinder proper information exchange over the tempo-
ral sequence.

B. Within-Batch Augmentation

Next, we evaluate the benefits of within-batch augmen-
tation (WBA). With WBA, each mini-batch contains the
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Figure 4: Token attention of the eight MHA heads in the first temporal Transformer block. Top: With DUTA. Bottom:
Without DUTA. The corresponding models are trained with N = 81, sout = 2 and sin ∈ {4, 10, 20}. The examples are
generated with sin = 4, i.e. with a ratio of pose and upsampling tokens of one.

flip-augmented and non-augmented version of a training
example. This promotes invariance to horizontal flipping
within each weight update. Table 7 shows the results on
Human3.6M. WBA leads to a slight performance gain in
all metrics, independent of the input stride. Note that this
benefit comes at no additional cost during training, since all
models in this comparison use a fixed batch size of 512. The
result shows that the benefits of WBA outweigh the effec-
tively reduced variability within each mini-batch. We also
evaluate with additional pre-training on AMASS. This set-

ting reveals a significant boost through WBA, with a reduc-
tion of up to 0.9 mm in MPJPE. We observe that WBA leads
to slightly slower convergence during pre-training, but far
better validation results. This advantage is then translated
over to the fine-tuning on Human3.6M. We also observe
similar benefits when experimenting with Pose Former and,
to a lesser extent, Strided Transformer.
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Figure 5: Qualitative examples on Human3.6M, with N = 81 and sin = 20. We compare our method, Pose Former [58] and
Strided Transformer [25]. Top: Examples on key-frames. Bottom: Examples on non-key-frames.

Table 7: Effects of within-batch augmentation (WBA) on
Human3.6M with N = 351, sout = 5, sin ∈ {5, 10, 20}
and batch size 512. Results are shown with and without
pre-training on motion capture sequences from AMASS.

MPJPE / N-MPJPE / P-MPJPE ↓
WBA sin w/o PT w/ PT

7 5 46.0 / 44.4 / 36.5 43.5 / 42.1 / 34.7
3 5 45.7 / 44.3 / 36.4 42.6 / 41.5 / 34.2

7 20 48.2 / 46.7 / 38.6 45.7 / 44.4 / 36.8
3 20 47.8 / 46.4 / 38.4 45.0 / 44.0 / 36.3

C. Architecture Components

We also evaluate the individual influence of the three
main components of our Transformer architecture: The
joint-wise spatial Transformer, the pose-wise temporal
Transformer and the strided Transformer. Table 8 compares
our full architecture to variants where one component is re-
moved at a time. Starting with the temporal Transformer,

this component is the most crucial part of our and related ar-
chitectures [25, 44]. Removing this block disables repeated
self-attention across the entire sequence of pose and upsam-
pling tokens. Additionally, it impedes the full sequence loss
Lseq. In combination, the results show that the temporal
Transformer is a strict requirement for our architecture to
operate properly. Removing the spatial Transformer is less
impactful, but we observe a clear drop in precision across
all input strides. Thus, dedicating a separate Transformer
to generate an initial pose representation is beneficial, espe-
cially when input 2D poses are temporally sparse. Finally,
the strided Transformer has the lowest impact compared to
the other two components, but its removal still leads to an
increase in MPJPE by 0.6 - 0.9 mm. It acts as a refinement
component via the center frame loss Lcenter and is again
most helpful for large input strides. Due to the internal
temporal striding, it is computationally less expensive com-
pared to the full temporal Transformer blocks and therefore
a valid addition to our architecture.



Table 8: MPJPE (mm) on Human3.6M with N = 81,
sout = 2 and sin ∈ {4, 10, 20}. We compare variants of
our architecture with either the spatial Transformer (SPT),
the temporal Transformer (TT) or the strided Transformer
(ST) removed. The MPJPE is reported relative to the full
architecture results.

SPT TT ST sin = 4 sin = 10 sin = 20

3 3 3 47.4 47.9 49.9

3 3 +1.2 +1.2 +1.5
3 3 +4.2 +4.7 +5.9
3 3 +0.6 +0.7 +0.9

D. Qualitative Examples

Figure 5 depicts qualitative examples on Human3.6M
with our method, Pose Former and Strided Transformer at
an input stride of sin = 20. In comparison to Strided Trans-
former, our method typically leads to more precise 3D es-
timates on key-frames an non-key-frames. Pose Former is
more robust to sparse input sequences, but our method still
leads to better results on human motion at non-key-frames,
e.g. during walking motion. Figure 8 depicts additional ex-
amples from our best models and 2D input poses at 2.5 Hz.
We observe plausible human motion even on difficult ex-
amples within Human3.6M and MPI-INF-3DHP. The ex-
amples in rows three and six depict failure cases, which we
discuss in detail next.

E. Error Modes and Limitations

We observe two main error modes for our proposed
method. The first cause of erroneous 3D pose estimates are
missdetections within the 2D pose estimates. Figure 8 (rows
three, left) depicts such an example, where the estimated 2D
locations of leg joints suffer from self-occlusion. Note that
the dependence on high quality 2D poses is common to all
uplifting methods [40, 53, 25]. Therefore, we see this er-
ror mode as a limitation of single-frame 2D HPE and the
2D-to-3D pose uplifting approach in general.

The second error mode is more unique to our method.
Figure 8 (row six, right) depicts an example of a person
performing boxing punches in quick succession. We ob-
serve that some of the punches are not reconstructed within
the estimated 3D pose sequence. Since we utilize input 2D
poses at only 2.5 Hz for this example, some of the punches
occur so fast that they are completely missing from the sub-
sampled input sequence as well. Consequently, our model
is not able to reconstruct the full motion.

In order to analyze the dependency between 2D pose
subsampling and fast body motion, we define the average
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Figure 6: The MPJPE on Human3.6M in contrast to the
ground truth pose velocity vgt

t . The velocities are dis-
cretized into equally sized intervals. We additionally show
the cumulative distribution (CDF) over the velocities in the
dataset.

root-relative velocity vt of a pose Pt as

vt =
1

J

J∑
j=1

‖(Pt,j − Pt,r)− (Pt−1,j − Pt−1,r)‖2, (6)

where again the pelvis is used as the root joint r. We use the
relative velocity, since we focus on the speed of within-body
movement. We want to measure fast movement of e.g. the
arms or legs independent of the person standing in place
or walking. Figure 6 shows the MPJPE on Human3.6M in
contrast to the ground truth velocity vgt

t (reported in m/s).
We divide the range of observable velocities into equidis-
tant intervals and report the MPJPE for all estimated 3D
poses within an interval. The results are depicted for the
same model under two different settings: a moderate input
stride of sin = 5 for high spatial precision and a long input
stride of sin = 20 for best efficiency. Under no or very small
movement (< 0.2 m/s), both settings perform equally. Due
to the limited motion, the temporal component of the input
sequence does not offer additional information, no matter
the input stride. For movement in the range of 0.2 - 0.4 m/s
(e.g. walking), both settings show rather stable results, with
only minor losses in precision for sin = 20. Most actions
within Human3.6M fall into this range of relative pose ve-
locity. Only for considerably faster movement, the results
of both settings diverge. While sin = 5 (i.e. 2D poses at
10 Hz) stays relatively stable around 50 mm MPJPE, our
fastest setting with sin = 20 shows increasing difficulties
in reconstructing the true pose sequence in 3D space. This
reveals the main limitation of our method: The choice of ef-



Table 9: Computational complexity and best MPJPE (mm)
on Human3.6M with MoCap pre-training. FLOPs are re-
ported for a single forward pass of the uplifting model. We
also report the poses per second (PPS) for a video frame
rate of 50 Hz on an NVIDIA 1080Ti.

N sout sin FLOPs↓
PPS↑

(w/o CPN)
PPS↑

(w/ CPN) MPJPE↓

81 2
4 564 M 326 105 44.8

10 543 M 334 179 45.5
20 535 M 337 234 47.9

351 5
5 1062 M 704 151 42.6

10 999 M 759 255 43.1
20 966 M 827 399 45.0

ficiency, which is mainly governed by sin, must not only fit
potential hardware and runtime requirements, but also the
range of expected movement speed. While our most effi-
cient setting with sin = 20 is suitable for regular movement
in daily life, it will not fit applications in e.g. sporting activ-
ities.

F. Adaptive Input Stride
Finally, we discuss further potential of our method that

is yet to be exploited. One of the main advantages of our
method is that a single instance of our uplifting model (i.e. a
single set of model parameters) can support different input
strides. Thus, a single model can be operated with differ-
ent computational complexity and processing rates (see Ta-
ble 9 for extended runtime and complexity results). For all
experiments in this paper, the input stride is kept constant
throughout the processing of an entire video. This is no
strict requirement though. A change in input stride only
affects how many video frames are used for 2D pose es-
timation and subsequent pose token generation within the
spatial Transformer. No other reconfiguration of our model
is required. Thus, the input stride can be changed online
while processing a video stream. This enables hardware-
limited devices to dynamically adapt to currently avail-
able shared resources like memory or computational units
(CPUs, GPUs, TPUs).

A second use case of variable input strides is the adap-
tion to the occurring human motion. Based on the discus-
sion about movement speed in Section E, we can process a
video with long input stride by default, and only switch to a
shorter input stride for increased precision when observing
fast body movement. Figure 7 represents an exemplary Hu-
man3.6M video where a short sequence of running occurs.
By thresholding the pose velocity vt from the 3D pose esti-
mates (orange), e.g. with 0.5 m/s, we can identify this video
section and switch from sin = 20 to sin = 5. Only when the
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Figure 7: MPJPE on an exemplary ”WalkDog” video from
Human3.6M, with N = 351 and sout = 5. We switch our
model from sin = 20 to sin = 5 for video sections where the
observed relative pose velocity vt surpasses 0.5 m/s (red).

velocity (red) drops below the threshold for a fixed number
of frames, we switch back to the more efficient input stride.
This way we avoid the otherwise failed 3D pose estimation
with an MPJPE > 80 mm. Note that the relative velocity is
only one of many possible statistics for identifying difficult
video sections. We leave the development and evaluation of
such statistics as a research direction for future work.
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