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Abstract

Cross-view geo-localization aims to estimate the GPS lo-
cation of a query ground-view image by matching it to im-
ages from a reference database of geo-tagged aerial images.
To address this challenging problem, recent approaches use
panoramic ground-view images to increase the range of
visibility. Although appealing, panoramic images are not
readily available compared to the videos of limited Field-
Of-View (FOV) images. In this paper, we present the first
cross-view geo-localization method that works on a se-
quence of limited FOV images. Our model is trained end-
to-end to capture the temporal structure that lies within
the frames using the attention-based temporal feature ag-
gregation module. To robustly tackle different sequences
length and GPS noises during inference, we propose to
use a sequential dropout scheme to simulate variant length
sequences. To evaluate the proposed approach in realis-
tic settings, we present a new large-scale dataset contain-
ing ground-view sequences along with the corresponding
aerial-view images. Extensive experiments and compar-
isons demonstrate the superiority of the proposed approach
compared to several competitive baselines.

1. Introduction

Cross-view image geo-localization aims to determine the
geospatial location from where an image was taken (also
known as the query image) in a database of geo-tagged
aerial images (also known as reference images) [40, 30, 19,
43]. Estimating geo-spatial locations from images has many
important applications such as autonomous driving [29],
robot navigation[4, 17], augmented reality (AR) [9], and
unmanned aerial vehicle (UAV) navigation [29].

Despite the huge research efforts that have been done
on this problem, image geo-localization remains far from
being solved and is considered one of the most challeng-

Figure 1: Comparison of the coverage area (green lines) of
user uploaded street view images between panoramas (left)
and limited FOV images (right) in San Francisco, USA from
Mapillary [2].

ing tasks in the computer vision field due to: 1) the drastic
appearance differences between the query images and ref-
erence images, 2) capturing time gaps between the query
image and the reference image results in different illumina-
tion conditions, weather, and objects and, 3) differences in
resolution at which ground and aerial images are captured.

Recent research in cross-view image geo-localization
has shown tremendous progress on large-scale datasets [40,
21, 43], but they heavily rely on panoramic query im-
ages [40, 16, 30, 26, 32, 6, 21, 42, 43, 39]. Even though
panoramic images provide richer contextual information
than normal limited Field-Of-View (FOV) images, in prac-
tice, limited FOV images are more common and easier to
capture from smartphones, dash cams, and digital single-
lens reflex (DSLR) cameras. Fig. 1 shows the comparison of
coverage area of users uploaded street view images between
panoramas and limited FOV images in San Francisco, USA
on Mapillary [2]. Moreover, even map platforms such as
Google Street View (GSV) provides panoramas only for a
few historic or tourist attraction places for several countries
such as China, Qatar, and Pakistan. However, limited FOV
street view images are available across 190 countries in the
most of the regions as shown on Mapillary [2]. Clearly, the
limited FOV images are much more popular than panoramic
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images. This applies to all other countries and is more no-
ticeable in developing countries where for the most part,
panoramic images are not available at all.

Due to the recent advancement of autonomous vehi-
cles and the Advanced Driving Assistance System (ADAS),
frontal street view videos are easily accessible from the
dash cams in current vehicles. Instead of using unpopular
panoramic images [31, 35, 30], expanding cross-view geo-
localization algorithms to work on sequences of images is
more practical and more acceptable in real-world scenar-
ios. On the other hand, current cross-view geo-localization
approaches [31, 35, 30, 16, 32, 43, 37] deal mainly with
a single image for geo-localization and cannot be used di-
rectly to capture the temporal structure that lies within a
sequence of FOV frames. Thus, it is a natural extension to
expand cross-view geo-localization methods on sequences
of limited FOV images named cross-view image sequence
geo-localization.

In this paper, a new cross-view geo-localization ap-
proach is proposed that works on sequences of limited FOV
images. Our model is trained end-to-end to capture tem-
poral feature representations that lie within the images for
better geo-localization. Although our model is trained on
fixed-length temporal sequence, it tackles the challenge of
variable length sequence during the inference phase through
a novel sequential dropout scheme. To the best of our
knowledge, we are the first one to propose end-to-end cross-
view geo-localization from sequences of images. We refer
to this task as cross-view image sequence geo-localization.
Furthermore, to facilitate future research in cross-view geo-
localization from sequences, we put forward a new dataset
and compare our proposed model with several recent base-
lines. In summary, our main contributions are as follows:
1) We propose a new end-to-end approach, cross-view im-
age sequence geo-localization, that geo-localizes a query
sequence of limited FOV ground images and its correspond-
ing aerial images.
2) We introduce the first large-scale cross-view image se-
quence geo-localization dataset.
3) We propose a novel temporal feature aggregation tech-
nique that learns an end-to-end feature representation from
a sequence of limited FOV images for sequence geo-
localization.
4) We propose a new sequence dropout method to predict
coherent features on sequences of different lengths. The
proposed dropout method helps in regularizing our model
and achieve more robust results.

2. Related Work
Cross-view Image Geo-localization: Before the deep
learning era, cross-view image geo-localization methods
were based on hand-crafted features [19, 8] such as
HoG [10], GIST [24], self-similarity [28], and color his-

tograms. Conventional methods struggled with matching
accuracy because of the quality of the features. Due to the
resurgence of deep learning in numerous computer vision
applications, several deep learning based geo-localization
methods [40, 20, 37] have been proposed to extract features
from fined-tuned CNN models to improve the cross-view
geo-localization accuracy. More recently, Hu et al. [16] pro-
posed to aggregate features by NetVLAD [3] layer which
achieved significant performance improvements. Shi et
al. [32] proposed a feature transport module for aligning
features from aerial view and street view images. Liu et
al. [21] explored fusing orientation information into the
model which boosted performance. With the development
of Generative Adversarial Networks (GANs) [14], Regmi
et al. [26] proposed a GAN-based cross-view image geo-
localization approach using a feature fusion training strat-
egy. Zhu et al. [43] recently proposed a new approach
(VIGOR) that does not require a one-to-one correspon-
dence between ground images and aerial images. It is also
worth mentioning that some methods [30, 31, 35] based
on ground-level panorama employ the polar transformation
which bridges the domain gap between reference images
and query images by prior geometric knowledge. By lever-
aging this prior geometric property, Shi et al. [30] pro-
posed Spatial Aware Feature Aggregation (SAFA) which
improves the results on CVUSA [40] and CVACT [21] by
a large margin. Similar to [26], Toker et al. [35] combined
SAFA [30] with a GAN. Their proposed method achieved
state-of-the-art results on CVUSA [40] and CVACT [21].
However, to perform the polar transformation, the query
image is assumed to be aligned at the center of its refer-
ence aerial image which is not always guaranteed in real-
world scenarios. The above-mentioned methods rely on
panoramic ground-level images. By contrast, our method
used more easily available limited FOV images.

We noticed that some previous works [31, 37, 34] studied
the cross-view image geo-localization problem using a sin-
gle limited FOV image as a query. Tian et al. [34] proposed
a graph-based method that matches the detected buildings
in both ground images and aerial images. This method was
only applicable in metropolitan areas which contain dense
buildings. DBL [37] proposed by Vo et al focused on geo-
localizing the scene in the image rather than the location of
the camera. Dynamic Similarity Matching proposed by Shi
et al. [31] required polar transformed aerial images as in-
put. Compared to these methods, we assume neither aligned
ground-level images nor that our method only works in
metropolitan areas. Furthermore, instead of geo-localizing
a single limited FOV image, our approach geo-localizes a
sequence of limited FOV images.

Recently, Regmi and Shah [27] proposed to geo-localize
video sequences in the same-view setting by using a geo-
temporal feature learning network and a trajectory smooth-



ing network. On the other hand, in this paper, we incorpo-
rate aerial images and ground video sequences to address
the problem of cross-view image sequence geo-localization
by proposing a transformer-based model. Current cross-
view geo-localization approaches can be used for sequen-
tial cross-view geo-localization trivially by applying them
frame by frame as proposed in [17]. However, we pro-
pose an end-to-end approach that automatically processes a
whole sequence of images and correlates their features with
the corresponding aerial image by building a better feature
representation in both temporal and spatial domains. We
have compared our results with the best models in the liter-
ature that could be applied to our dataset as discussed in the
experiments section.
Transformer/multi-head attention: Recently, Vaswani et
al. [36] proposed the transformer module and demonstrated
its ability in catching the temporal correlation in time se-
ries data. Using the transformer, several works [22, 5, 12]
achieved remarkable results in natural language processing
tasks. In computer vision, transformers have been used for
image classification [13], video segmentation [38], object
detection [7], and same-view video geo-localization [27].
In this paper, we combined the transformer with the cross-
view image sequence geo-localization to effectively utilize
the full range of visibility from the sequential data. Our ex-
periments showed that the transformer can learn to fuse and
summarize several features from a sequence of images and
predict robust results.

3. Dataset

3.1. Previous Datasets

Many datasets have been proposed for cross-view image
geo-localization [40, 21, 43, 37]. Vo et al. [37] proposed
a large-scale cross-view geo-localization dataset consisting
of more than 1 million pairs of satellite-ground images.
The authors collected aerial images from Google Maps
and the corresponding ground images from Google Street
View from eleven different US cities. Workman et al. [40]
proposed a Cross-View USA (CVUSA) dataset containing
more than 1 million ground-level images across the whole
USA. Later, Zhai et al. [41] refined the CVUSA dataset by
pairing 44, 416 aerial-ground images and this has become
one of the most popular datasets in this field. In this paper,
we refer to this refined version as CVUSA. CVACT [21]
followed the same structure as CVUSA and had the same
number of training samples as CVUSA but had 10 times
more testing pairs. Recently, Zhu et al. [43] proposed
the VIGOR dataset which is the first non one-to-one cor-
respondent cross-view image geo-localization dataset col-
lected randomly from four major US cities. In order to
have systems for practical scenarios in which the queries
and reference images pairs are not guaranteed to be always

perfectly aligned, VIGOR defined ‘positive’ and ‘semi-
positive’ ground images in one single aerial image. Note
that current cross-view geo-localization datasets cannot be
easily converted to sequential dataset. To the best of our
knowledge, there is no existing dataset that provides se-
quential ground-level images and their corresponding aerial
images for cross-view image geo-localization.

3.2. Proposed Dataset

Since existing cross-view geo-localization datasets [37,
40, 21, 43] contain only discrete ground images, we col-
lected a new cross-view image sequence geo-localization
dataset containing limited FOV images which are much
more available and applicable for real-world systems. Table
1 demonstrates the comparison of our proposed dataset with
the existing cross-view image geo-localization datasets. Be-
low, we first explain the procedures we followed to collect
the ground-level images and then describe the process of
capturing aerial imagery.

3.2.1 Ground-Level Imagery

Our data was collected using the Fugro Automatic Road
Analyzer (ARAN)1 which is a road data capturing vehicle
capable of collecting different data modalities such as im-
age, LiDAR, and pavement laser. ARAN is also equipped
with a GPS and an inertial measurement unit (IMU) sen-
sor for providing precise GPS locations and camera poses.
The raw dataset contains over 5000km of urban and subur-
ban roads, and highways in both directions in the state of
Vermont, US. In our dataset, we only used the frontal cam-
era images with a resolution of 1920 × 1080. The distance
between each capture point is approximately 8m and the
FOV of the camera is around 120◦. GPS location and cam-
era heading (compass direction) are also provided for each
ground-level image. To represent more real-world scenar-
ios, our dataset contains approximately 70% of images from
suburban areas and 30% from urban areas which may be
collected from one or two-way driving directions. The ra-
tio of the collected two-way driving direction data is around
30% in which the same street images are captured from both
driving directions, for example, north-to-south and south-
to-north. The total number of ground images is 118, 549 re-
sulting in 38, 863 aerial pairs as explained in the following
sections. Our dataset covers around 500 kilometers of roads
in Vermont. Please refer to the supplementary material for
more information.

3.2.2 Sequence Formation

After obtaining the raw ground-level data as described in
section 3.2.1, long sequences of raw data should be seg-

1https://www.fugro.com/our-services/asset-
integrity/roadware/equipment-and-software



Dataset Comparison Vo [37] CVACT [21] CVUSA [40] VIGOR [43] Ours

# of Aerial Images > 1M 128, 334 44,416 90,618 38,863
# of Ground-level Images > 1M 128, 334 44, 416 105, 214 118, 549

# of Ground Images per aerial image 1 1 1 ∼5 ∼7
Coverage Urban, Suburb Urban, Suburb Urban, Suburb Urban Urban, Suburb

Seamless Sampling No No No Yes Yes
Sequential Ground-level Images No No No No Yes

Orientation Yes Yes Yes Yes Yes
Ground-level GPS Location No Same Same Arbitrary Arbitrary

Table 1: Comparison between our proposed dataset and other existing cross-view image geo-localization datasets.

mented into several small sequences to be used for cross-
view geo-localization. A simple but effective greedy algo-
rithm is employed. Given the raw ground-level image se-
quence data as S = s0, s1, ..., sN where N is the number
of ground-level images that would be segmented into se-
quence splits. It is not required to keep the same number of
images in each split since in real-world scenarios the num-
ber of images in a sequence can be variable due to different
hardware or software configurations. However, to perform
the retrieval task, it is required that the images of any re-
sulting sequence must lay within one single aerial image.
Our algorithm iterates through each image in S, denoting
the first image as s0. After that the distance between s0 and
st is calculated. If the distance is less than a preset threshold
value ∆, we step to the next image st+1. Otherwise, [s0, st]
is the segmented sequence. Then the image in the middle of
s0 and st is set as starting point for the next segment. This
process is visualized in Fig. 2. The circles displayed with
the same color are segmented in one sequence. If one cir-
cle has multiple colors, this circle co-exists in two or more
segments. We empirically choose ∆ = 50 m to ensure that
images in any sequence fall within one aerial image with
zoom level 20. To make the training procedure consistent
and simple, which will be discussed later, we removed 72
sequences which contain less than 7 images. This finally re-
sults in 38, 863 sequences with an average of seven images
per segment. This sequence formation strategy guarantees
that the formed sequence is covered by a single aerial im-
age and does not need to know the length of the raw data.
Note that our approach needs seven frames during training.
However, we do not have such restrictions while in testing.
In real-world scenarios, the distance between each frame
may vary and one can simply use techniques such as IMU
sensors or visual odometry [23] to estimate the distance be-
tween frames.

3.2.3 Aerial Imagery

Google Maps Static API [1] is employed to obtain the aerial
images for each sequence. Assuming the ground images in
a single sequence are on a planar surface, we can determine
the geometric center (the arithmetic mean location) of the

Figure 2: Demonstration of our ground-level images sam-
pling strategy. In this example, three aerial images are cap-
tured (yellow, pink , and blue boxes) based on the locations
of the ground images (colored circles). Each circle inside
these boxes belong to that aerial image. If one circle has
multiple colors, it belongs to multiple sequences.

Figure 3: A sequence sample from our dataset. The aerial
image is in the center and the ground images are at the
edges. Each orange dot represents the location of one
ground image indicated by the blue arrow. The grey arrow
of each dot represents the heading direction of the camera.

aerial image for a given sequence. In this way, the aerial
image can cover the whole sequence. A random shift at
most 5 meters is applied to each aerial image to simulate
real-world scenarios. This results a one-to-one correspon-
dence between ground sequences and aerial images. The
total number of collected aerial images is 38, 863. Follow-



ing VIGOR [43], each aerial image is captured at the zoom
level of 20 with an resolution of 640×640. The ground res-
olution is approximately 0.114m A sample pair of ground-
aerial images from our dataset is shown in Fig. 3.

4. Proposed Methods
4.1. Overview

Given a sequence of limited FOV ground images, our
goal is to geo-localize an aerial image from a reference
database from where this sequence was taken. To achieve
this goal, we considered geo-localization as a retrieval task
similar to many other previous works [30, 43, 16, 37, 20,
21, 35]. Specifically, we denote extracted features from a
geo-tagged aerial image as Fsat and extracted aggregated
features from a sequence of ground-level images as Fgrd.
By evaluating the distance between Fsat and Fgrd, we can
find the most similar aerial image from a database of aerial
images. To extract features from a sequence of ground-
level images, we introduce an end-end model to extract the
sequential spatio-temporal features. We use VGG16 [33]
to extract the spatial features from each image and then
pass those features to a novel Temporal Feature Aggrega-
tion Module (TFAM) to capture the temporal information.
The spatio-temporal features are then aggregated into a sin-
gle feature for retrieval. Furthermore, to generalize the pro-
posed method for different sequence lengths, a sequential
dropout (SD) scheme is implemented. Fig. 4 provides an
overview of the proposed approach. In the next sections,
we describe TFAM in more detail followed by an introduc-
tion to the sequential dropout (SD) scheme in Section 4.3.
Finally, in Section 4.4, we describe the training objectives.

4.2. Temporal Feature Aggregation Module

To explore the benefits of the sequential images, we
introduce TFAM in cross-view sequence geo-localization.
TFAM is inspired by the success of the transformers [36]
in many computer vision problems [13, 38, 27]. The
multi-head self-attention mechanism is the key compo-
nent that enabled transformers to capture correlations be-
tween sequential data elements at any distance. Similar
to the transformer [36], TFAM also employs a multi-head
self-attention mechanism to capture contextual information
from a sequence of images.

Consider a sequence of images as P ∈ RT×W×H×C

where T,W,H,C are the number of images in a sequence,
image width, image height, and image channel respectively.
We choose the VGG16 backbone to extract embedding fea-
tures for each image in the sequence to have a fair com-
parison with the baseline methods [30, 43]. A feature vec-
tor F ′ ∈ RT×D is obtained by concatenating each im-
age’s feature along the temporal axis, where D is the di-
mension of the output of the backbone feature extractor.

Similar to the original transformer [36], before the multi-
head self-attention layer, a sinusoidal positional encoding
Epos ∈ RT×D is added to the extracted feature embeddings
F ′ to preserve the order of the temporal information which
is shown in Equation 1.

F̃ = F ′ + Epos. (1)

By feeding the feature embeddings to the Multi-head self-
attention layer, each embedding vector is projected into
three sub-spaces as Qi = F̃WQ

i , Ki = F̃WK
i , Vi = F̃WV

i

representing the query, key, value respectively and i is
the index of the head which we will describe later. Note
that WQ

i ∈ RD× D
Nhead ,WK

i ∈ RD× D
Nhead , and WV

i ∈
RD× D

Nhead are three projection matrices and Nhead is the
number of heads. The attention mechanism can be written
as follows:

headi = softmax(
QiK

T
i√

D
)Vi. (2)

To fully explore the contextual information in the temporal
domain, we use an approach similar to [36] and concatenate
the value of the multiple heads and projected them to the
output space using a projection matrix WO ∈ RNheadD×D,

Faggregated = Concat(head1, head2, ..., headNhead
)WO.

(3)
By stacking N TFAM modules, our model can extract more
refined feature representations. Finally, the features from
the last TFAM, Faggregated ∈ RT×D has the same input
shape as the embedding vector F . The resulting features are
then averaged using an average pooling layer on the tempo-
ral axis to obtain a one-dimension vector for the retrieval
task as follows:

Fgrds = average pool(Faggregated). (4)

4.3. Adaptive Sequence Length

TFAM introduced in the previous section works well on
sequences that have a fixed length T . However, during in-
ference in real-world settings, it is not always possible to
capture exactly T frames in a sequence due to different
hardware or software configurations (e.g. different sam-
pling and capturing rate, signal loss, etc). To adapt TFAM to
variant sequence lengths, we propose a sequential dropout
(SD) scheme by modifying the TFAM algorithm. During
training, a random binary mask A ∈ RT is generated and
fed to each TFAM in the model. For each index x at Ax,
if Ax = 0, it means that the feature at index x in F̃x is
omitted. Otherwise, the TFAM operates normally on this
feature. By setting Ki,x to a zero vector at index x, the
attention value at head i of index x represented as QiK

T
i,x



Figure 4: An overview of our proposed method which contains two main parts. The ground features extraction branch
(components in dark blue), and the aerial features extraction branch (components in orange). The ground-level features
extraction branch takes a sequence of images as input. The aerial features extraction takes the aerial image as input.

also becomes a zero vector. In other words, all the query
values would never interact with the key values of this fea-
ture at index x. Consequently, the embedding vector F̃x

at index x of F̃ is ignored by all other vectors during for-
ward propagation and back-propagation. To generate the
random mask A, we set a maximum number of dropout fea-
tures J in which J < T . In each training mini-batch, we
uniformly sampled an integer e between [0, J ] to represent
the number of dropped features in this batch. To control the
dropout rate during the training, we initialized all A values
with 1, and randomly set e elements in A to 0. The average
pooling layer (mentioned in section 4.2) only operates on
the index of the temporal dimension of aggregated features
Faggregated where the mask value is 1. Note that to fully
exploit the temporal information, our approach does need a
fixed-length sequence during training, however, it employs
SD to tackle variable-length sequence during testing. In our
experiments, we found that this strategy not only helped the
TFAM to produce a coherent representation but also regu-
larized the model and achieved much higher performance.

4.4. Training Objective

After extracting the aerial features Fsat and ground-level
features F ′, F ′ is further refined using the proposed TFAM
as described in 4.2, and the aggregated ground-level fea-
tures Fgrd are obtained. Finally, we deploy a metric learn-
ing objective to train the model using weighted soft margin
triplet loss [16],

L = log(1 + eγ(dpos−dneg )), (5)

where γ is a hyperparameter that controls the scale of the
loss value. dneg and dpos are L2 distances of unmatched
and matched aerial-ground pairs. We employ L2 normal-
ization on Fsat and Fgrd before calculating the distance.
The goal of this loss function is to push the matched pairs
closer while pushing unmatched pairs further.

5. Experiments

Implementation Details & Dataset: The proposed method
was implemented in PyTorch [25] 2. We used VGG16 [33]
pretrained on ImageNet [11] as backbones of our features
extractors. The last two fully connected layers were re-
moved for extracting features. We stacked 6 TFAMs, each
with 8 heads, in our model. We adopted our proposed
SD scheme with a maximum number of dropout features
J = 6 during training. During the testing, the frames can
be dropped by setting the values at corresponding locations
in A to 0. Since our proposed method exploit sequence im-
ages for training, we cannot evaluate our method on existing
cross-view geo-localization datasets. Instead, we chose to
benchmark our proposed method on our dataset described
in Section 3. The dataset is split into training and testing
sets with 31, 091 and 7, 772 aerial-ground sequence pairs
respectively. The training and testing datasets are geograph-
ically separated that no overlapping areas between these two
datasets. These settings are applied to all the experiments in
this section unless specified otherwise.
Baseline Methods: We compare our method with

2Codes available at https://gitlab.com/vail-uvm/seqgeo

https://gitlab.com/vail-uvm/seqgeo


R@1 R@5 R@10 R@1%

VIGOR [43] 0.54% 2.52% 4.48% 18.55%
SAFA† [30] 0.68% 2.92% 5.06% 21.81%
SAFA [30] 0.63% 2.83% 5.03% 21.51%

Ours w/o SD 1.39% 6.50% 10.45% 32.42%
Ours w/ SD 1.80% 6.45% 10.36% 34.38%

Table 2: Comparison between our methods with SD and
without SD, SAFA and VIGOR methods. † indicates testing
on single center ground image as query.

SAFA [30] and VIGOR [43] on our dataset. We chose
SAFA [30] as it achieved very competitive results on both
CVUSA [40] and CVACT [21] datasets. VIGOR [43] also
achieved outstanding performance on their proposed dataset
in a one-to-many retrieval approach. To adopt SAFA [30]
on our dataset, we trained SAFA [30] on center ground-
level images with their corresponding aerial images on our
proposed dataset with configurations reported in its origi-
nal paper. Thus, to make the comparison fair, we initial-
ized SAFA with pre-trained weights on the CVUSA dataset.
To be noticed, we did not apply the polar transformation
in SAFA [30] to keep a fair comparison with other meth-
ods. To train VIGOR, we set the center ground-level im-
age as a ‘positive’ sample and the others are ‘semi-positive’
samples as defined in their original paper. To enable SAFA
and VIGOR to work on sequences of images, we feed each
ground-level image in the sequence separately and average
the final feature vectors for all the images.
Evaluation Metrics: Similar to the previous works [30,
16, 21, 43], we use the recall accuracy at top-K (R@K) for
evaluating the performance. Given a query sequence, if the
ground truth aerial image ranks in the first K most similar
aerial images, it is considered to be a ‘correct’ query.

5.1. Quantitative comparison

Our main results are reported in Table 2. SAFA(center)
indicates that the SAFA model was tested on the center
ground-level image only. SAFA(sequence) means that the
SAFA model was tested on the whole sequence of ground-
level images after averaging the features. We also provide
the results from our method without SD. It can be seen that
our method outperforms the baseline methods by a large
margin. We also observe that our method performs much
better with SD in both top-1 and top-1% recall. The model
without SD is slightly better than the model with SD on
top-5 and top-10 recalls, but it is a slight margin as shown
in the recall vs top-K graph in Fig. 5. Two randomly se-
lected aerial-ground sequence pairs predicted by our model
training with SD from our test set are visualized in Fig. 6.
In the top two rows of Fig. 6, the ground truth image was
successfully predicted as the most similar one. It is worth

Figure 5: Recall rates of our methods vs baseline methods.
The results demonstrate that both methods trained with SD
and without SD outperform the baseline methods.

Figure 6: Two randomly selected retrieval results. The top
row shows top-5 retrieved aerial images in descending or-
der. The bottom row is the query sequence. The aerial im-
ages with blue border are the ground truth.

noticing that the second, third and fourth aerial images share
most of their appearance with the top-1 image. In the bot-
tom two rows of Fig. 6, although our model fails to predict
the ground truth in the first place, we can see that visually
the top-1 prediction is very similar to the ground truth.

5.2. Ablation Studies

To evaluate the effectiveness of our proposed models, we
conducted ablation experiments. We study the effective-
ness of the TFAM modules, SD, and number of heads in
the TFAM module as reported in Table 3 and Table 4. We
observe that the model which has 6 TFAMs with 8 heads for
each multi-head self-attention layer and random dropout of
a maximum of 6 images achieved the best results among all
the configurations. Moreover, we evaluate performance of
our model under different backbones in Table 5. To be no-



T H R@1 R@5 R@10 R@1%

0 0 0.91% 4.49% 7.98% 26.69%
2 2 1.45% 6.22% 10.02% 31.84%
4 2 1.40% 6.34% 10.31% 32.97%
4 4 1.51% 6.27% 10.51% 32.93%
6 4 1.59% 6.02% 9.88% 32.14%
6 8 1.80% 6.45% 10.36% 34.38%

Table 3: Ablation study on the number of heads and
TFAMs. ‘T’ is short for number of TFAMs and ‘H’ is short
for number of Heads. J is fixed to 6.

R@1 R@5 R@10 R@1%

J = 1 1.40% 6.08% 9.45% 31.89%
J = 3 1.51% 6.64% 10.57% 34.34%
J = 5 1.63% 6.41% 10.49% 34.40%
J = 6 1.80% 6.45% 10.36% 34.38%

Table 4: Ablation study on the maximum number of masked
frames J . The model is fixed to 6 TFAMs with 8 heads.

BackBone R@1 R@5 R@10 R@1%

VGG16 [33] 1.80% 6.54% 10.36% 34.38%
ResNet18 [15] 1.58% 5.98% 10.14% 33.83%
ResNet34 [15] 1.71% 7.01% 11.67% 38.16%
ResNet50 [15] 2.07% 8.12% 13.16% 40.10%

Table 5: Comparison between different backbones of the
proposed model.

ticed, our model with ResNet50 [15] can achieve 40% on
R@1%. But to keep a fair comparison with baseline meth-
ods, we still use VGG16 [33] as the backbone.

5.3. Variant Sequence Lengths

In real-world scenarios, the ground-level sequences
could have different numbers of images. Given that our
model has been trained with the SD scheme, in this ex-
periment, we vary the number of ground-level images in
a sequence at the inference time by modifying the value of
the SD mask A. We compare our model with and without
SD. To simulate the worst possible real-world scenarios, we
started by dropping the first 6 images and only leaving the
last 1 image in the sequence as the last image has the small-
est visible overlap area with the aerial image. We then test
by dropping the first 4 images and 2 images respectively.
The results in Fig. 7 demonstrated that our model with SD
outperformed the model trained without it in most of the
cases which proves that SD improves the model perfor-
mance and feature coherency on variable length sequences.

(a) Recall@1 (b) Recall@5

(c) Recall@10 (d) Recall@1%

Figure 7: Comparison between variant sequence lengths
simulated by SD in the testing phase for two models trained
with (red) SD and without (black) SD. The results demon-
strate that although trained using fixed-length sequences,
the proposed SD enables our method to predict coherent
feature representation compared with training without SD.

Noticeably, even ground sequence has only one single im-
age during testing, our model trained with SD significantly
outperforms SAFA [30] which was trained with the center
image as query (Table 2) as observed from Fig 7.

6. Conclusion, Limitation, and Future Work
In this paper, we put forward the first cross-view geo-

localization method that operates on sequences of limited
FOV images. To aggregate the temporal features, we pro-
posed a TFAM module that leveraged the multi-head self-
attention mechanism to fuse information from a sequence of
images. Although we used fixed-length sequences during
the training phase, we simulated variant length sequences
using our proposed sequential dropout method that regular-
izes our model to have a coherent feature representation.
This also helps our model to tackle ground-level sequences
with different lengths during the testing phase. We con-
tributed to the vision community a novel large-scale cross-
view sequence geo-localization dataset. Our extensive ex-
periments demonstrated the effectiveness of different com-
ponents of the proposed approach, robustness on variable-
length input sequences, and state-of-the-art results against
several competitive cross-view geo-localization methods.

One limitation of our proposed method is that the max-
imum length of the ground-level image sequence is con-
strained by the size of aerial images. Exploring meth-
ods that can geo-localize long sequences spanning multiple
aerial images is one future research direction.
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Supplementary Material

In this supplementary material, we are providing addi-
tional information for the following items:

• The availability of panoramas and limited Field-Of-
View (FOV) images.

• Dataset coverage map

• More implementation details

• More details about the baseline methods discussed in
the main paper.

• Comparison of the number of trainable parameters be-
tween the proposed model and baseline methods

• The availability of our proposed dataset and code for
the public.

• More samples from our proposed dataset.

• More qualitative results predicted by our proposed
model.

A. Panorama vs Limited FOV images

As we discussed in our main paper, limited FOV im-
ages are more popular and common than panoramas. To
highlight the difference, we presented the coverage areas
of limited FOV images and panoramas from Mapillary [2]
in Fig 8. Mapillary [2] is one of the largest crowdsourcing
platforms for sharing geotagged photos. As of 2018, Mapil-
lary [2] hosted 422 million images across the world. As ob-
served from Fig 8, the coverage area of limited FOV images
(Fig. 8b) on Mapillary is substantially greater than the cov-
erage area of panoramas (Fig. 8a), especially in some devel-
oping areas such as Middle East , Africa and south America.
We refer this to the complexity of capturing panoramic im-
ages which they need special and expensive cameras. To
this end, using sequences of limited FOV images as the
query is much more practical than using panoramas as the
query in cross-view geo-localization.

B. More implementation details

Our model was trained in an end-to-end manner using
Adam [18] with weight decay of 10−6 for 50 epochs on a
single Nvidia V100 GPU. The learning rate is set initially
to 10−5 and decayed linearly to 5 × 10−7 after 30 epochs.
We set the γ in Equation 5 of main paper to 10. We set
the ground sequence length T = 7 which is suitable for our
dataset. We used the exhaustive mini-batch strategy [37] to
construct the triplet pair with batch size set to 24.

C. Baseline Methods
We employed two baseline methods for comparison,

SAFA [30] and VIGOR [43]. For SAFA [30], we adopted
their original code. 3 SAFA trained only on the center im-
ages of each sequence. For fair comparison, SAFA has
been initialized with weights pretrained on CVUSA [40]
dataset then trained on our dataset. We used same hyper-
parameters reported in SAFA’s original paper [30] and fine-
tuned the model for 10 epochs. For VIGOR [43], we used
their code4 for training. Similar to SAFA, we trained their
model from all images in the sequences by setting the center
ground-level image to a ‘positive’ sample and the others are
‘semi-positive’ samples as defined in their original paper.
We set the hyperparameters as reported in original VIGOR
paper [43] and followed their exact procedures for training.

D. Dataset Availability and Anonymity
Our proposed dataset is composed of two parts, ground-

level image sequences and satellite imagery as explained
in the main paper. Our ground-level images are public
images collected by Vermont Agency of Transportation5.
The private information of all ground-level images has
been anonymized. These images will be shared publicly.
Our satellite images came from Google Maps. Following
Google Maps Platform Terms of Service6, we will make
our dataset available for research purposes only. We will
follow existing datasets, such as VIGOR [43], to distribute
the collected dataset upon request.

E. Dataset Coverage Map
To better visualize the diversity of the proposed dataset,

we visualize the coverage area in Fig. 9. As indicated by
the coverage map, our dataset includes both suburban and
urban areas in Vermont, US which cover most scenarios on
the roads.

F. Comparison of parameters
In this section, we present the comparison of train-

able parameters between the proposed model with differ-
ent backbones and baseline methods in Table 6. Our model
with VGG16 [33] is larger than the baselines. This is be-
cause the output dimension of VGG16 is 4096. As a result,
we need wider TFAMs to handle this large latent vector.
When we switch to ResNet [15] as backbone, the number
of parameters is significantly less than VGG [33] as back-
bone. This is because the dimension of output of ResNet50

3https://github.com/shiyujiao/cross_view_
localization_SAFA

4https://github.com/Jeff-Zilence/VIGOR
5https://vtrans.vermont.gov/
6https://cloud.google.com/maps-platform/terms

https://github.com/shiyujiao/cross_view_localization_SAFA
https://github.com/shiyujiao/cross_view_localization_SAFA
https://github.com/Jeff-Zilence/VIGOR
https://vtrans.vermont.gov/


(a) (b)

Figure 8: Comparison of coverage area (green lines) of user uploaded street view images between panoramic (a) and limited
FOV images (b) on Mapillary [2].

Figure 9: The coverage map of the proposed dataset. The
coverage area is indicated by red lines.

is 2048. For ResNet34 and ResNet18, the dimension of
output is only 512 which cause these two models are even
smaller than baselines. However, despite of the backbones,
the proposed model is constantly outperforms the baseline
methods. For a fair comparison with baseline methods, we
choose VGG16 as the backbone in the main script.

Method Parameters R@1 R@10 R@1%

VIGOR [43] 395M 0.54% 4.48% 18.55%
SAFA† [30] 319M 0.68% 5.06% 21.81%

Ours w/ VGG16 [33] 2.9G 1.80% 10.36% 34.38%
Ours w/ Res50 [15] 775M 2.07% 13.16% 40.10%
Ours w/ Res34 [15] 240M 1.71% 11.67% 38.16%
Ours w/ Res18 [15] 161M 1.58% 10.14% 33.83%

Table 6: Comparison between our proposed methods with
different backbones and baseline methods. † indicates test-
ing on single center ground image as query.

G. More Dataset examples
In this section, we provided 6 randomly sampled satel-

lite and ground sequence pairs from our proposed dataset as
shown in Fig. 10. As shown in Fig. 10, our dataset covers
diverse locations, urban, suburban, and rural areas which
we discuss in detail in our main script.

H. More Qualitative Results
In this section, we provided more retrieval examples.

Fig. 11 shows correct top-1 examples predicted by our
model and Fig. 12 shows top-5 retrieval examples. Each
figure shows pairs of satellite and ground images ordered
from top to bottom. For each pair, the bottom row is the
query ground-level sequence and the upper row is the pre-
dicted top-5 satellite images ranked in descending order
from left to right. The satellite images with blue boarder
are the ground truth.



Figure 10: Six randomly sampled satellite and ground sequence pairs from our dataset.



Figure 11: Samples been correctly predicted as top-1 by our model.



Figure 12: Samples been correctly predicted as top-5 by our model.


