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Abstract

In class-incremental semantic segmentation (CISS), deep
learning architectures suffer from the critical problems of
catastrophic forgetting and semantic background shift. Al-
though recent works focused on these issues, existing clas-
sifier initialization methods do not address the background
shift problem and assign the same initialization weights to
both background and new foreground class classifiers. We
propose to address the background shift with a novel clas-
sifier initialization method which employs gradient-based
attribution to identify the most relevant weights for new
classes from the classifier’s weights for the previous back-
ground and transfers these weights to the new classifier.
This warm-start weight initialization provides a general so-
lution applicable to several CISS methods. Furthermore, it
accelerates learning of new classes while mitigating forget-
ting. Our experiments demonstrate significant improvement
in mIoU compared to the state-of-the-art CISS methods on
the Pascal-VOC 2012, ADE20K and Cityscapes datasets.

1. Introduction

Semantic segmentation assigns a class label to every
pixel of an image. The emergence of deep neural net-
works as well as the availability of pixel-level annotated
datasets [14, 21, 57] has achieved state-of-the-art perfor-
mance on semantic segmentation tasks [13,33,55]. The ma-
jority of papers in the field considers that all classes are la-
belled in all training data, and that all training data is jointly
available. However, for many applications this is an unre-
alistic scenario, and the algorithm has to learn to segment
all classes from partially labelled data, and every moment
(called step in CISS) only has access to a limited batch of
training data. This restriction is imposed either by data stor-
age limitations or data privacy and data security consider-
ations [15]. Incremental learning [15, 36] proposes algo-
rithms for this setting where the main challenge is to pre-
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Figure 1: Comparison of classifier initialization methods.
Classifier initialization was previously found to be crucial
to obtain good plasticity [7, 8, 18, 49, 54] of an incremen-
tal learner. However, the method did not address the back-
ground shift. Previous methods (left) copy all filter weights
from previous background (bkg) to initialize new classes,
our attribution-based weight selection (right) explicitly ad-
dresses the semantic background shift by selecting only the
relevant weights for the classification of new classes. This
allows us to combine the plasticity of the previous initial-
ization method with a further reduction of catastrophic for-
getting.

vent catastrophic forgetting [37] which refers to a drop in
performance on classes learned in previous steps.

Another critical challenge faced by CISS approaches is
the semantic background shift. This challenge does not exist
for incremental image classification, and is a result of the
multi-class nature of image segmentation. The ground truth
at any step provides labels for pixels belonging to current
classes only and considers all other pixels as background
while the model should correctly classify the old and current
class pixels to their original labels and the future class pixels
to the background. So, the background class includes the
real background class, the previously seen classes, and the
future classes. As a result, there exists ambiguity due to
changing definition of the background class from step to
step.

In this paper, we highlight the importance of the ini-
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tialization of the classifier’s weights for the new classes.
Since at every step, the final classifier layer has to predict
the new classes in addition to the past classes, the classi-
fier’s weights for the new classes should be well aligned
with the features extracted by the model. Thus, the initial-
ization of classifier’s weights is critical for stable training
of the model and faster convergence on the new classes re-
sulting in less forgetting of past classes. MiB [7] adapted
weight imprinting [41] for segmentation and initialized the
classifier’s weights for the new classes and the background
with the classifier’s weights for the previous background.
This initialization has been followed in most of the recent
approaches [8, 18, 49, 54] but it does not address the se-
mantic background shift problem. Instead, we propose a
new warm-start classifier initialization method that explic-
itly tackles the background shift, differentiating the cur-
rent foreground classes from the previous background at the
classifier level as depicted in Figure 1.

We propose to transfer the learning of the future classes
from the previous background to the new classes by weight
transfer from relevant classifier input channels. The pro-
posed method follows the strict incremental setting [36],
which does not need access to any data from past or fu-
ture classes. Our method can be used with various CISS
approaches. We validate our proposed approach using mul-
tiple CISS settings, class orders and ablation experiments.
The main contributions can be summarized as follows:

• To better address the background shift, we apply an
attribution method to identify the most relevant classi-
fier channels for predicting the new classes as previous
background and transfer only those channel weights.

• Our method reduces catastrophic forgetting on old
classes while improving plasticity on new classes, ow-
ing to quicker convergence on new classes.

• We experimentally show that our method significantly
outperforms the state-of-the-art approaches on several
incremental settings and datasets.

2. Related Work
Semantic Segmentation: Commonly used segmentation
approaches are based on Fully Convolutional Networks
(FCNs) [33]. These methods improve the accuracy by using
multiscale representations [32], retaining more spatial infor-
mation by using atrous convolution [10] or convolution with
upsampled filters, modelling contextual cues [10], or by us-
ing attention mechanisms [12, 56]. Recent approaches used
strip pooling [23] along the width or height dimensions to
capture both global and local statistics. In our work, we use
the Deeplabv3 [11] architecture which employs atrous con-
volution in parallel manner in order to capture multi-scale
context to segment objects at multiple scales.

Incremental Learning: Most studies in incremental learn-
ing have focused on object detection and classification
problems [6, 31, 42, 44, 48]. Some of these works use
replay-based approaches, which store samples from pre-
vious tasks [6, 42] or generate training data [26, 43].
Some methods extend the initial architecture to learn new
classes [30,50] or use embedding networks [52] or use clas-
sifier drift correction to account for changing class distribu-
tions [3, 4]. Distillation-based methods constrain the learn-
ing of the model on new tasks by penalizing updates on the
weights [1, 27] or the gradients [9, 34] or the intermediate
features [17, 20, 24]. Our work focuses on the distillation-
based approaches for semantic segmentation.
Class-Incremental Semantic Segmentation: Recently, in-
cremental learning has been studied for semantic segmenta-
tion [7, 8, 18, 19, 25, 28, 38, 39, 51]. Initial approaches use
relevant examples from old tasks and perform rehearsal for
segmentation in medical imaging [40] and remote sensing
data [47]. Michieli et al. [38] considered an incremental set-
ting where labels for old classes are available when learning
new tasks. Cermelli et al. [7] was the first to highlight the
semantic background shift and proposed a novel distillation
method to tackle the shift. Douillard et al. [18, 19] pro-
posed using multi-scale spatial distillation loss to preserve
short and long range dependencies. Cha et al. [8] proposed
SSUL which considers a separate class apart from the se-
mantic background class for old and future classes in addi-
tion to freezing the backbone and past classifiers. UCD [49]
proposed to enforce similarity between features for pixels
of same classes and reduce feature similarity for pixels of
different classes. RCIL [54] decoupled the learning of both
old and new classes and introduced pooled cube knowledge
distillation on channel and spatial dimensions.

Replay of samples from previous classes has also been
used for CISS either by storing images from old tasks [8]
or by recreating them using generative networks [35]. Self-
training approach using unlabelled data [51] has also been
proposed. We propose to model the semantic background
shift for the classifier initialization used in [7, 8, 18, 49, 54]
without using any data from the previous steps.
Attribution Methods: Feature attribution methods assign
importance scores to the features for a given input which
are responsible for the class prediction. Existing attribu-
tion methods are based on perturbation or backpropagation.
Perturbation methods [53] compute the attributions of in-
put features by removing or masking them and then do a
forward pass to measure the difference in outputs. Back-
propagation methods compute the attributions for the input
features by doing one forward and backward pass. Some
of these methods are DeepLIFT [45], Integrated Gradi-
ents [46] and Layer-wise Relevance Propagation (LRP) [2].
We use the popular Integrated Gradients [46] which requires
no modification to the network and is simple to implement.



3. Proposed Weight Transfer Method

3.1. Class-Incremental Semantic Segmentation

Consider an image x and label space C, semantic seg-
mentation aims to assign a label ci ∈ C to every pixel in
x. Provided with a training set T , a model fθ having pa-
rameters θ is learned which maps the input image to the
pixel-wise class probabilities. In an incremental setup, the
model is learned in t = 1...T steps. The training set at in-
cremental step t is T t = {(xt

1, y
t
1), ..., (x

t
nt , ytnt)} where

xt
i ∈ Xt is the set of images, yti ∈ Y t is the set of corre-

sponding ground truth maps and a new set of classes Ct is
added to the existing set of classes C1:t−1. Since the back-
ground class is present in all the incremental steps, we de-
note it as bt at step t. The model at step t is denoted as fθt

which learns the parameters θt.
For an image xt

i ∈ Xt, the ground truth segmentation
map yti ∈ Y t only provides the labels of current classes
Ct while collapsing all other labels (old classes C1:t−1 and
future classes Ct+1:T ) into the background class bt. The
model after step t is expected to predict all classes learned
over time C1:t. Here, both the real background class pix-
els and the future class Ct+1:T pixels should be predicted as
background bt. Hence, the future classes classified as back-
ground after the first step gradually become the foreground
during the incremental steps. During the inference of the fi-
nal step, only the real background class should be classified
as the background.

3.2. Problems with Existing Initialization Method

We discuss the existing initialization approach and the
problems that are yet to be addressed. Since the pixels of
Ct are learned as background bt−1 at the previous step, the
old model fθt−1 will most likely assign these pixels to class
bt−1. To account for this initial bias on predictions of fθt

for pixels of Ct, Cermelli et al., [7] proposed to initialize
the classifier’s weights for the classes in Ct (including back-
ground) with the weights for the previous background class
so that the background class probability is uniformly spread
among the classes in Ct (bt ∈ Ct). It is important to note,
that this classifier initialization was found to be crucial to
achieve good plasticity. For several settings, classifier ini-
tialization more than doubles performance on the classes
learned after the first step (see for example Table 3 in [7]).

However, this direct transfer of classifier’s weights from
background to new classes does not directly address the
shift of classes from background to foreground across time,
which is one of the main challenge for CISS problems.
The background classifier weights are learned for the real
background and future classes Ct+1:T but the direct trans-
fer guides the model to initially assign high probabilities for
pixels of Ct+1:T and real background class to Ct instead of
bt.

Input image Ground truth mask Attribution map (a) Attribution map (b)

Figure 2: Attribution maps for the background (bkg) class
corresponding to different channels of the classifier layer.
The new classes (sheep, sofa, monitor) belong to the bkg of
the previous step. Attribution map (a) has high contribution
towards predicting the real bkg pixels and does not predict
the new class while the attribution map (b) contributes more
towards predicting the new class pixels as bkg.

3.3. Novel Warm-Start Classifier Initialization

To explicitly address the background shift at the initial-
ization stage, we propose Attribution-aware Weight Trans-
fer (AWT) as illustrated in Figure 3. AWT aims to trans-
fer only the significant classifier channel weights from the
background bt−1 to the new classes in Ct. We use attribu-
tion methods to select the classifier weights for the back-
ground at the previous step, which have significant contri-
butions in predicting the pixels of new classes in Ct as bt−1

(as depicted in Figure 2). Here, we exploit the ability of
the background classifier to learn different representations
using different channels. This selection separates the clas-
sifier level weights for the new classes in Ct and the future
classes. AWT aims not to transfer the significant classi-
fier weights for the future classes Ct+1:T to the new classes
thereby maintaining the stability of the model and acceler-
ating learning of the new classes.

3.3.1 Attribution-aware Channel Selection

Integrated Gradients [46] approximates the integral of the
gradients of the model’s output with respect to the inputs
along a straight-line path from baselines to inputs. Here,
baseline refers to the starting point from which integral is
computed and is taken as blank (zero) input. We employ
the Integrated Gradients attribution method, which assigns
importance scores to the inputs of the classifier layer for
predicting the background bt−1. More details of Integrated
Gradients are provided in the supplementary material.
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Figure 3: Overview of AWT: Images from the current step are given to the old model at step t−1. The inputs to the classifier
layer are used to generate the layer attributions. Here, the attribution map (b) is more significant for new class pixels than
map (a). We mask the attribution maps for the background pixels using the ground truth. Masked attributions from all images
of step t are averaged and max-pooled to obtain channel attributions. The significant channels are then selected using a
threshold k and these channel weights are transferred to the classifier weights for the new classes.

We use the images from the current training set Xt and
the old model fθt−1 for computing the attribution maps for
each of the input channels to the classifier layer. Since, the
old and future class pixels are labelled as bt in the ground
truth maps at step t, we obtain a ground truth mask ȳti for
new classes only by masking the pixels m belonging to bt

as follows:

ȳti [m] =

{
0 if yti [m] = bt

1 otherwise
(1)

We use the ground truth masks ȳti to obtain the attribu-
tions corresponding to the pixels of new classes in Ct only.
Since we consider only one set of channel mask for each
new class in Ct, we take the mean of the masked attributions
from all the images in Xt. Let A be the set of classifier layer
attribution maps, each of size W ×H ×C for all images in
Xt obtained using Integrated Gradients, then we obtain the
mean attribution as follows:

Aavg =
1

nt

nt∑
i=1

A(xt
i)⊙ ȳti (2)

where ⊙ refers to an element-wise multiplication along the
spatial dimensions.

Max-Pooling is performed on the mean attribution Aavg

to get an attribution value for each of the channels of classi-
fier’s weights for background bt−1. We transform the mean
attribution map of size W × H × C to channel attribution
Ac of size C with pooling along the channel axis as follows:

Ac[c] = max
w∈[1,W ],h∈[1,H]

(Aavg[w, h, c]) (3)

where c ∈ [1, C]. Note that we choose max-pooling over
average-pooling based on experiments in Section 4.3.

3.3.2 Classifier Initialization

A threshold k is applied on the channel attribution to ob-
tain a channel mask cmask to select the most contributing
channels as follows:

cmask[c] =

{
1 if Ac[c] > k

0 otherwise
(4)

where Ac denotes the channel attribution and c refers to the
channels. Let the classifier’s weights for the class c at step
t be wt

c and the classifier’s weights for the background at
step t − 1 be wt−1

b . We propose to initialize the classi-
fier’s weights for the new classes with the selected channel’s



weights as follows:

wt
c =

{
wt∗

c + wt−1
b · cmask if c ∈ Ct \ bt

wt−1
c otherwise

(5)

where wt∗
c refers to the default initialized weights. We

transfer the masked weights by adding them on top of the
default weights and thus we avoid having zero weights for
the remaining channels. We show in Section 4.3 that adding
the weights is beneficial compared to copying.

4. Experiments
4.1. Experimental settings

Datasets: We conduct experiments on the segmentation
datasets namely Pascal VOC 2012 [21], ADE20K [57] and
Cityscapes [14] using different incremental splits. Pascal
VOC 2012 [21] covers 20 object (or things) classes and one
background class. ADE20K [57] is a large scale dataset
containing 150 classes of both things and stuff (uncountable
or amorphous regions like sky or grass). Cityscapes [14] has
19 classes having both things and stuff and covering scenes
from 21 different urban cities.
CISS Protocols: Two different CISS settings introduced
by [7] are disjoint and overlapped. While the disjoint set-
ting assumes that the future classes are known and removes
images with future classes from the current step, the over-
lapped setting is more realistic and has no such assumption.
Similar to [8, 18], we also follow the overlapped setting in
our experiments. We denote the different settings as X-Y
where X is the number of classes in the initial step followed
by Y number of classes at every step until all the classes
are seen. We train 15-5 (15 classes followed by 5 classes),
15-1 (15 then 1 class in each step), 5-3 and 10-1 settings on
VOC. Similarly, we train 100-50, 100-10, 100-5 and 50-50
on ADE20K and 14-1 and 10-1 settings on Cityscapes.
Metrics: The mean Intersection over Union (mIoU) metric
is calculated after the last step for the initial set of classes,
the incremental classes, and for all the classes. The mIoU
for the initial classes reflects the stability of model to catas-
trophic forgetting. The mIoU for the incremental classes
reflects the plasticity of the model to learn new classes and
the overall mIoU metric signifies the overall performance.
Implementation Details: Deeplab-v3 [11] with a ResNet-
101 [22] backbone pretrained on ImageNet [16] having out-
put stride of 16 is used for the experiments. Similar to [54],
we use a higher initial learning rate and obtain an improved
baseline for MiB. We train MiB and MiB+AWT models
with SGD and a learning rate of 2 × 10−2 for the first
step only and 10−3 for the incremental steps. The mod-
els are trained with a batch size of 24 using 2 GPUs for 30
epochs per step for VOC and Cityscapes and 60 epochs for
ADE20K. Specific to SSUL models, we follow the same

training settings as [8] since it performs freezing of weights
and requires different training hyperparameters. The final
results are reported on the validation set of the datasets.
Since Cityscapes does not have a real background class, we
merge the unlabeled classes into a virtual background class.

We use layer integrated gradients from [29] for obtaining
the attributions and a threshold k to select the 25% most sig-
nificant channels for new classes based on experiments pro-
vided in the supplementary material. We obtain a unique set
of channels mask for each new class for all settings having 5
or lesser class increments. For settings like 100-10, 100-50
and 50-50 on ADE20K, we use a single channel mask for
all the new classes. Code is publicly available1.
Baselines: We compare our approach with the recent
state-of-the-art methods ILT [38], MiB [7], SDR [39],
PLOP [18], SSUL [8], RCIL [54] and UCD [49]. We ap-
ply AWT on two methods, MiB [7] and SSUL [8]. We also
compare with the upper bound (Joint model learned in non-
incremental manner). We do not consider approaches using
data from past steps [35] or auxiliary unlabeled data [51].

4.2. Quantitative Evaluation

Pascal VOC 2012: We show the quantitative experiments
on VOC 15-5, 15-1, 5-3 and 10-1 settings in Table 1. We ob-
serve that while ILT struggle on all settings, other methods
show significant improvements. Pooling-based distillation
methods like PLOP and RCIL do better in 15-5, 15-1 and
10-1 settings but these methods perform poorly on the 5-3
setting where the number of classes is less in the initial step.

AWT with MiB outperforms MiB significantly on all the
settings. On 15-5, our model outperforms MiB by 1.5 per-
centage point (p.p) on the overall mIoU metric. On the
15-1 setting, our model reduces the forgetting of the initial
classes by 11 p.p while the overall performance improves by
8.7 p.p. On the 5-3 setting having multiple class increments,
AWT improves the overall mIoU by 4.3 p.p over MiB. On
the most challenging setting of 10-1 having 11 steps, AWT
reduces the forgetting of the initial classes by 19.1 p.p and
improves the learning of new classes by 4.2 p.p.

AWT with SSUL [8] performs similar to SSUL for the
15-5, 15-1 and 5-3 settings, while for the challenging 10-
1 setting, it reduces forgetting of the initial classes by 1.8
p.p and improves the performance on new classes by 1.0
p.p. SSUL makes use of saliency maps targeted for things
or objects and moves them from background to an unknown
class for representing the future classes. This label augmen-
tation improves performance on all settings of VOC since
this dataset has only object classes. On the contrary, this
saliency-based modelling is not applicable for ADE20K,
Cityscapes and other datasets which have both things and
stuff classes, and SSUL suffers from high forgetting as we
observe in Tables 2 and 4.

1https://github.com/dfki-av/AWT-for-CISS

https://github.com/dfki-av/AWT-for-CISS


Table 1: Experimental results on Pascal VOC 2012. Improvements using AWT underlined. Best among columns in bold.
†: results excerpted from [54]. * implies results come from re-implementation. Other results come from the respective papers.

15-5 (2 steps) 15-1 (6 steps) 5-3 (6 steps) 10-1 (11 steps)
Method 0-15 16-20 all 0-15 16-20 all 0-5 6-20 all 0-10 11-20 all

ILT† [38] 67.8 40.6 61.3 9.6 7.8 9.2 22.5 31.7 29.0 7.2 3.7 5.5
SDR† [39] 76.3 50.2 70.1 47.3 14.7 39.5 - - - 32.4 17.1 25.1
PLOP [18] 75.7 51.7 70.1 65.1 21.1 54.6 17.5 19.2 18.7 44.0 15.5 30.5

MiB+UCD [49] 78.5 50.7 71.5 51.9 13.1 42.2 - - - 33.7 26.5 31.1
RCIL† [54] 78.8 52.0 72.4 70.6 23.7 59.4 59.3 33.8 41.1 55.4 15.1 34.3

MiB [7] 75.5 49.4 69.0 35.1 13.5 29.7 - - - 12.3 13.1 12.7
MiB* [7] 76.4 49.4 70.0 48.1 15.8 40.4 58.2 41.3 46.1 14.1 13.8 13.9

MiB+AWT (Ours) 77.3 52.9 71.5 59.1 17.2 49.1 61.8 45.9 50.4 33.2 18.0 26.0
SSUL [8] 77.8 50.1 71.2 77.3 36.6 67.6 72.4 50.7 56.9 71.3 46.0 59.3

SSUL+AWT (Ours) 78.0 50.2 71.4 77.0 37.6 67.6 71.6 51.4 57.1 73.1 47.0 60.7
Joint 79.8 72.4 77.4 79.8 72.4 77.4 76.9 77.6 77.4 78.4 76.4 77.4

Table 2: Experimental results on ADE20K. Improvements using AWT underlined. Best among columns in bold. †: results
excerpted from [54]. * implies results come from re-implementation. Other results come from the respective papers.

100-50 (2 steps) 100-10 (6 steps) 50-50 (3 steps)
Method 1-100 101-150 all 1-100 101-110 111-120 121-130 131-140 141-150 all 1-50 51-100 101-150 all

ILT† [38] 18.3 14.8 17.0 0.1 0.0 0.1 0.9 4.1 9.3 1.1 13.6 12.3 0.0 9.7
PLOP [18] 41.9 14.9 32.9 40.6 15.2 16.9 18.7 11.9 7.9 31.6 48.6 30.0 13.1 30.4

PLOP+UCD [49] 42.1 15.8 33.3 40.8 - - - - - 32.3 47.1 - - 31.8
SSUL* [8] 38.0 20.5 32.2 36.5 16.5 29.0 21.7 16.4 13.5 30.8 44.1 23.0 18.6 28.7
RCIL† [54] 42.3 18.8 34.5 39.3 14.6 26.3 23.2 12.1 11.8 32.1 48.3 31.3 18.7 32.5
MiB† [7] 40.5 17.7 32.8 38.3 12.6 10.6 8.7 9.5 15.1 29.2 45.3 26.1 17.1 29.3
MiB* [7] 41.5 22.9 35.3 38.9 10.3 13.8 12.3 5.1 13.0 29.6 46.1 27.1 21.8 31.8

MiB+AWT (Ours) 40.9 24.7 35.6 39.1 14.3 31.9 24.4 20.6 15.2 33.2 46.6 30.1 23.6 33.5
Joint 44.3 28.2 38.9 44.3 26.1 42.8 26.7 28.1 17.3 38.9 51.1 38.3 28.2 38.9

ADE20K: ADE20K [57] is a difficult dataset with 150
classes and has the joint model mIoU of only 38.9%. We
report the experimental results on ADE20K 100-50, 100-10
and 50-50 in Table 2 with analysis of performance on the
incremental sets of classes. We also consider a long setting
of 100-5 (11 tasks) in Table 3.

On 100-50, our model improves the overall performance
over MiB by 0.3 p.p. On 50-50 setting, our model achieves
an overall improvement of 1.7 p.p over MiB and 1.0 p.p
over RCIL. Moving to the longer sequence of 100-10 with 6
steps, our model improves MiB by 3.6 p.p and PLOP+UCD
by 0.9 p.p. On the 11 step setting of 100-5, AWT improves
MiB by 4.6 p.p and its nearest contender SSUL by 1.0 p.p.
MiB+AWT achieves state-of-the-art results on all settings
of ADE20K indicating the robustness towards predicting
both things and stuff classes.
Cityscapes: We perform CISS experiments on two long
sequence settings of 14-1 (6 tasks) and 10-1 (10 tasks)
of Cityscapes [14] dataset. We introduce the 10-1 setting
where we initially train on 10 classes (road, sidewalk, build-
ing, wall, fence, pole, light, sign, vegetation, terrain) and

Table 3: Experimental results on the 100-5 setting on
ADE20K. Improvements using AWT underlined. Best
among columns in bold. †: results excerpted from [54]. *
implies results come from re-implementation.

100-5 (11 steps)
Method 1-100 101-150 all

ILT† [38] 0.1 1.3 0.5
PLOP [18] 39.1 7.8 28.8
RCIL† [54] 38.5 11.5 29.6
SSUL* [8] 36.0 18.2 30.1
MiB† [7] 36.0 5.6 25.9
MiB* [7] 36.9 5.4 26.5

MiB+AWT (Ours) 38.6 16.0 31.1
Joint 44.3 28.2 38.9

add each of the 9 classes (sky, person, rider, car, truck, bus,
train, motorcycle, bicycle) one at a time. We evaluate naive
fine-tuning (FT), PLOP, RCIL, SSUL, MiB, and AWT with
both SSUL and MiB, and report the mIoU results in Table 4.



Table 4: Experimental results on Cityscapes. Improvements
using AWT underlined. Best among columns in bold. All
results come from our implementation.

14-1 (6 steps) 10-1 (10 steps)
Method 1-14 15-19 all 1-10 11-19 all

FT 0.0 10.1 2.5 0.0 4.8 2.2
PLOP [18] 55.7 12.3 44.8 52.2 24.1 39.6
RCIL [54] 55.7 7.1 43.6 51.0 17.4 35.9
SSUL [8] 43.2 33.0 40.7 38.6 38.1 38.3

SSUL+AWT 43.9 35.1 41.5 38.6 39.0 38.8
MiB [7] 56.3 12.5 45.4 51.6 30.1 41.9

MiB+AWT 55.9 19.8 46.9 51.2 37.2 44.9
Joint 56.7 54.3 56.1 51.7 61.4 56.1

We observe that while FT has very low overall mIoU,
PLOP, RCIL and MiB have improved overall performance
on both settings. SSUL shows higher performance on in-
cremental classes but with very high forgetting on the initial
classes compared to others. On the 14-1 setting, AWT with
SSUL improves the overall mIoU over SSUL by 0.8 p.p and
MiB+AWT outperforms MiB by 1.5 p.p with a significant
improvement of 7.3 p.p on the performance of incremental
classes (15-19). On the longer 10-1 setting, SSUL+AWT
increases the overall mIoU by 0.5 p.p over SSUL while
MiB+AWT improves over MiB by 3.0 p.p with a good mar-
gin of 7.1 p.p improvement on the incremental classes (11-
19). AWT significantly improves the plasticity of the mod-
els to better learn the new classes in both settings.

4.3. Ablation Study

We analyze the effectiveness of our approach with abla-
tion experiments on Pascal-VOC 2012 for the 15-1 setting.
Selective weight transfer: We analyze the importance of
the selective weight transfer approach in Table 5. The
weight transfer proposed by MiB [7] is a better choice com-
pared to the case when no weights are transferred. We show
that our proposed AWT ensures the selection of the most
significant channels for new classes by performing experi-
ments with random selection of channels without using at-
tributions. We observe that randomly selecting the same
number of channels (25% of total channels) and transfer-
ring their weights in the same way as AWT performs poorly
on both initial and incremental sets of classes.
Design choices: We consider the alternative ways of select-
ing the significant channels and analyze them in Table 6.
In AWT, we take the mean of the attribution maps from all
images of the current step and then perform max-pooling.
Here, we consider the alternative of pooling the channels
first for all the images and then take the mean of the pooled
values. We also consider using average-pooling instead of

Table 5: Ablation study for selective channel weights trans-
fer on Pascal-VOC 2012.

VOC (15-1)
Strategy % of filters copy add 0-15 16-20 all

No transfer 0 × × 45.7 5.3 36.1
MiB [7] 100 ✓ × 48.1 15.8 40.4
Random 25 × ✓ 46.3 6.1 36.8

AWT 25 ✓ × 58.3 14.8 47.9
AWT 25 × ✓ 59.1 17.2 49.1

Table 6: Ablation study for different design choices using
MiB [7] + AWT on Pascal-VOC 2012.

VOC (15-1)
MiB+AWT 0-15 16-20 all

Max-Pool =⇒ Mean 55.2 14.5 45.5
Avg-Pool =⇒ Mean 58.3 14.1 47.8
Mean =⇒ Avg-Pool 57.6 14.2 47.2
Mean =⇒ Max-Pool 59.1 17.2 49.1

0-15 0-15 0-15 16-20 16-20 16-20 all all all
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Figure 4: Boxplots of the mIoU of initial, new, and all
classes for 10 random class orders.

max-pooling. We experimentally show that mean followed
by max-pool is the best choice for channel selection.
Random class ordering: The order of classes plays an im-
portant role in CISS settings. We experiment with 10 dif-
ferent class orderings on VOC 15-1 setting. We show the
average performance for MiB and MiB+AWT in Figure 4.
We also plot the difference between MiB+AWT and MiB
for every class order to demonstrate the robustness of our
method using random class sequences.
Computational Complexity: The time taken for the attri-
bution module depends on the number of new-class images.
We use two Nvidia RTXA6000 GPUs for training the mod-
els. For each image, it takes approximately 0.68 seconds to
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Figure 5: Visualization of predictions using MiB and MiB+AWT in 14-1 setting for Cityscapes. MiB is highly biased towards
the new classes and classifies the bus as train (row 1) while MiB+AWT correctly classifies the bus (row 2).

compute the attributions. For VOC 15-1, MiB+AWT takes
10.32 hours for training while the attribution module for all
steps only takes 37 minutes (6% of the total training time).
Thus, the computational time for the attribution module is
considerably less compared to the entire training process.

For further analysis, refer to the supplementary paper.

4.4. Qualitative Evaluation

Figure 5 shows the predictions of MiB and MiB+AWT
across time on Cityscapes 14-1 setting. MiB is biased to-
wards the new classes and forgets the class (bus) learned in
step 2 and classifies the bus as train from step 3 onward.
MiB+AWT still classifies the bus correctly till step 5.

Figure 6 shows the predictions for both MiB and
MiB+AWT models trained in 100-5 setting on test images
of ADE20K. We show that MiB+AWT improves predic-
tions of classes like fan (row 1), wardrobe (row 2) and chair,
chandelier (row 3) compared to MiB.

5. Conclusion and Limitations

In this paper, we addressed the issue of semantic back-
ground shift during the initialization of the new foreground
classifiers at each step of CISS. We discussed the prob-
lems with the existing initialization method, and then pro-
posed an attribution-based approach to identify weights that
are of interest for the new foreground classes and transfer
these weights. This selective initialization takes into ac-
count the gradual transition of classes from background to
foreground across time. Experimental results on multiple
datasets showed that our approach reduces the forgetting of
old classes and further improves the plasticity. Our weight
transfer approach generalizes well with both things and stuff
classes and outperforms the existing CISS methods. This
work lays the foundation for attribution-aware weight ini-
tialization that could be more generally used for incremen-

(a) Image (b) MiB [7] (c) MiB+AWT (d) GT

Figure 6: Visualization of predictions using MiB and
MiB+AWT in 100-5 setting on test images of ADE20K.

tal learning problems involving multi-class classification
Although our method works well with most incremen-

tal settings, the strategy of selecting multiple set of chan-
nels for multiple new classes would involve a significant
increase in computational complexity as a function of the
number of new classes at every step, especially for 10,
50 or more class increments at a step. We believe future
work can be done to address this limitation. We hope that
our attribution-based channel selection approach would be
adapted beyond semantic segmentation to other computer
vision applications.
Acknowledgement. This work was partially funded by the Federal
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Supplementary Materials

Introduction
In this supplementary material to our main paper

Attribution-aware Weight Transfer: A Warm-Start Initial-
ization for Class-Incremental Semantic Segmentation, we
discuss the details of the gradient-based attribution method,
Integrated Gradients [46] used in our Attribution-aware
Weight Transfer (AWT) initialization. We further share
more details of our implementation for better reproducibil-
ity, and perform additional ablative experiments to ana-
lyze the impact of the proposed warm-start initialization.
Finally, we present the qualitative results of AWT with
MiB [7] and SSUL [8] on Pascal-VOC 2012.

A. Attribution Method
Integrated Gradients: Consider a deep neural network as
a function F : Rn → [0, 1]. Let x ∈ Rn be the input
image and x′ ∈ Rn be a baseline black image. Integrated
Gradients (IG) [46] computes and accumulates the gradients
at all points along the straight line path (in Rn) from the
baseline to the input.

Let ∂F (x)
∂xi

be the gradient of F (x) along the ith dimen-
sion. Then the integrated gradient along the ith dimension
for an input x and baseline x′ is defined as follows:

IGi(x) ::= (xi − x′
i)×

∫ 1

α=0

∂F (x′+α×(x−x′))
∂xi

dα (6)

Note that the attributions add up to the difference between
F (x) and F (x′).
Layer Integrated Gradients: Layer Integrated Gradi-
ents [29] is designed for computing attributions correspond-
ing to inputs or outputs of a specific layer of the network.
For a given layer, the size of the attribution maps is the same
as the layer’s input or output dimensions, based on whether
we attribute to the inputs or outputs of that layer. In our
method, we compute the attributions for the inputs to the fi-
nal classifier layer. We obtain the attributions corresponding
to a given target class (background class in our method).

B. Reproducibility
Datasets: We evaluate our models on Pascal-VOC
2012 [21], ADE20K [57] and Cityscapes [14]. VOC con-
tains 10,582 images for training and 1,449 images for test-
ing. ADE20K contains 20,210 and 2,000 images for train-
ing and testing respectively. Cityscapes contains 2,975
training images and 500 testing images.
Implementation details: We use Deeplab-v3 [11] with
ResNet-101 [22] backbone pretrained on ImageNet [16]
having output stride of 16. In-place activated batch normal-
ization [5] is used to reduce memory requirements. Similar

to [7, 18, 54], the data augmentation from [11] has been ap-
plied along with random cropping of 512 × 512 pixels for
training and a center crop of the same size for testing. A
random horizontal flip is performed on the training set only.

We re-implement SSUL by training for 60 epochs on
ADE20K dataset. We follow the same training settings
for SSUL as proposed in [8] for VOC and ADE20K. For
Cityscapes, we trained SSUL with a learning rate of 0.01
and a batch size of 24. We train the other models of FT,
PLOP, RCIL for Cityscapes with SGD and a learning rate
of 2 × 10−2 for the first step only and 10−3 for the incre-
mental steps.
Class order: For all the quantitative experiments, we order
the classes by increasing class id, i.e. the default order of
the respective datasets.

For the ablation experiment using random orders on
VOC 15-1, we sampled the following 10 class sequences:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
[12, 9, 20, 7, 15, 8, 14, 16, 5, 19, 4, 1, 13, 2, 11, 17, 3, 6, 18, 10]
[13, 19, 15, 17, 9, 8, 5, 20, 4, 3, 10, 11, 18, 16, 7, 12, 14, 6, 1, 2]
[15, 3, 2, 12, 14, 18, 20, 16, 11, 1, 19, 8, 10, 7, 17, 6, 5, 13, 9, 4]
[7, 13, 5, 11, 9, 2, 15, 12, 14, 3, 20, 1, 16, 4, 18, 8, 6, 10, 19, 17]
[7, 5, 9, 1, 15, 18, 14, 3, 20, 10, 4, 19, 11, 17, 16, 12, 8, 6, 2, 13]
[12, 9, 19, 6, 4, 10, 5, 18, 14, 15, 16, 3, 8, 7, 11, 13, 2, 20, 17, 1]
[13, 10, 15, 8, 7, 19, 4, 3, 16, 12, 14, 11, 5, 20, 6, 2, 18, 9, 17, 1]
[1, 14, 9, 5, 2, 15, 8, 20, 6, 16, 18, 7, 11, 10, 19, 3, 4, 17, 12, 13]
[16, 13, 1, 11, 12, 18, 6, 14, 5, 3, 7, 9, 20, 19, 15, 4, 2, 10, 8, 17]

C. Additional Ablation Experiments
Additional experiments are performed to analyze the ef-

fect of the initialization and the number of training iterations
per step. We show in Table 7 that training the model with
random initialization for a higher number of iterations (×2,
×4) cannot reach the performance of AWT initialization or
even the one proposed by [7]. Instead, training for more
iterations causes higher forgetting of old classes.

Furthermore, we vary the threshold k to select the most
significant 10%, 25%, 50% and 75% of the channels for
weight transfer. Based on the results of this experiment
shown in Table 8, our final AWT uses a ratio of 25% for
all our experiments in the main paper.

To discuss the role of AWT on reducing the effect of
background shift, we analyze the performance of the newly
added classes after every step of training for VOC 15-1
and ADE20K 100-10 settings in Figure 7. We observe that
MiB+AWT better learns the new set of classes which transi-
tions from the previous background to current foreground.
This indicates reduced effect of the background shift with
AWT across multiple steps.



Table 7: Ablation study for significance of weight transfer
on Pascal-VOC 2012.

VOC (15-1)
New Classifier Init Iterations 0-15 16-20 all

Random × 1 45.7 5.3 36.1
Random × 2 39.7 6.6 31.8
Random × 4 29.9 7.5 24.6

Weight transfer - MiB [7] × 1 48.1 15.8 40.4
Weight transfer - AWT (Ours) × 1 59.1 17.2 49.1

Table 8: Ablation study for selection of threshold using
MiB+AWT on Pascal-VOC 2012.

VOC (15-1)
Threshold for channel selection 0-15 16-20 all

Top 10% 51.0 11.0 41.5
Top 25% 59.1 17.2 49.1
Top 50% 58.3 17.6 48.6
Top 75% 56.8 14.9 46.8

D. Additional Qualitative Evaluation
Figure 8 shows the comparison of predictions using

MiB, MiB+AWT, SSUL, and SSUL+AWT on some test
samples of Pascal-VOC 2012 using models trained in the
10-1 setting. Over both the methods, AWT improves the
predictions for multiple classes like TV, car, aeroplane,
bird, chair, table, horse, person, dog, and many more.
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