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Abstract. Even after decades of research, dynamic scene background
reconstruction and foreground object segmentation are still considered as
open problems due various challenges such as illumination changes, cam-
era movements, or background noise caused by air turbulence or moving
trees. We propose in this paper to model the background of a frame
sequence as a low dimensional manifold using an autoencoder and com-
pare the reconstructed background provided by this autoencoder with
the original image to compute the foreground/background segmentation
masks. The main novelty of the proposed model is that the autoencoder
is also trained to predict the background noise, which allows to compute
for each frame a pixel-dependent threshold to perform the foreground
segmentation. Although the proposed model does not use any temporal
or motion information, it exceeds the state of the art for unsupervised
background subtraction on the CDnet 2014 and LASIESTA datasets,
with a significant improvement on videos where the camera is moving.
It is also able to perform background reconstruction on some non-video
image datasets.

Keywords: background reconstruction, background subtraction, unsu-
pervised object detection, video surveillance

1 Introduction

We consider in this paper the tasks of dynamic background reconstruction and
foreground/background segmentation. The dynamic background reconstruction
task can be described in the following way: The input is a sequence X of
consecutive frames X1, ..XN showing a scene cluttered by various moving ob-
jects, such as cars or pedestrians, and the expected output is a sequence X̂ =
X̂1, .., X̂N of frames showing the backgrounds of each scene without those ob-
jects. If the camera is fixed and the illumination conditions do not change,
the various frames X̂1, .., X̂N will be nearly identical. However if this is not
the case, then these frames can be very different from each other. The fore-
ground/background segmentation task similarly takes as input the same kind
of frames sequence X1, ..XN , but the expected output is a sequence M of fore-
ground masksM1, ..,MN whose values at the pixel p are equal to zero if this pixel
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shows the background in the considered frame, and equal to 1 if the background
is masked by a foreground moving object at this pixel (Fig. 1).

Fig. 1. The proposed model takes as input a frame from the associated video (left
column) and provides a reconstruction of the background (middle column) and a fore-
ground mask (right column).

This task is often called background subtraction because the pointwise mul-
tiplication of the mask Mk and the input image Xk gives an image showing only
the foreground moving objects present in Xk, the input image background being
replaced by a black background. The applications of background subtraction are
very diverse [19]: road, airport, store, maritime or military surveillance, obser-
vation of animals and insects, motion capture, human-computer interface, video
matting, fire detection... Although the task of automatic background subtraction
has been studied for more than 30 years [63], it is still considered as an open
problem due to the various challenges appearing in real applications: illumination
changes, high level of occlusion of the background, background motions caused
by moving trees or water, challenging weather conditions, presence of shadows...
Dynamic background reconstruction models have been used for background sub-
traction, but are now also implemented as components of unsupervised object
detection and tracking models [27,23,65].

The model presented in this paper starts from the classical assumption that
the dynamic background of a scene can be modeled as a low dimensional manifold
and uses an autoencoder to learn this manifold and perform dynamic background
reconstruction. It then compares the input frame with the associated background
predicted by the autoencoder to build the foreground/segmentation mask. The
main contributions of this paper are the following :

– We implement a new loss function to train the autoencoder, which gives
a high weight to reconstruction errors associated to background pixels and
a low weight to reconstruction errors associated to foreground pixels, and
shows better performance than the L1 loss usually considered for this task.
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– We train the autoencoder to provide a background reconstruction, but also
a background noise estimation, which gives a pixelwise estimate of the un-
certainty of the background prediction. This noise estimation map is used
to adjust the threshold necessary to compute the background/foreground
segmentation mask.

– We reduce the risk of overfitting by implementing an early stopping criterion
and adapting the autoencoder parameter count to the complexity of the
background sequence.

The paper is structured as follows : We first review related work in section 2,
then describe the proposed model in section 3. Experimental results on various
datasets are then provided in section 4.

2 Related work

Background subtraction methods can be split between supervised methods, which
require labeled data, and unsupervised methods. Fully unsupervised methods
are methods which do not require training data and can be applied to any video
sequence without any update of the model parameters.

One can classify unsupervised methods as statistical methods or reconstruc-
tion methods. Statistical methods rely on a statistical modeling of the distribu-
tion of background pixel color values or other local features to predict whether
a particular pixel is foreground or background. These statistical models can
be parametric (univariate gaussian [63], mixture of gaussians [56], clusters [36],
Student’s t-distributions [44], Dirichlet process mixture models [5], Poisson mix-
ture models [18], asymmetric generalized gaussian mixture models [15], etc.) or
non parametric (pixel value histograms [68], kernel density estimation [14], code-
books [31], history of recently observed pixels [2,24], etc.). The efficiency of these
methods can be increased by using as input not only the pixel color values, but
also features attached to superpixels [11] or local descriptors which are robust
to illumination changes, such as SIFT [52], LBP or LBSP descriptors. [54,55].
If the camera is static, the segmentation of moving objects on a scene can also
be performed by evaluating the motion associated to each pixel, using optical
flow or flux tensor models. The blobs produced by these models are generally
very fuzzy, but can be used as input to more complex models [8,61]. Several
unsupervised models can be also combined to form a more accurate ensemble
model [4].

Reconstruction methods use a background reconstruction model to predict
the color (or other features) of the background at a particular pixel. The differ-
ence between the current image and the predicted background is then computed
and followed by a thresholding to decide whether the a pixel is background or
foreground. Pixelwise reconstruction models try to predict the value of a back-
ground pixel at a particular frame using the sequence of values of the pixel of
the last frames using a filter, which can be a Wiener filter [59], a Kalman filter
[49] or a Chebychev filter [10]. A global prediction of the background can also be
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performed using the assumption that the background frames form a low dimen-
sional manifold, which motivates the use of dimensionality reduction techniques
such as principal component analysis (PCA) [45]. One can add to this approach
a prior on the sparcity of the foreground objects by using a L1 loss term applied
to the foreground residuals, which leads to the development of models based on
robust principal component analysis (RPCA) [64,9]. More complex norms and
additional regularizers have been proposed to improve the performance of this
approach [40,37,66,26,25]. Non-linear dimensionality reduction using an autoen-
coder for background reconstruction has already been implemented [17,48] and
is further developed in the proposed model.

Supervised methods require labeled data as input. The labeled data are sets
of pairs (Xk,Mk), where the image Xk is an image extracted from the sequence
X1, ..XN and the foreground mask Mk has to be provided by a human in-
tervention. Supervised algorithms using linear methods such as as maximum
margin criterion [33,13] or graph signal reconstruction methods [20] have been
proposed, but the current best performing supervised models use deep learn-
ing techniques with convolutional encoder-decoder structures [35,34,41], U-net
structures [47,43] or GANs [57,69].

Although supervised models can reach very high accuracy results on a given
video after training, their ability to generalize to new videos remain a major
issue, and evaluation on unseen scenes may lead to unfavorable results com-
pared to unsupervised algorithms [41]. A spatio-temporal data augmentation
strategy has been proposed [58] to improve generalization. One can also use as
additional input to the deep learning model the output of an unsupervised back-
ground subtraction model [47,46]. A background subtraction model can also be
substantially improved by combining its results with the output of a supervised
semantic segmentation model [7,67].

Several surveys [6,43,29,42] discuss background reconstruction and back-
ground subtraction models.

3 Model description

The proposed model is a reconstruction model and has a general structure similar
to the DeepPBM model [17]: We assume that the background frames form a
low dimensional manifold and train an autoencoder to learn this manifold from
the complete video using a reconstruction loss. We however observe that the
DeepPBM model shows the following shortcomings:

– The structure of the autoencoder and the number of latent variables have to
be defined on a scene by scene basis, which requires a human supervision.
If the number of latent variables is too high, the autoencoder quiclky learns
to reproduce the foreground objects, a phenomenon we call ovefitting, and
fails to generate a proper background.

– This model is able to handle changes in lightning conditions, but struggles
to handle camera movements.
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– The thresholding mechanism is not able to cope with dynamic backgrounds
such as clouds or trees, which leads to false detections.

In order to handle these issues, we implement the following features:

3.1 Reconstruction loss using background bootstrapping

We implement a reconstruction loss using background bootstrapping [50], which
we found to be more efficient than the L1 loss for dynamic background recon-
struction. In the case of dynamic background reconstruction, this loss function
allows to reduce the risk of overfitting to the foreground objects by giving a
higher weight to background pixels than to foreground pixels during the opti-
mization process.

The proposed reconstruction loss can be described by the following formulae:
We note xn,c,i,j the pixel color value of the image Xn for the channel c at

the position (i, j) with 1 ≤ c ≤ 3,1 ≤ i ≤ h and 1 ≤ j ≤ w, and x̂n,c,i,j the pixel

value of the reconstructed background X̂n for the same color and position. The
local l1 error associated to the pixel (i, j) is

ln,i,j =

3∑
c=1

|x̂n,c,i,j − xn,c,i,j |. (1)

If at least one of the color channels give a high error, then ln,i,j is large and
the pixel (i, j) of the image Xn is considered to be a foreground pixel. A soft
foreground mask mn ∈ [0, 1]h×w for the image Xn is then computed using the
formula

mn,i,j = tanh

(
ln,i,j
τ1

)
, (2)

where τ1 is some positive hyperparameter, which can be considered as a soft
threshold. A spatially smoothed version m̃n,i,j of this mask is then computed
by averaging using a square kernel of size (2k + 1) × (2k + 1), with k = ⌊w/r⌋
(where w is the image width and r is some integer hyperparameter):

m̃n,i,j(X̂n, Xn) =
1

(2k + 1)2

l=k,p=k∑
l=−k,p=−k

mn,i+l,j+p (3)

The associated pixel-wise weight wbootstrap
n,i,j is then defined as

wbootstrap
n,i,j = e−βm̃n,i,j , (4)

where β is some positive hyperparameter. The reconstruction loss of the auto-
encoder is then computed by weighting the pixelwise L1 losses ln,i,j using these
bootstrap weights:

Lrec(X̂ ,X ) =
1

Nhw

N,h,w∑
n=1,i=1,j=1

wbootstrap
n,i,j ln,i,j (5)
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We do not use any optical flow or motion estimation input in the proposed
model because we want it to be able to handle situations where the camera is
moving.

Encoder Decoder

Input image Xn

background
reconstruction X̂n

background noise
estimation

L1 error ln

thresholded
error

output after post-
processing

Fig. 2. Schematic of the proposed model during inference (Error and noise images are
normalized in the range [0,1])

3.2 Optimized thresholding using background noise estimation

We remark that the bootstrap pixel weights wbootstrap
n,i,j can be used to get an

estimate of the level of background noise of a frame sequence, considering that
these weights are close to one when the associated pixel is a background pixel,
and close to zero when this is not the case.

We therefore add a fourth output channel to the auto-encoder, which is
dedicated to give an estimate l̂n,i,j of the value of the L1 error ln,i,j for each
pixel (i, j) for the frame Xn (Fig. 2).

The associated loss function is weighted using the bootstrap weights in order
to limit its scope to background regions:

Lnoise =
1

3Nhw

N,h,w∑
n=1i=1,j=1

wbootstrap
n,i,j |l̂n,i,j − ln,i,j | (6)

When the background is very noisy, the autoencoder is not able to predict ac-
curately the value of a background pixel color. As a consequence, the expectation
of ln,i,j is large, which leads to a high value of l̂n,i,j .

The autoencoder is trained using the sum of the reconstruction loss and the
loss associated to the background noise estimation. The complete loss function
is then

L = Lrec + Lnoise. (7)

The gradients of the weights wbootstrap
n,i,j are not computed during the optimization

process [50]. We also do not use the gradient of ln,i,j in equation 6 because we
do not want the quality of the background reconstruction be impacted by the
background noise estimation optimization process.
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In order to set the pixelwise threshold τn,i,j associated to the pixel (i, j) of the
frame Xn and necessary to compute the background/foreground segmentation
mask, we also take into account the average illumination În of the reconstructed
background X̂n, as defined by the formula

În =
1

3hw

3,h,w∑
c=1,i=1,j=1

|x̂n,c,i,j |. (8)

The threshold τn,i,j is then set according to the formula

τn,i,j = α1În + α2 l̂n,i,j , (9)

where α1 and α2 are two positive hyperparameters. The motivation of this for-
mula is that if the background noise is very high at some pixel, we have to
increase the associated threshold for background/foreground segmentation in
order to prevent the misclassification of background pixels as foreground caused
by background noise.

For a given frame sequence X1, ..., Xn and a reconstructed background se-
quence X̂1, ..., X̂n, we then compute the foreground maskMn before post-processing
using the thresholding rule Mn,i,j = 1 if and only if ln,i,j > τn,i,j .

A post-processing is then applied in order to remove rain drops, snow flakes,
and other spurious detections. It is composed of two morphological operations:
a morphological closing using a 5 × 5 square structural element, followed by a
morphological opening with a 7× 7 square structural element.

3.3 Detecting complex background changes

The improved reconstruction loss function introduced in 3.1 reduces the risk
of overfitting, but is not able to prevent it completely. We observe that the
risk of overfitting increases when the number of optimization iterations and
the number of parameters of the network increase. This is a significant issue
because sequences showing background changes require a high number of training
iterations and a model with a large number of parameters. In order to prevent
overfitting, the number of training iterations and the complexity of the model
are therefore adjusted to the complexity of the backgrounds sequence.

The main challenge here is to estimate without any human supervision whether
the video shows substantial background changes or not. We observe however that
the proposed model can be used to answer to this question. In order to do this,
we first train the model for a fixed small number Neval of iterations, which is
however sufficient to get a rough evaluation of the background changes. Us-
ing this trained model, we compute Beval reconstructed backgrounds X̂n using
frames Xn sampled from the sequence X . We then compute the temporal median
X̂ of these backgrounds and compare this median background with the recon-
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structed backgrounds X̂n, computing soft masks following the same method and
parameters as in formula 1 and 2:

ln,i,j =

3∑
c=1

|x̂c,i,j − x̂n,c,i,j | (10)

mn,i,j = tanh

(
ln,i,j
τ1

)
. (11)

We then consider the average soft mask value over the Beval reconstructed
backgrounds

m̄ =
1

Bevalhw

Beval,h,w∑
n,i,j

mn,i,j . (12)

If m̄ is higher than a threshold τ0, we consider that the background is a com-
plex background. The partially trained model is discarded, a new autoencoder
is created with more parameters and the number of training iterations is set to
Ncomplex with a minimum of Ecomplex epochs for very long sequences.

If this ratio is lower than τ0, we consider that the background is a simple
background, keep the partially trained model, and finish the training, with a
total number of training iterations set to Nsimple.

4 Experimental results

4.1 Evaluation method

We consider the following benchmark datasets for background subtraction: CD-
NET 2014, LASIESTA and BMC 2012 and use the same model hyperparameters
on these three datasets.

We use the public implementations of the algorithms PAWCS [55] and SuB-
SENSE [54] provided with the BGS library [53] to get baseline performance
estimates for these methods when they are not available. We rely on published
results for the other state of the art methods which do not have public imple-
mentations.

We use the F-measure as main evaluation criteria. To compute the F-measure
associated to a sequence of foreground masks predictions M1, ..,Mn, we first
compute the sums TP, TN,FP, FN of the true positives, true negatives, false
positives and false negatives associated to the sequence of masks M1, ..,Mn, and
then compute the F-measure associated to this sequence as the harmonic mean
of precision and recall, which can also be described by the formula

F =
TP

TP + 1
2 (FN + FP )

. (13)

Implementation details and autoencoder architecture are described in the
appendix.
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4.2 CDnet 2014 dataset

The CDnet 2014 dataset 1 [62] is composed of 53 videos, for a total of 153 278
frames, selected to cover the various challenges which have to be addressed for
background subtraction: dynamic background (scenes with water or trees), cam-
era jitter, intermittent object motion, presence of shadows, images captured by
infrared cameras, challenging weather (snow, fog), images captured with a low
frame rate, night images, images filmed by a pan-tilt-zoom camera, air turbu-
lence. Ground truth foreground segmentation masks are provided for all frames
of the dataset, with specific labels for shadow pixels which are not considered
in the F-measure computation. We provide in Table 1 the F-measure results per
category of the proposed model for each category of the CDnet 2014 dataset,
with a comparison with the results obtained by other unsupervised models.

The proposed model, despite the various mechanisms implemented to limit
overfitting, nevertheless suffers from overfitting when big foreground objects stay
still or moves very slowly in a frame sequence. This phenomenon is observed
on three sequences of the CDnet dataset, ”office”, ”library” and ”canoe” (3),
although the associated backgrounds are correctly classified as simple by the
model. As a consequence, the average F-score on corresponding categories ”base-
line”, ”thermal” and ”dynamic backgrounds” are below the scores of other state
of the art models.

input
frame

ground
truth

predicted
background

foreground
mask

Fig. 3. Examples of overfitting on the datasets CDnet 2014 and BMC 2012 for the
sequences ”library”, ”office”, ”canoe” and ”video007”

Despite this issue, the proposed model gets a higher average F-measure on
the CDnet 2014 dataset than all published unsupervised models, with an average
F-measure of 0.784. One can observe a significant improvement in accuracy with
the proposed model in the ”pan-tilt-zoom” (PTZ) category, showing that it is
able to better handle situations where the camera is moving.

1 http://changedetection.net/

http://changedetection.net/
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Table 1. Comparison of top BGS algorithms according to the per-category F-measures
on CDNet-2014
(sources : CDnet website http://jacarini.dinf.usherbrooke.ca/results2014/1158/,[26],
[25]).

Method
Bad
weather

Base-
line

Camera
jitter

Dynamic
backgr.

Int. obj.
motion

Low
framerate

Night PTZ ShadowThermal
Turbu-
lence

Overall

Unsupervised:
AE-NE (ours) 0.8337 0.8959 0.9230 0.6225 0.8231 0.6771 0.5172 0.8000 0.8947 0.7999 0.8382 0.7841
IUTIS-5 [4] 0.8248 0.9567 0.8332 0.8902 0.7296 0.7743 0.5290 0.4282 0.9084 0.8303 0.7836 0.7717
WisenetMD [32] 0.8616 0.9487 0.8228 0.8376 0.7264 0.6404 0.5701 0.3367 0.8984 0.8152 0.8304 0.7535
SuBSENSE [54] 0.8619 0.9503 0.8152 0.8177 0.6569 0.6445 0.5599 0.3476 0.8986 0.8171 0.7792 0.7408
PAWCS [55] 0.8152 0.9397 0.8137 0.8938 0.7764 0.6588 0.4152 0.4615 0.8913 0.8324 0.6450 0.7403
C-EFIC [1] 0.7867 0.9309 0.8248 0.5627 0.6229 0.6806 0.6677 0.6207 0.8778 0.8349 0.6275 0.7307
MSCL [26] 0.83 0.87 0.83 0.85 0.80 n/a n/a n/a 0.82 0.80 0.80 n/a
B-SSSR [25] 0.92 0.97 0.93 0.95 0.74 n/a n/a n/a 0.93 0.86 0.87 n/a

Supervised:
FgSegNet v2 [34] 0.9904 0.9978 0.9971 0.9951 0.9961 0.9336 0.9739 0.9862 0.9955 0.9938 0.9727 0.9847
BSUV-Net 2.0 [58] 0.8844 0.9620 0.9004 0.9057 0.8263 0.7902 0.5857 0.7037 0.9562 0.8932 0.8174 0.8387

4.3 LASIESTA dataset

The LASIESTA dataset2 [12] is composed of 48 videos grouped in 14 categories,
for a total of 18 425 video frames. All frames are provided with ground truth
pixel labels, with a specific label for pixels associated to stopped moving objects
which are excluded from the F-measure computation. We provide in Table 2 the
average F-measure results of the proposed model for all 14 categories. Out of the
48 videos of the dataset, 4 videos are taken with a moving camera (categories
IMC and OMC), and 24 videos include simulated camera motion (categories
ISM and OSM). These 28 videos which include real or simulated camera mo-
tion are very difficult for existing background subtraction models and to our
best knowledge, no paper has ever published category-wise evaluation results
for these videos. In order to allow a comparison with these published results, we
therefore also provide the average F-measure over the 10 categories showing only
videos taken from a fixed camera. We observe that the proposed model performs
slightly better than available unsupervised algorithms on static scenes, and with
a significant improvement on scenes where the camera is moving.

4.4 BMC 2012 dataset

The BMC dataset3[60] contains 9 videos showing real scenes taken from static
cameras and including the following challenges: shadows, snow, rain, presence
of trees or big objects. Three of these sequences are very long (32 965, 117 149
and 107 815 frames). For fair comparison with other published results for this
dataset, we provide the F-measure results for our model obtained using the the
usual F-measure definition described in 4.3, but also the results obtained using
the executable evaluation tool provided with the dataset which does not use
the same definition of the F-measure [60]. We compute SuBSENSE and PAWCS

2 https://www.gti.ssr.upm.es/data/
3 http://backgroundmodelschallenge.eu/

http://jacarini.dinf.usherbrooke.ca/results2014/1158/
https://www.gti.ssr.upm.es/data/
http://backgroundmodelschallenge.eu/
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Table 2. Average per category of video F-measures on LASIESTA
(sources : [12],[3], authors experiments for PAWCS and SuBSENSE)

static camera moving camera
or simulated motion

Method ISI ICA IOC IIL IMB IBS OCL ORA OSN OSU IMC ISM OMC OSM
Average.
10 categ.

Average.
14 categ.

AE-NE (ours) 0.91 0.88 0.91 0.81 0.92 0.79 0.94 0.80 0.82 0.91 0.83 0.79 0.86 0.89 0.87 0.86
PAWCS [55] 0.90 0.88 0.90 0.79 0.81 0.79 0.96 0.93 0.69 0.82 0.48 0.77 0.43 0.75 0.85 0.78
SuBSENSE [54] 0.90 0.89 0.95 0.65 0.77 0.73 0.92 0.90 0.81 0.79 0.33 0.70 0.31 0.65 0.83 0.73
Cuevas [3] 0.88 0.84 0.78 0.65 0.93 0.66 0.93 0.87 0.78 0.72 n/a n/a n/a n/a 0.81 n/a
Haines [22] 0.89 0.89 0.92 0.85 0.84 0.68 0.83 0.89 0.17 0.86 n/a n/a n/a n/a 0.78 n/a
Maddalena [39] 0.95 0.86 0.95 0.21 0.91 0.40 0.97 0.90 0.81 0.88 n/a n/a n/a n/a 0.78 n/a
Maddalena [38] 0.87 0.85 0.91 0.61 0.76 0.42 0.88 0.84 0.58 0.80 n/a n/a n/a n/a 0.75 n/a

results on this dataset and provide published evaluation results for other models
in 3.

Table 3. Comparison of top unsupervised BGS algorithms according to the video
F-measure on BMC 2012

Method
Video
001

Video
002

Video
003

Video
004

Video
005

Video
006

Video
007

Video
008

Video
009

Average
9 videos

F-measure (as defined in equation 13)
AE-NE (ours) 0.81 0.72 0.78 0.78 0.60 0.73 0.32 0.84 0.77 0.71
PAWCS [55] 0.70 0.58 0.85 0.72 0.27 0.79 0.58 0.74 0.80 0.67
SuBSENSE [54] 0.70 0.62 0.83 0.69 0.21 0.76 0.53 0.68 0.83 0.65

F-measure (using BMC evaluation tool)
AE-NE (ours) 0.90 0.86 0.89 0.89 0.80 0.87 0.51 0.92 0.89 0.84
PAWCS [55] 0.86 0.77 0.93 0.86 0.66 0.89 0.79 0.87 0.90 0.84
SubSENSE [54] 0.85 0.80 0.92 0.85 0.68 0.87 0.75 0.84 0.91 0.83
DeepPBM [17] 0.73 0.86 0.94 0.90 0.71 0.81 0.70 0.76 0.69 0.78
G-LBM [48] 0.73 0.85 0.93 0.91 0.71 0.85 0.70 0.76 0.63 0.79
MSCL-FL [26] 0.84 0.84 0.88 0.90 0.83 0.80 0.78 0.85 0.94 0.86
B-SSSR [25] n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.88

We remark that the F-measure associated to the proposed model is signifi-
cantly below the state of the art on video 007. This video includes a sequence
showing a train passing on the right lane and occupying a large part of the
image (Table 3, last row). As noted earlier, the proposed model is prone to over-
fitting when large foreground objects appear to be static in a video, which is
the case here due to the uniform texture of the train and leads to the train
being integrated to the background. Despite this issue, the proposed model gets
a competitive average F-measure on the dataset. It also improves upon the state
of the art on videos 001 and 008.

4.5 Non-video image datasets : Clevrtex, ObjectsRoom,
ShapeStacks

The proposed model, which does not use any temporal information, can be
adapted to perform background reconstruction and foreground segmentation on
some image datasets which are not extracted from video sequences. We have
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tested this approach on three synthetic images datasets : Clevrtex4 [30], ShapeS-
tacks5, [21] and ObjectsRoom6 [28]. We use on ShapeStacks and ObjectsRoom
the same preprocessing as in [16]7. Although each image of these datasets shows
a different background, the model is able to recognize that all the backgrounds
appearing in a given dataset lie in a low dimensional manifold, which is the
case because they have been generated using the same method. These datasets
are provided with segmentation annotations for each object appearing in the
scenes, which we converted to binary foreground segmentation masks in order
to compute the F-measure of the predicted foreground masks.

We provide in Table 4 the average F-measure obtained on the test sets of
these datasets and in Figure 4 some image samples. Considering that on these
datasets the risk of overfitting is very low and the background complexity is
very high, we substantially increased the number of iterations, which is set to
500 000. We do not use morphological post-processing on the ShapeStacks and
ObjectsRoom datasets, because these images have a very low resolution (64×64).

Table 4. F-Measure on the Clevrtex, ShapeStacks and ObjectsRoom datasets

dataset image size
number of

frames
training set

number of
frames
test set

average
F-measure
on test set

Clevrtex 128× 128 40000 5000 0.78
ObjectsRoom 64× 64 980000 20000 0.84
ShapeStacks 64× 64 217888 46656 0.83

4.6 Computation time

We provide in Table 5 some computation time measurements, obtained using a
desktop computer with an Intel Core i7 7700K@4,2GHz CPU and a Nvidia RTX
2080 TI GPU.

The training time of the autoencoder mainly depends on the size of the
input images and the complexity of the background and is not proportional
to the number of frames of the dataset, which makes this model attractive for
long frame sequences. The model is indeed faster than PAWCS and SuBSENSE
on long videos showing simple backgrounds. On short sequences with complex
backgrounds, PAWCS and SuBSENSE are faster, but fail to predict accurate
foreground masks (cf Table 1, PTZ category and Table 2, categories IMC, ISM,
OMC, OSM).

4 https://www.robots.ox.ac.uk/~vgg/data/clevrtex/
5 https://ogroth.github.io/shapestacks/
6 https://github.com/deepmind/multi_object_datasets
7 https://github.com/applied-ai-lab/genesis

https://www.robots.ox.ac.uk/~vgg/data/clevrtex/
https://ogroth.github.io/shapestacks/
https://github.com/deepmind/multi_object_datasets
https://github.com/applied-ai-lab/genesis
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Fig. 4. Examples of background reconstruction and foreground segmentations on
the datasets Clevrtex (columns 1-4), ObjectsRoom (columns 5-6) and ShapeStacks
(columns 7-8)

Table 5. Computation time of the proposed model, PAWCS and SubSENSE for some
sequences of the CDnet and BMC datasets

sequence name highway Video blizzard zoomin continuous
009 zooomout pan

image size 240x320 288x352 480x720 240x320 480x704
number of frames 1700 107817 7000 1130 1700
background complexity simple simple simple complex complex

computation times (seconds)
AE-NE (proposed model)

- training 173 197 783 2716 14221
- backgrounds
and masks generation 7 578 125 5 37
- total 180 775 908 2721 14258

SuBSENSE 98 7093 1333 68 393
PAWCS 182 13021 2418 150 1013

4.7 Ablation study

In order to assess the impact of the various model features described in this pa-
per, we have implemented several modifications of the proposed model and mea-
sured the average F-measure (FM) of these models on the CDnet2014 dataset.
The results of these experiments are provided in Table 6.

They show that the design of the loss function and the use of the background
noise estimation layer have a substantial impact on the accuracy of the model.
More precisely, performing background reconstruction without using the back-
ground noise estimation has a very negative impact on the categories dynamic
background (FM: 0.078), turbulence (FM: 0.259), pan-tilt-zoom (FM: 0.432)
and low frame-rate (FM: 0.474), but the other categories of the dataset are not
significantly impacted by this modification.

The improvement associated to post-processing is also significant, as already
observed for other unsupervised background subtraction methods [51].
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The model remains competitive on CDnet if the background complexity of
all frames sequence is set to simple, an option which may be considered if com-
putation time is an issue and it is known that the camera is fixed.

Table 6. Evaluation of various ablations of the proposed model

model description average evolution vs
F-measure on the reference
CDnet dataset model

proposed model (reference) 0.7841
modified models :

- no bootstrap weights (wbootstrap
n,i,j set to 1) 0.2771 -64,6 %

- inference without using the background noise
estimation (α2 set to 0) 0.6220 -20.7 %

- wbootstrap
n,i,j set to 1 and α2 set to 0 0.4557 -41,9%

- training with L2 reconstruction loss, α2 set to 0 0,3384 -56,8 %
- inference without morphological post-processing 0.7170 -8.5%
- all backgrounds are considered as simple (τ0 set to 1) 0,7397 -5,6 %

4.8 Image samples

We provide in Figure 5 some samples of background reconstruction, with the
associated predicted foreground mask, and a comparison with foreground masks
obtained using PAWCS and SuBSENSE. Other samples are provided in the
Appendix.

input
frame

foreground
mask

ground truth

predicted
background

AE-NE (ours)

predicted
foreground mask
AE-NE (ours)

predicted
foreground mask

PAWCS

predicted
foreground mask

SuBSENSE

Fig. 5. Examples of background reconstruction and foreground segmentation produced
using the proposed model and comparison with PAWCS and SuBSENSE

5 Conclusion

We have proposed in this paper a new fully unsupervised dynamic background
reconstruction and foreground segmentation model which does not use any tem-
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poral or motion information. It is on average more accurate than available un-
supervised models for background subtraction, significantly improves upon the
state of the art on videos taken from a moving camera and is able to perform
background reconstruction on some non-video image datasets.

Future works include using the proposed model to perform unsupervised
object detection on real world scenes with complex backgrounds.
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6 Appendix

6.1 Autoencoder architecture

The autoencoder is deterministic and takes as input a RGB image of size h×w,
and produces a RGB image (3 channels) and an error estimation map of the
same size (1 channel).

The encoder and decoder structures in the proposed model are computed
dynamically using as input the size (height h and width w) of the input frames
of the dataset. The number of latent variables produced by the encoder is fixed
to 16.

We use a fully convolutional autoencoder architecture, which appears to be
more robust to overfitting than architectures including fully connected layers
or locally connected layers. We add two fixed positional encoding channels as
inputs to all layers of the encoder and the decoder, one channel coding for the
horizontal coordinates, the other one for the vertical coordinates .

The encoder is a sequence of blocks composed of a convolution layer with
kernel size 5, stride 3 and padding equal to 2, followed by a group normalization
layer and a CELU nonlinearity layer. The generator is a symmetric sequence of
blocks composed of transpose convolution layers with kernel size 5 and stride 3
and padding equal to 2 followed by group normalization and a CELU nonlinear-
ity, except for the last layer where the transpose convolution layer is followed by
a sigmoid to generate the final image. The number of layers of the encoder and
the decoder is then equal to 5 or 6 depending on the image size (assuming that
the maximum of the image height and image width is in the range 200− 1000).
The number of channels per convolutional layer is fixed according to Table 7,
depending on the image size and the background complexity.

These channel distributions are motivated by the fact that a larger number of
parameters is required in the generator in order to handle complex backgrounds,
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Table 7. Number of channels for each layer of the encoder and decoder (excluding
positional encoding input channels)

background
complexity

image
size
max(h,w)

Encoder Decoder

simple 200-405 (3,64,160,160,32,16) (16,32,256,256,144,4)
simple 406-1000 (3,64,160,160,160,32,16) (16,32,256,512,256,144,4)
complex 200-405 (3,64,160,160,16,16) (16,16,640,640,144,4)
complex 406-1000 (3,64,160,160,160,16,16) (16,16,640,1280,640,144,4)

but that we have experimentally observed that a large number of channels in the
last layer of the encoder and the first layer of the decoder increases the risk of
overfitting on foreground objects, so that reducing this number for long training
schedule is necessary to improve the robustness of the auto-encoder with respect
to the risk of overfitting. For example, we have measured that increasing the
numbers of channels in the last hidden layer of the encoder and first hidden
layer of the decoder to 160 and 256 leads to de 2,3 % degradation of the average
F-Measure on the CDnet dataset.

For non-video dataset experiments, which handle small images, we use a
smaller stride, set to 2 instead of 3. The autoencoder architectures for 64 × 64
images (ShapeStacks and ObjectRooms datasets) and 128×128 images (Clevrtex
dataset) are described in Table 8 and 9:

Table 8. autoencoder architecture for 64× 64 images

Encoder

Layer Size Ch Stride Norm./Act.

Input 64 3
Conv 5× 5 32 64 2 GroupNorm/CELU
Conv 5× 5 16 160 2 GroupNorm/CELU
Conv 5× 5 8 320 2 GroupNorm/CELU
Conv 5× 5 4 160 2 GroupNorm/CELU
Conv 4× 4 2 16 2 GroupNorm/CELU
Conv 2× 2 1 16 1 GroupNorm/CELU

Decoder

Layer Size Ch Stride Norm./Act.

Input 1 16
Conv Transp 2× 2 2 16 1 GroupNorm/CELU
Conv Transp 4× 4 4 640 2 GroupNorm/CELU
Conv Transp 5× 5 8 1280 2 GroupNorm/CELU
Conv Transp 5× 5 16 640 2 GroupNorm/CELU
Conv Transp 5× 5 32 144 2 GroupNorm/CELU
Conv Transp 5× 5 64 4 2

Sigmoid 64 4

Table 9. autoencoder architecture for 128× 128 images

Encoder

Layer Size Ch Stride Norm./Act.

Input 128 3
Conv 5× 5 64 64 2 GroupNorm/CELU
Conv 5× 5 32 320 2 GroupNorm/CELU
Conv 5× 5 16 640 2 GroupNorm/CELU
Conv 5× 5 8 640 2 GroupNorm/CELU
Conv 5× 5 4 320 2 GroupNorm/CELU
Conv 4× 4 2 16 2 GroupNorm/CELU
Conv 2× 2 1 16 1 GroupNorm/CELU

Decoder

Layer Size Ch Stride Norm./Act.

Input 1 16
Conv Transp 2× 2 2 16 1 GroupNorm/CELU
Conv Transp 4× 4 4 320 2 GroupNorm/CELU
Conv Transp 5× 5 8 640 2 GroupNorm/CELU
Conv Transp 5× 5 16 1280 2 GroupNorm/CELU
Conv Transp 5× 5 32 640 2 GroupNorm/CELU
Conv Transp 5× 5 64 144 2 GroupNorm/CELU
Conv Transp 5× 5 128 4 2

Sigmoid 128 4
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6.2 Implementation details

The proposed model is implemented using Python and the Pytorch framework.
The associated code will be made available on the Github platform. Optimiza-
tion is performed using the Adam optimizer with a learning rate of 5.10−4 and
batch size equal to 32. The learning rate is divided by 10 when the number of
optimization iterations reaches 80% of the total number of iterations. The same
set of hyperparameters is used for the experiments on CDnet, LASIESTA and
BMC datasets, i.e. . β = 6, r = 75, τ0 = 0.24, τ1 = 0.25, α1 = 96/255, α2 = 7,
Neval = 2000, Beval = 480, Nsimple = 2500, Ncomplex = 24000, Ecomplex = 20.
These hyperparameter values as well as the channel distributions described in
Table 7 were found empirically to give good results, although a full hyperparam-
eter and architecture search has not been performed and is beyond the scope of
this paper.

For non-video dataset experiments, which take small images (64 × 64 and
128 × 128) as inputs, the batch size and learning rate are increased to 128 and
2.10−3, the number of iterations Ncomplex is set to 500 000 and no morphological
post-processing is performed on 64 × 64 images. The other hyperparameters
remain the same.

6.3 Additional image samples

We provide in figures 6 − 12 additional samples of background reconstruction
and foreground segmentation obtained using the proposed model.
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Fig. 6. Examples of background reconstruction and foreground segmentation on the
CDnet 2014 dataset produced using the proposed model and comparison with PAWCS
and SuBSENSE
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Fig. 7. Examples of background reconstruction and foreground segmentation on the
CDnet 2014 dataset produced using the proposed model and comparison with PAWCS
and SuBSENSE
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Fig. 8. Examples of background reconstruction and foreground segmentation on the
LASIESTA dataset produced using the proposed model and comparison with PAWCS
and SuBSENSE
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Fig. 9. Examples of background reconstruction and foreground segmentation on the
BMC 2012 dataset produced using the proposed model and comparison with PAWCS
and SuBSENSE



26 B. Sauvalle et al.

input
frame

ground
truth
object

segmentation

predicted
background

predicted
foreground

mask

Fig. 10. Examples of background reconstruction and foreground segmentation on
Clevrtex dataset
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Fig. 11. Examples of background reconstruction and foreground segmentation on Ob-
jectsRoom dataset
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Fig. 12. Examples of background reconstruction and foreground segmentation on
ShapeStacks dataset
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