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Abstract

Due to the lack of training labels and the difficulty of
annotating, dealing with adverse driving conditions such
as nighttime has posed a huge challenge to the perception
system of autonomous vehicles. Therefore, adapting knowl-
edge from a labelled daytime domain to an unlabelled night-
time domain has been widely researched. In addition to la-
belled daytime datasets, existing nighttime datasets usually
provide nighttime images with corresponding daytime ref-
erence images captured at nearby locations for reference.
The key challenge is to minimize the performance gap be-
tween the two domains. In this paper, we propose LoopDA
for domain adaptive nighttime semantic segmentation. It
consists of self-loops that result in reconstructing the in-
put data using predicted semantic maps, by rendering them
into the encoded features. In a warm-up training stage,
the self-loops comprise of an inner-loop and an outer-
loop, which are responsible for intra-domain refinement
and inter-domain alignment, respectively. To reduce the im-
pact of day-night pose shifts, in the later self-training stage,
we propose a co-teaching pipeline that involves an offline
pseudo-supervision signal and an online reference-guided
signal ‘DNA’ (Day-Night Agreement), bringing substantial
benefits to enhance nighttime segmentation. Our model
outperforms prior methods on Dark Zurich and Nighttime
Driving datasets for semantic segmentation. Code and
pretrained models are available at https://github.com/fy-
vision/LoopDA.

1. Introduction
Deep neural networks [28–30, 42] have shown tremen-

dous potential in semantic segmentation [6,32,34,58] tasks.
However, most recent advances in this field seek to obtain
higher model accuracies only based on training data under
favourable viewing conditions. This is likely to hurdle the
promotion of deep neural networks for applications such as
visual perception for autonomous driving, where the robust-
ness of trained models in all weather and illumination con-

ditions is required. Models that are well trained on sunny
daytime datasets fail to produce equally satisfactory results
when applied to images captured in adverse conditions. Due
to the lack of publicly available nighttime dataset with la-
bels and the difficulty of creating annotations for nighttime
images, semantic segmentation at nighttime remains chal-
lenging.

In an attempt to close the performance gap, unsupervised
domain adaptation (UDA) approaches [4, 12, 16, 35, 43] are
becoming popular by taking advantage of labelled daytime
data and obtaining models with adaptable knowledge on
night domain. However, it still remains an open challenge
to close the domain gap between day and night data.

Reconstruction-based approaches [5, 46, 47, 60] have
been proven to be promising for UDA segmentation. To
close the domain gap, they reconstruct either input or cross-
domain translated images from the shared encoded feature
map. However, in this way, the domain gap is only tackled
on feature encoder level since gradient computation for the
image reconstruction loss does not reach the segmentation
head. Hence, we point out that segmentation outputs should
also be involved in such reconstruction-based methods.

To this point, we assume that for semantic segmentation,
there is an intrinsic bidirectional connection between the in-
put image and its segmentation output. In other words, if a
pixel region in the RGB input is correctly assigned to a cer-
tain semantic class, this class distribution should in some
way correspond to a specific pattern back in the input space,
which leads to such semantic prediction. Therefore, when
the semantic output is involved in creating an image, the
resulting image should appear similar to the input image
regarding the class-specific textures. Otherwise, the seman-
tic predictions are likely to be wrong and should be further
fine-tuned by a reconstruction loss. However, given that
semantic outputs are only probability maps, it makes less
sense to utilize them alone for image reconstruction without
combining the encoded latent features. Therefore, to make
the best use of the input data and the segmentation, we pro-
pose to construct a self-loop that can associate the encoded
latent feature incorporating the segmentation output to the
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input image. Particularly, this provides clues for the seg-
mentation refinement of unlabelled target data by learning
from the self-loop of the labelled source data.
Additionally, it also comes to the question of how to best
utilize the predicted semantic maps of the daytime reference
data. Since directly applying their predicted static labels to
guide nighttime segmentation will result in wrong predic-
tions due to the view changes.
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Figure 1. A systematic overview of LoopDA framework. Pre-
dicted semantic maps are refined by being rendered into the en-
coded features in different levels of self-loops. To condition our
networks, self-loops of the daytime domain are trained with labels,
thus the nighttime segmentation outputs get rectified accordingly
through the self-loops. To deal with day-night pose shifts, offline
and online co-teaching is performed for self-training.

Given the aforementioned aspects, in this work we propose
LoopDA, a novel framework for domain adaptive nighttime
semantic segmentation. It contains two different levels of
closed loops (inner and outer) that focus on reducing the
domain discrepancy between day and night. Our contribu-
tions can be summarized as follows:

• We introduce a LoopDA framework. It consists of
self-loops where the learning of image segmentation
benefits from reconstructing the input data using en-
coded latent features rendered by the predicted se-
mantic maps. In a warm-up training stage, the self-
loops comprise of an inner-loop responsible for intra-
domain refinement, and an outer-loop taking care of
inter-domain alignment to reduce the domain gap;

• For the self-training stage, we propose a novel pseudo-
supervision strategy to allow two co-supervision sig-
nals to refine the model prediction for nighttime in-
puts. These include an offline signal derived from pre-
dictions of night training images, and an online signal
‘DNA’ encouraging the identical semantic predictions
of static classes between nighttime and their daytime
reference image for pseudo-labelling. This tackles the
pose shifts without introducing additional computation
steps such as pose estimation and depth warping;

• Our trained models attain state-of-the-art perfor-
mances on benchmark datasets for UDA semantic seg-
mentation at nighttime.

2. Related Work

2.1. Reconstruction based training

Autoencoding [2, 3] is the basic format of unsupervised
learning, which focuses on reconstructing the input data
to learn its latent representations. It is a fundamental
building block of many popular deep learning based ar-
chitectures [6, 15, 27, 34, 38, 55, 59]. Interestingly, Labe-
lEnc [19] introduces a label encoding function, mapping
the ground-truth labels into latent embedding via an autoen-
coder, approximating the “desired” intermediate representa-
tions and acting as an auxiliary supervision to boost the ob-
ject detection task. Additionally, the most recent advance-
ment [20,50] in the field of representation learning also indi-
cates that autoencoding is a meaningful step for learning vi-
sual features. For instance, MAE [20] claims that having an
image reconstruction pretraining stage using masked inputs
can produce an effective image encoder for image classifi-
cation tasks. Furthermore, MaskFeat [50] suggests that it is
also promising to reconstruct the features (e.g., HOG [11])
of the masked inputs for similar tasks. Unlike from image
classification, semantic segmentation task requires various
representations for different pixel locations in the feature
map instead of predicting only one overall class for an im-
age. Regarding this, image reconstruction driven by the pre-
dicted label map is introduced in [53] to fine-tune the seg-
mentation results on cross-domain data. However, predicted
labels are from probability outputs and do not contain RGB
information of the input data. Therefore, image reconstruc-
tion only from labels makes less sense without involving the
encoded latent features. To this end, our method constructs
self-loops of the input data using latent features rendered by
the predicted semantic labels, thus manipulating the latent
space in a more comprehensive way.

2.2. Style transfer based training

Since image style translation approaches [23, 33, 59]
based on GANs [1,18,24,25,36] can be trained in an unsu-
pervised manner, they have been widely adopted in solving
UDA problems. In [22, 54], target-like images transferred
from the source domain are used to train a segmentation
model that attains better performance towards target domain
data. The concept of image style translation has been well
accepted in nighttime semantic segmentation. In earlier
works [41, 44, 45, 48], image domain translation modules
are adopted either to augment nighttime into daytime styles
or vice versa to better align the differences in training data
appearance. However, unlike other scenarios of applying
image style translation, domain transfer between day and
night data is more challenging, e.g., dealing with the dark
invisible regions from night images or preserving the use-
ful semantic contents in daytime images during the domain
transfer. Therefore, in our outer loop training, we propose



a semantic map rendering method to better assist the day-
night image transfer while enabling the nighttime semantic
map to be fine-tuned. The outer loop of LoopDA is inspired
by the training philosophy of CycleGAN [59], however, we
point out that CycleGAN is built for image translation while
LoopDA focuses on learning domain agnostic representa-
tions from the encoder and semantic classifier, and refines
nighttime predictions through semantic rendering.

2.3. Daytime guidance for nighttime segmentation

Given the challenging illumination condition at night-
time, it is difficult to segment dark regions such as sky, trees
and buildings, etc. Therefore, it is reasonable that the seg-
mentation is guided by daytime reference images. In [51],
a relighting network is first used as pre-processing mod-
ule to narrow the illumination gap between all input data,
and then optimize the nighttime predictions using static
maps from daytime re-weighted by prediction probabili-
ties. However, this requires the relighting network to be
coupled even for post-training inference. Additionally, di-
rectly applying daytime static masks for nighttime super-
vision can be problematic because the pose changes lead
to wrong prediction. On top of [44], [45] introduces geo-
metrical alignment by roughly estimating the camera mo-
tion between daytime reference and nighttime images, and
warps daytime predictions to fit the nighttime ones using
Monodepth2 [17]. This mainly tackles the pose change
but the estimated poses are not accurate because of the do-
main gap. Moreover, it requires multiple processing steps
only for geometrical alignment. To prevent the nighttime
data from overfitting to daytime label guidance, we pro-
pose ‘DNA’, a technique that gradually refines nighttime
segmentation simply by considering common static predic-
tions between daytime and nighttime as an online supervi-
sion signal, which better avoids the model to be misguided
by pose-shifted daytime reference labels.

3. Proposed Method

Before describing our framework and learning steps, we
introduce the input data for training. The training sets con-
sist of daytime source domain images xd ∈ X d with cor-
responding per-pixel semantic annotations yd ∈ Yd, and
unlabelled images xn ∈ Xn from the nighttime target do-
main. Additionally, each xn comes with an unlabelled day-
time reference image xudref . The goal is to learn transferable
semantic knowledge from the labelled daytime domain to-
wards unlabelled nighttime domain with help of X ud

ref .

3.1. Self-loops on cross-domain levels

In this section, we propose LoopDA, providing a new
perspective of domain adaptation for nighttime semantic
segmentation. It builds inner and outer self-loops back

to the input data using feature maps rendered by seman-
tic outputs, gradually refining nighttime segmentation re-
sults guided through self-loops with labelled daytime data.
For self-training, other than the offline pseudo-label gen-
eration, we propose a novel ‘DNA’ strategy, which takes
advantage of reference daytime guidance but efficiently re-
duces the misguidance from pose-shifted wrong labels. Our
framework mainly consists of four sub-networks: a feature
encoder Enc, a semantic classifier F , a daytime decoder
Decd, and a nighttime decoder Decn incorporated with se-
mantic rendering layers.

3.1.1 Loop construction for labelled daytime domain

For the labelled daytime domain, the purpose of loop con-
structions is to learn a model that is able to build consis-
tent looped mapping between an input xd and the ground-
truth yd tuned by full supervision, setting the foundation
for model adaptability towards nighttime domain. This in-
volves an inner loop and an inter-domain outer loop in one
training iteration. As shown in Fig. 2(a), xd is passed to
Enc and further to F to obtain a deep latent feature zd =
Enc(xd), and a probability map pd = softmax(F (zd)),
respectively. Since yd is used to supervise pd, we calculate
the cross-entropy loss,

Ld
seg =

∑
h,w

∑
c

−yd(c,h,w) log(p
d)(c,h,w) (1)

where h, w and c are height, width and number of semantic
classes, respectively.
Thus, any pixel in RGB space is associated with a particu-
lar semantic category in probability space. The other way
around, we want the model to learn an awareness that, if
semantic predictions in pd are all correct, they can also be
mapped back to the input xd, reflecting different textures
or patterns for the corresponding semantic classes. Given
the appearance diversity of intra-class patterns, it makes
less sense to recover xd simply based on pd elements that
are merely probabilities. Therefore, we propose a domain-
specific image decoder Decd with semantic rendering lay-
ers where pd is incorporated into zd for image recovery.
Fig. 2(d) presents details of our image decoder: pd is first
encoded by several fully-convolutional layers, and the re-
sulting semantic features are multiplied layer-wisely by the
raw features acquired from zd decoder layers. Additionally,
the raw features are combined into the rendered features us-
ing a skip connection following [21], such that semantically
rendered features do not override and spatial information
in zd can be preserved. To close the intra-domain self-
loop, Decd is encouraged to reproduce xd constrained by
the inner-loop loss for image reconstruction,

Ld
inner = ||Decd(zd, pd)− xd||1 (2)
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Figure 2. The scheme of training LoopDA. A self-loop starts with an input image, and loops back to the input itself. The self-loops are
constructed in two levels: intra-domain inner loop and inter-domain outer loop. With joint training on daytime and nighttime inputs, the
model implicitly learns to map or refine each RGB pixel to its correct semantic assignment.

To ensure that pd is accurate enough for rendering, we fuse
pd and yd for fine-grained rectification via linear combi-
nation (details in Supplementary). Given that daytime is
a labelled domain, the aim is to teach Enc, F and Decd

for self-loop reconstruction with help of ground-truths yd,
therefore, it’s unnecessary to let the fused pd be tuned in the
self-loop, and we detach it before semantic rendering hap-
pens in Decd.
Meanwhile, pd, together with zd, goes into an inter-domain
outer loop (blue path in Fig. 2(a)). Given that image transla-
tion has been known to be a meaningful component for day-
night domain adaptation [10, 48], hence, we pass pd and zd

to a nighttime decoder Decn to obtain a nighttime version
of xd, i.e., xd2n = Decn(zd, pd), which is learned by an
adversarial loss,

Ld2n
adv = (Dn(xn))2 + (1−Dn(xd2n))2 (3)

where Dn is the nighttime domain discriminator, which is
omitted from Fig. 2 for simplicity. The challenging part of
image translation from day to night is that clear contents
such as building, trees and sky in xd can become invisible
in xd2n as Decn learns to mimic dark night appearance.
Hence, the semantic rendering in our Decn is able to help
preserve daytime contents during translation. Moreover, in
order to improve the perceptual quality of xd2n, we intro-
duce a perceptual consistency loss between xd and xd2n as
follows,

Ld
percep = λz||zd2n − zd||1 + λlLPIPS(x

d2n, xd) (4)

Ld
percep in Equation 4 places constraints from two different

perspectives and comprises two parts: L1-norm semantic
consistency loss between zd and zd2n obtained based on
the shared encoder Enc, and LPIPS [57] loss between xd

and xd2n to measure structural similarity.
Moreover, in this inter-domain outer loop, we expect Enc
and F to learn domain agnostic knowledge, thus treating
xd and xd2n semantically equivalent to reduce the domain-
specific bias. Therefore, we also compute supervised seg-
mentation loss for the cross-domain semantic prediction
pd2n,

Ld2n
seg =

∑
h,w

∑
c

−yd(c,h,w) log(p
d2n)(c,h,w) (5)

Finally, to further enforce Enc and F to produce domain-
indistinguishable representations of input data, we encour-
age that Decd, taking zd2n and pd2n, closes the inter-
domain self-loop towards xd, which meansDecd(zd, pd) ≈
xd ≈ Decd(zd2n, pd2n). This can be described by the outer
loop loss,

Ld
outer = ||Decd(zd2n, pd2n)− xd||1 (6)

Similar to Equation 2, pd2n is fused by yd and its gradient
tracking is also disabled for semantic rendering. The in-
ner and outer loop training on the labelled daytime domain
builds up a prototype for universal and robust representation
between day and night, preparing the network parameters to
adapt to the unlabelled nighttime data.



3.1.2 Loop adaptation for nighttime domain

Unlabelled nighttime data. Supported by the established
daytime loops, in the same training iteration, we also pass
xn to the shared networks for self-loop construction. Fol-
lowing a dual data flow of daytime domain, we first build
the inner loop (see Fig. 2(b)) by inner loss Ln

inner similar to
Equation 2, forcing Decn(zn, pn) ≈ xn. However, instead
of stopping gradient computation in semantic rendering, for
the nighttime domain we always keep pn fine-tuned during
loop construction. In other words, if pn is not able to help
zn reconstruct xn by semantic rendering, it will get recti-
fied towards a correct prediction based on the knowledge
adapted from the daytime loops.
Like for it’s labelled daytime counterpart, for the unlabelled
nighttime domain, to enhance the domain-agnostic property
of Enc and F , we also conduct an outer loop to map xn to
xn2d and back to xn (i.e., xn to xn2d to xn) assisted by
Decd and Decn. Slightly different from Equation 3, in this
process, the night to day translation xn2d is generated us-
ing an adversarial loss Ln2d

adv by considering not only xd but
also xudref as real. The reason is that, in some cases, the
camera locations for xn and xudref are close enough, so that
some static objects in the dark regions of xn can be better
recovered in xn2d through example guided image transla-
tion. Thus, based on a daytime domain discriminator Dd,
Ln2d
adv is given as,

Ln2d
adv = (Dd(xd))2 + (Dd(xudref ))

2 + (1−Dd(xn2d))2

(7)

In addition, to preserve semantic consistency and structural
similarity between xn and xn2d, a perceptual loss Ln

percep

is also computed following Equation 4.
To close the outer self-loop, we want Enc and F to be in-
variant to any domain shift from night to day, i.e., the in-
termediate outputs such as zn2d and pn2d should be able to
help Decn recover xn in line with the inner loop, mean-
ing Decn(zn, pn) ≈ xn ≈ Decn(zn2d, pn2d). This is
supported by the outer loop loss Ln

outer similar to Equa-
tion 6. While minimizing Ln

outer, pn2d is fine-tuned to
produce more reasonable prediction. Most importantly,
as Fig. 2(b) shows, the gradient computation of the outer
loop loss Ln

outer can be traced back to all sub-networks in
LoopDA. Hence, they are all optimized accordingly to align
with the knowledge learned from the outer loop of the la-
belled daytime domain. With constructed inner and outer
self-loops, the domain gap is gradually reduced via intra-
domain refinement and inter-domain alignment.
Unlabelled daytime reference data For the attached day-
time reference images xudref that are unlabelled, we just build
an inner loop in Fig. 2(c) with loss Lud

inner to refine pudref
guided by the labelled daytime data {xd, yd}.
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Figure 3. An illustration of the pseudo-supervision strategy in
LoopDA. To prevent pn to be misguided by the pose-shifted
ŷudstatic, the co-teaching involves an online signal based on Day-
Night Agreement (DNA) of predicted labels and an offline signal
from the warm-up model.

3.2. Reference guided self-training

We train LoopDA adopting the popular stage-wise
pipeline in domain adaptation [8, 14, 26, 31, 37, 61, 62], i.e.,
using a warm-up stage and a self-training stage. The warm-
up stage is described in Sec. 3.1, on top of which, we intro-
duce segmentation losses L̂ud

seg and L̂n
seg for unlabelled data

xudref and xn based on pseudo-labels during the self-training
stage.
To improve the quality of daytime reference label for bet-
ter guidance on nighttime domain, as Fig. 2(c) shows, we
compute L̂ud

seg as follows,

L̂ud
seg =

∑
h,w

∑
c

−ŷud(c,h,w) log(p
ud
ref )(c,h,w) (8)

where ŷud is acquired offline following [31].
Next, we present our proposed self-training strategy for
nighttime domain. Due to the fact that most static ob-
jects reflect light weakly at night, which makes segmen-
tation quite challenging. To tackle this issue, we propose
to take the best advantage of the static labels from each
daytime reference image but also prevent pn to learn from
wrong labels due to pose shift. As illustrated in Fig. 3,
given the current daytime reference prediction pudstatic, we
filter out all pixel locations that are associated with dy-
namic classes in both pn and pudstatic, obtaining a static la-
bel map ŷudstatic on-the-fly. In parallel, we also generate
ŷDNA = ŷudstatic ∩ O(argmax(pn)) online, indicating the
Day-Night Agreement (DNA) in predicted static labels (O
is one-hot operator). ŷDNA is less affected by pose shifts,
meanwhile, the pixel regions that are double checked by
‘DNA’ have larger chance to be correct. A question thus
rises on how to choose between ŷudstatic and ŷDNA as the
online reference static label for pn. Intuitively, if there
is a very small camera pose change, ŷudstatic is preferred,
otherwise ŷDNA should take the charge. We observe that
semantic categories such as traffic signs, traffic lights and



poles are quite sensitive to camera pose shift, which are
referred to as shift sensitive classes (SSC). Following this
clue, between the derived label maps ln = argmax(pn)
and ludref = argmax(pudref ), we compute a label overlapping
ratio (LOR) for SSC,

LOR =
2
∑

i∈N 1{lni ∈ SSC} · 1{ludref,i ∈ SSC}∑
i∈N 1{lni ∈ SSC}+ 1{ludref,i ∈ SSC}

(9)

where N = h · w, and 1 is an indicator checking whether
the current label pixel belongs to SSC. Therefore, if LOR
exceeds a certain threshold τ , we are then able to con-
firm that there is a very small pose shift between xn and
xudref , meaning that ŷudstatic instead of ŷDNA should be ap-
plied on pn as the online supervision signal, which is given

by ŷnon =

{
ŷudstatic, LOR ≥ τ
ŷDNA, LOR < τ

. This empowers reliable

static label generation without introducing additional cam-
era pose estimation and depth warping modules. Combined
with the offline label ŷnoff containing dynamic classes and
SSC from warm-up stage, we compute L̂n

seg by co-teaching
of these two supervision signals as follows,

L̂n
seg =

∑
h,w

∑
c

−[(ŷnoff + ŷnon) log(p
n)](c,h,w) (10)

So far, the mentioned losses can be summarized into five
categories for all data domains: segmentation losses, inner
loop and outer loop losses, adversarial losses and perceptual
losses. Therefore, minimizing the total loss corresponds to
solving the optimization problem to look for Enc? and F ?:

Enc?, F ?, (Dec?) = argmin
Enc,F,Dec

LLoopDA (11)

where LLoopDA =
∑
λiLi is a weighted sum, and i stands

for the specific loss from Sec. 3.1 and Sec. 3.2 by name.

4. Experiment and Analysis
4.1. Datasets and implementation details

Cityscapes [9] is adopted as our labelled daytime source
domain. For our domain adaptation task we take its training
set containing 2975 pixel-wisely annotated images taken in
urban scenes with 19 categories. The original image reso-
lution is 2048×1024.
Dark Zurich [44] is considered as our unlabelled night-
time target domain, whose training set contains unlabelled
images captured under daytime, twilight and nighttime con-
ditions with a resolution of 1920×1080. To keep consistent
with previous papers [51, 52], we take the 2416 unlabelled
night-day image pairs for training. There are also 201 night-
time images with pixel-wise annotation from Dark Zurich
dataset, which are separated into validation set (50 images)

and test set (151 images), respectively, but the ground-truth
of the latter is not publicly available. Evaluation results on
the test set can be attained by submitting the model predic-
tions to the provided website by [44].
Nighttime Driving [10] contains 50 nighttime images with
the same resolution as Dark Zurich, which are pixel-wisely
annotated following Cityscapes label format. We also eval-
uate LoopDA based on this dataset.
Our implementation of LoopDA is based on Pytorch [39]
on an NVIDIA Quadro RTX 8000 with 48 GB memory. We
use ImageNet [13] pretrained ResNet-101 [21] backbone
as feature encoder E and adopt PSPNet [6] for semantic
segmentation. During training, our first downscale the orig-
inal input by a factor of 2 and take 512× 496 crops for both
domains and set batch size to 2. We use the SGD [40] opti-
mizer with a default learning rate of 2.5×10−3, momentum
0.9, and weight decay 5 × 10−4 to train our segmentation
network. We set the LOR threshold τ to 0.5, and set λseg =
1.25, λinner = λouter = 1, λadv = 0.1, λpercep = 1, and in
Equation 4 we set λz = 0.1 and λl = 0.25.

4.2. Model evaluation

Following [51], we train LoopDA using PSPNet as the
segmentation network, and evaluate our model by sub-
mitting the results to the online evaluation site of Dark
Zurich [44]. As a common practice, we use mean inter-
section over union (mIoU) as the final evaluation metric
and also IoU for each class. As can be observed in Ta-
ble 1, comparing with the state-of-the-art, our model attains
46.8 mIoU, outperforming DANNet by 1.6. Furthermore,
we identify that a new milestone can be further reached
by having an extra knowledge distillation training stage
using ResNet-101 [21] pretrained backbone based on
SimCLRv2 [7] following [56]. This brings the best score
of LoopDA to 50.6 mIoU. Our model is leading at segment-
ing road, sidewalk, car, train, bike as well as challenging
classes at nighttime such as building, vegetation and sky.
Some visual examples are given in Fig. 4.
To draw similar conclusion, we also provide our model re-
sults evaluated on Dark Zurich validation set and Nighttime
Driving test set in Table 2, where LoopDA also demon-
strates impressive results, achieving 37.6 and 49.6 mIoU,
respectively. After an extra distillation stage, the results get
boosted to 38.7 and 54.0 mIoU.

4.3. Ablation study

To better understand how each component of LoopDA
affects the final result, in Table 3 we conduct an ablation
study on Dark Zurich validation set. We take AdaptSeg-
net [49] in row(i) as our baseline approach. Comparing
row(i) and row(ii), we confirm that adding our inner loop
reconstruction only together with semantic rendering can
help refine the nighttime predictions, and this brings a 1.4
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GCMA [44] R 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0

MGCDA [45] R 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5
CDAda [52] R 90.5 60.6 67.9 37.0 19.3 42.9 36.4 35.3 66.9 24.4 79.8 45.4 42.9 70.8 51.7 0.0 29.7 27.7 26.2 45.0

DANNet [51] P 90.4 60.1 71.0 33.6 22.9 30.6 34.3 33.7 70.5 31.8 80.2 45.7 41.6 67.4 16.8 0.0 73.0 31.6 22.9 45.2
LoopDA(ours) P 86.3 46.3 76.1 30.3 22.5 32.5 34.1 34.8 62.6 19.5 84.3 46.6 51.5 73.2 60.7 3.1 73.4 26.2 24.8 46.8

LoopDA‡(ours) P 92.1 63.3 80.3 41.1 13.9 40.8 39.7 41.1 71.3 28.4 85.5 50.2 38.5 78.2 58.5 3.0 77.2 26.5 31.0 50.6

Table 1. Cityscapes-to-Dark Zurich adaptation results evaluated on the test set. We compare the performance of LoopDA with state-of-
the-art methods. In all tables of Sec. 4.2, bold stands for best. Regarding network architectures for semantic segmentation: ‘D’ stands for
Deeplabv2,‘R’ stands for RefineNet and ‘P ’ stands for PSPNet. ‡ means an extra distillation stage on nighttime domain using pretrained
ResNet-101 [21] based on SimCLRv2 [7] as backbone feature extractor.

Input MGCDA DANNet LoopDA (ours) GT

Figure 4. Qualitative comparison with state-of-the-art methods for Cityscapes-to-Dark Zurich adaptation on Dark Zurich validation set.

Method Arch Dark Zurich Night Driving

AdaptSegnet [49] D 20.2 34.5
DMAda [10] R - 36.1
GCMA [44] R 26.7 45.6

MGCDA [45] R 26.1 49.4
CDAda [52] R 36.0 50.9

DANNet [51] P 36.8 47.7
LoopDA(ours) P 37.6 49.6

LoopDA‡(ours) P 38.7 54.0

Table 2. mIoU comparison of Cityscapes-to-Dark Zurich adap-
tation results evaluated on Dark Zurich validation set and Night
Driving test set, respectively. Regarding network architectures
for semantic segmentation: ‘D’ stands for Deeplabv2,‘R’ stands
for RefineNet and ‘P ’ stands for PSPNet. ‡ means an extra
SimCLRv2 [7] distillation stage on nighttime domain.

mIoU performance gain over baseline. This also reveals
that the outer loop plays a crucial role in LoopDA train-
ing, without which the performance drops from 29.5 (see
row(v)) to 22.0 mIoU. Row(iii) and row(v) indicate that in-
ner loop is also a dispensable part in LoopDA, and training
the warm-up stage without the inner loop results in a per-
formance decrease by 3.2 mIoU. Row(iv) shows the result
when no semantic rendering layer is involved in training,

Phase Components mIoU ∆

W
arm

-up
stage

(i).baseline [49] on PSPNet (Ld
seg) 20.6 +0.0

(ii). no outer loop (w/o Lpercep, Ladv , Ld2n
seg , Louter) 22.0 +1.4

(iii). no inner loop (w/o Linner) 26.3 +5.7

(iv). no semantic rendering layers 28.6 +8.0

(v). LoopDA warm-up model 29.5 +8.9

ST
stage

(vi). no ‘DNA’ (without ŷDNA in L̂n
seg) 35.7 +15.1

(vii). LoopDA full configuration (L̂n
seg) 37.6 +17.0

(viii). with extra distillation stage (LoopDA‡) 38.7 +18.1

Table 3. Ablation study for Cityscapes-to-Dark Zurich adaptation
results evaluated on Dark Zurich validation set.

meaning that the output from segmentation head F cannot
get refined with the self-loops. This results in a performance
drop by 0.9 mIoU. Row(vi) reveals the impact of our pro-
posed ‘DNA’ online label generation strategy. If there is no
ŷDNA, the result of the self-training stage decreases from
37.6 (row(vii)) to 35.7 mIoU. Row(viii) suggests that an ex-
tra SimCLRv2 [7] knowledge distillation stage helps with
further improvement, reaching a mIoU of 38.7. More de-
tailed ablation of this part is given in Supplementary.
We also provide ablative analysis in Table 4 to examine
the impact of different τ values for LOR threshold in self-



τ 0.0 0.25 0.5 0.75 1.0

mIoU 35.7 36.4 37.6 37.1 36.9

Table 4. mIoU comparison of applying different τ values for on-
line label generation during self-training stage. Results obtained
on Dark Zurich validation set.

(ours)

Figure 5. Visual comparison of self-training results without intro-
ducing our ŷDNA. pnoverfit gets overfitted on daytime reference
static label ŷudstatic due to the day-night camera pose shift.

training stage. Setting too low τ values (e.g., 0.0 or 0.25)
means that the self-training mainly relies on ŷudstatic, which
is problematic owing to the camera pose shift between day
reference and night inputs. As shown in Fig. 5, compared
to pn based on our proposal, the overfitting issue rises in
pnoverfit when ŷudstatic is dominant. This hinders the model
to learn further from pseudo-labels, obtaining 35.7 and 36.4
mIoU, respectively. However, higher τ values (e.g., 0.75
or 1.0) make ŷDNA play stronger role, which leads to less
sufficient self-training (37.1 and 36.9 mIoU). This verifies
our selection of τ (to be 0.5) in the paper, and indicates that
our ‘DNA’ self-training strategy is a meaningful solution in
dealing with the pose shifted static labels.

4.4. Discussion

Limitations. Although our LoopDA framework demon-
strates impressive performances on benchmark datasets for
domain adaptive nighttime segmentation, we found that
there is still space to improve. First of all, in choosing
between ŷDNA and ŷudstatic for self-training, we rely on
SSC, however, there can also be close day-night image pairs
where SSC do not exist. In this case, the static labels are not
fully utilized because ŷudstatic is dismissed. Secondly, for the
task of image translation, there are powerful GAN architec-
tures that ensure higher fidelity outputs, but require much
more memory for training. Therefore, a trade-off between
GAN image quality and memory consumption should be
made. Furthermore, as a basic proof of concept, we fol-
low [31] for offline pseudo-label generation, which can be
replaced by more advanced pseudo-labelling techniques in
the field of domain adaptation for better mIoU. These as-
pects will be further explored as future work.
Chances. We point out that there exists potential of ex-
tending ŷDNA obtained from UDA to other research areas.
For instance, one possible direction can be image retrieval.

Figure 6. Examples of retrieved day-night training pairs based on
our ŷDNA, satisfying condition LOR ≥ 0.5.

Day-night image retrieval has been an open challenge since
acquiring domain-robust descriptors for this scenario is dif-
ficult, let alone the problematic dynamic objects that lead
to mismatches. However, we conduct a simple experiment
in Fig. 6 by saving day-night image pairs retrieved based
on our ŷDNA with LOR ≥ 0.5. Interestingly, we observe
that these obtained cross-domain image pairs are captured
almost at the same location. To this point, we argue that
using larger τ to check LOR between cross-domain image
pairs can provide a new approach for image retrieval. A
further application can be 3D reconstruction given a cross-
domain dataset, where similar scenes can be better matched
using ŷDNA.

5. Conclusion

In this work, we propose LoopDA for domain adaptive
nighttime image segmentation. It constructs different levels
of self-loops, starting with the inputs and ending up with an
aim to recover the inputs from the encoded latent features
rendered by the segmentation outputs. In this way, the intra-
domain inner loop enables the semantic predictions to be re-
fined, and the inter-domain outer loop enforces the learned
cross-domain knowledge to be better aligned. For self-
training, to alleviate the misguidance of pose-shifted static
labels produced by the daytime reference images, we pro-
pose a co-teaching mechanism. It allows an offline signal,
together with an online ‘DNA’ signal that checks the agreed
day-night predictions for pseudo-supervision on nighttime
domain. Our self-training strategy makes direct use of the
network outputs without introducing extra operation mod-
ules, which is easy to ensemble for other similar tasks. The
efficacy of LoopDA is verified through extensive experi-
ments on benchmark datasets, attaining state-of-the-art per-
formance for adapting nighttime semantic segmentation.
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