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Abstract

Every day, humans perform many closely related ac-
tivities that involve subtle discriminative motions, such as
putting on a shirt vs. putting on a jacket, or shaking hands
vs. giving a high five. Activity recognition by ethical vi-
sual AI could provide insights into our patterns of daily life,
however existing activity recognition datasets do not cap-
ture the massive diversity of these human activities around
the world. To address this limitation, we introduce Col-
lector, a free mobile app to record video while simultane-
ously annotating objects and activities of consented sub-
jects. This new data collection platform was used to curate
the Consented Activities of People (CAP) dataset, the first
large-scale, fine-grained activity dataset of people world-
wide. The CAP dataset contains 1.45M video clips of 512
fine grained activity labels of daily life, collected by 780
subjects in 33 countries. We provide activity classification
and activity detection benchmarks for this dataset, and ana-
lyze baseline results to gain insight into how people around
with world perform common activities. The dataset, bench-
marks, evaluation tools, public leaderboards and mobile
apps are available for use at https://visym.github.io/cap.

1. Introduction

Large scale activity recognition has made remarkable
progress driven by the curation of large scale labeled video
datasets [40, 73, 33, 1, 2, 74, 45, 9, 21, 36, 59, 35, 13, 43].
Evaluation tasks in these datasets include activity classifi-
cation, activity and object detection and localization, action
prediction, episodic memory for object instance retrieval,
object interactions with hands/tools/people, speaker predic-
tion and scene diarization in long duration videos.

However, performance on these important tasks remains
limited by the scale, quality and applicability of data. While
there are many large-scale video datasets for pretraining ac-
tivity recognition such as Kinetics [41], AVA [28], Moments

Figure 1. The Diversity of Human Activities. Humans perform a
wide variety of closely related activities that involve subtle mo-
tions performed alone, while interacting with objects or with other
people. The CAP dataset was designed to explore the representa-
tion of these fine grained activities of daily life around the world.

in Time [59][60], ActivityNet [8], YouTube-8M [1], HVU
[19] and IG65M [24], these datasets are all scraped from so-
cial media platforms such as YouTube or Instagram. These
datasets are easy to collect, but suffer from terms of ser-
vice restrictions, non-consented subjects and link rot, mak-
ing reproducible research difficult. Furthermore, the labels
in these datasets sparsely sample fine-grained activities, and
instead represent activities that are interesting enough for
social media. Recent dataset collections efforts have transi-
tioned to actors performing scripted [35][65] or unscripted
[20] activities to introduce more diversity of the activities
that we all perform every day, however these datasets have
limited scale for supervised training.

In this paper, we introduce the Consented Activities of
People (CAP) dataset, a fine grained dataset of activities of
daily life for visual AI research. Humans perform a wide
variety of closely related activities that involve simple yet
subtle motions that we perform alone, interacting with ob-
jects or interacting with other people. For example, figures
1 and 2 show examples of activities that we may perform
every day: putting on a face mask, putting an object into a
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Figure 2. The Consented Activities of People Dataset, collected on-demand from consented subjects, recorded worldwide from third-person
viewpoints, of fine-grained activities of daily life and submitted from handheld and rigid mobile devices. Available at visym.com/cap.

backpack or hugging another person. The CAP dataset was
designed to explore the representation and recognition of
fine grained activities of daily life, using open data collected
on-demand from consented subjects and recorded world-
wide from third-person viewpoints. Specifically, the CAP
dataset contains:

• Common activities that we all perform each day, such
as dressing or grooming that are not typically captured
on video because they are rarely performed in front of a
camera or are too boring to share.

• Fine activities that are closely related and may be easily
confused, such as putting on socks vs. putting on shoes
or talking on a phone vs. smoothing your hair.

• Diverse activities that are different ways of performing
the same activity in the wild, such as activities viewed
from behind or interacting with different objects.

In order to collect a large-scale visual dataset of the di-
versity of human activities, we introduce the Collector plat-
form. Collector is a global platform for collecting consented
datasets of people for visual AI applications. Collector is
able to record, annotate and verify video datasets, collected
with geographically diversity of people around the world.

The primary contributions of this work are:

• Collector platform. Section 3 describes the new plat-
form developed to collect ethical datasets of people.
This platform can be used by the research community
to collect new on-demand visual datasets as easily as
recording a video.

• Consented Activities of People (CAP) dataset. Sec-
tion 4 describes the collected dataset of fine-grained
activities of consented people worldwide. The dataset
contains annotated videos of fine-grained activities with
bounding box tracks and temporal localization.

• Benchmark suite. Section 5 describes the open bench-
marks and baselines on this dataset, along with results
and analysis in Section 6.

2. Related Work

The evolution of video datasets has progressed from a
small number of classes and actors in trimmed videos [69,
6] to large-scale web video on social media [40, 73, 33, 1, 2,
74, 45, 9, 21, 36, 59]. Keyword-based search from YouTube
or Instagram enabled weak labeling of videos with minimal
curation, creating datasets that recorded a large set of people
doing a small set of activities. The diversity and volume of
video available on social media lead to massive datasets for
pretraining. Recently, efforts have bootstrapped classifiers
to improve the scalability of their annotation and collection
efforts from noisy web video [78]. Furthermore, approaches
have attempted to directly mitigate the geographic biases of
web video by scraping from local versions of websites [64].

These large datasets are easy to curate, but the con-
tents have limited diversity, as the joint combination of
viewpoints (e.g. exocentric, egocentric) and activity la-
bels (e.g. dressing, eating) that are common in real scenes
are not as common on social media. Centralized collec-
tion of actors [14, 65, 34], as well as crowdsourced ap-
proaches [71][10][27][65][34] have been used to generate
datasets of labels and perspectives not densely sampled
in social video, but are limited in the diversity and scale
of training data. This style of dataset collection has spe-
cialized further into diagnostic datasets [37][76][25][3][22]
that attempt to answer a specific question about perfor-
mance bias, as well as fine-grained datasets which attempt
to densely sample the space of actions in a specific domain
[53, 61, 49, 49, 63, 68, 57, 38].

Table 1 shows a quantitative comparison of these related
datasets. This comparison table focuses on egocentric, ex-
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Dataset Year Domain Fine Classes Coarse Classes Annotation Clips Mean Clips/Class
ActivityNet (v3) [8] 2016 Social 200 73 T 23.1K 137
Charades [71][70] 2016 Exo|Ego - 157 T|N 68.5K -
Something-Som... [26] 2017 Ego - 174 T 220.8K 600
PKU-MMD [13] 2017 Exo|M - 51 T|J 21.5K -
Kinetics-700 [41] 2017 Social - 700 T 650K 700
Youtube-8M (Seg) [1] 2018 Social - 1000 T 237K 150
EPIC-Kitchens [16] 2018 Ego 97 13 T|N|C 90K -
HACS (clips) [78] 2019 Social - 200 T 1.55M 1100
MMAct [43] 2019 Exo|Ego|M - 37 S|T|J 40K -
LEMMA [35] 2020 Exo|Ego|M 863 24 S|T 11.8K -
AVA-Kinetics [48] 2020 Social - 60 S|T 230K 235
HVU (Actions) [19] 2020 Social - 739 T 479.5K 2112
Moments in Time [60] 2020 Social - 292 T 2.01M 6432
MEVA [14] 2021 Exo - 37 S|T|E|C 35K -
HOMAGE [65] 2021 Exo|Ego|M 453 70 S|T 24.6K -
Ego4D (MQ) [20] 2021 Ego - 110 S|T|N|G|C 22.2K -
CAP 2022 Exo 512 144 S|T|N|G|C 1.45M 2880 (4501, top-250)

Table 1. CAP dataset comparison. Domains are egocentric (ego) from a first person viewpoint such as a head or body mounted camera,
exocentric (exo) from a third-person viewpoint such as from a wall or building mounted camera, (social) videos scraped from online social
media sources and (M)ulti-modal domains such as RGB-D, NIR, multiple viewpoints or additional non-visual sensors. Annotation ground
truth considers combinations of: (T)emporal activity labels for start and end times, (S)patial object labels of bounding boxes around actors
or interacted objects, (E)xtrinsic camera poses with calibrated relative position and orientation, (G)eographic locations for each video,
(J)oint keypoints of human pose skeletons, (N)atural language captions or narrations and (C)onsented subjects for ethical video recording.

ocentric and social datasets for activity classification and
detection tasks, comparing the number of classes, clips and
mean clips per class. This shows that our Consented Activ-
ities of People (CAP) dataset is the largest consented activ-
ity dataset collected to date as measured by mean number
of training clips per class.

3. Collector Platform

Collector is a new platform for visual dataset curation
that was designed to address the limits of current collection
strategies. The traditional approach to construction of vi-
sual dataset of people is to: (i) Set up camera networks to
record videos and imagery, (ii) Gather a set of subjects who
have consented to have their personally identifiable infor-
mation (PII) recorded and shared for an authorized purpose
and duration, (iii) Record videos of these IRB approved
consented subjects only, and no one else, (iv) Send videos
to an annotation team to manually search videos for ground
truth labels, (v) Send the annotations to a verification team
to enforce quality. This approach is slow end expensive.

There is a need for a new dataset collection approach that
is on-demand, worldwide and cost-efficient. On-demand
approaches enable an agile, adaptive collection of instances
that are engineered to introduce diversity of labels or at-
tributes such as pose, illumination or object interaction and
mitigate biases. Furthermore, access to data sources from
many countries and cultures avoids an imbalance of data
from a specific region of the world and its implicit biases.

Finally, the approach needs to be relatively cost-efficient to
collect large-scale training data.

Collector is a global platform for collecting large scale
consented video datasets of people for visual AI applica-
tions. Collector is able to record, annotate and verify cus-
tom video datasets of rarely occurring activities for training
visual AI systems. The Collector platform provides:

• On-demand collection of rarely occurring activities
from thousands of collectors worldwide.

• Simultaneous video recording, annotation and verifica-
tion into a single unified platform.

• Touchscreen UI for live annotation of bounding boxes,
activity clips and object categories.

• Specification of required collection attributes such as
pose, illumination, location or object interactions.

• IRB approved informed consent for ethical dataset con-
struction with in-app face anonymization.

Figure 3 shows an overview of the collector workflow.
Collectors are invited onto the platform, and they download
the collector mobile app to their device. Collectors are pre-
sented collections which are video collection tasks grouped
by required objects (e.g. a car, another person) or locations
(e.g. parking lot, dining room). Each collection specifies
the requirements of the submitted video, which include re-
quired activities, objects, location, illumination conditions,
actor pose and camera viewpoint. Once a collector chooses
a collection to record, they get consent from their subject,



Figure 3. The Collector platform curates visual datasets of people by enabling thousands of collectors worldwide to record and submit
videos using a mobile app. This workflow shows the mobile interface for collecting on-demand video datasets of people.

including a video recording to ensure that the person con-
senting is the person being recorded. Next, the collector
watches an example video which shows a gold standard ex-
emplar of the collection. We use visual exemplars to bypass
language issues and communicate an idea of what the col-
lection should look like. Finally, the collector records and
annotates the video live using touch gestures on their de-
vice, optionally corrects errors using an in-app annotation
editor and submits the annotated collection for review.

The Collector mobile app has been downloaded by thou-
sands of freelance collectors worldwide, and is freely avail-
able in the iOS and Android app stores. Appendix A pro-
vides more information on mobile app for recording and an-
notation (§A.1), campaign dashboard for global coordina-
tion (§A.2) and human review for annotation quality (§A.3).

4. Consented Activities of People Dataset
The Consented Activities of People (CAP) dataset is a

fine grained visual dataset of the activities of daily life, cu-
rated using the Collector platform. Humans perform a wide
variety of closely related activities every day that are sub-
tle, localized and socially informative. The CAP dataset
was designed to explore the problem of representation of
simple, fine-grained activities and provide a benchmark to
characterize performance for classification and detection of
these closely related activities.

How do we define the set of labels in a dataset of fine-
grained activities? What exactly is a fine-grained activity?
The discussion of this question in appendix B.3 suggests
that a fine-grained activity is defined relative to other activ-
ities and should specify the following:

• Who? Fine-grained activity labels should be performed
by the same noun (e.g. Person).

• What? Fine-grained activity labels should include sim-
ple verbs that can be performed in a few seconds along
with other “closely related” verbs.

• With? Fine-grained activity labels should include ob-
ject interactions that induce a visually distinct motion.

• How? Fine-grained activities should include visually
grounded styles as within class variation.

Label expansion. In order to downselect labels that sat-
isfy these criteria, we perform a new strategy called label
expansion. Label expansion starts from the source labels
in AVA [28], Charades [71], Moments in Time [59][60],
Kinetics-700 [41], Something-Something [26] and MEVA
[14]. We augment this set with the Activities of Daily Liv-
ing [62][47]. Next, we remove activities that are complex,
non-visually grounded, non-person centered, not commonly
performed around the house, or require skilled execution.
The remaining verbs are label expansion candidates.

We perform label expansion by selecting one or more
closely related verbs and nouns for each label candidate that
satisfy the CAP design goals. We are all experts when it
comes to understanding the subtle discrimination between
gestures, social interactions or simple activities that we per-
form every day. Therefore, the collector team leveraged
their social expertise to manually perform label expansion
for each candidate label. For example, closely related verbs
person puts on socks to person puts on shoes or closely re-
lated object interactions with different appearances person
puts on shoes to person puts on hat.

The result of the label expansion is is shown in figures 4
and appendix B.22. Appendix figure B.22 shows a circular
tree plot of the hierarchical organization of the fine-grained
labels grouped by “Noun Verb” structure, such as person

https://visym.com/collector


Figure 4. CAP label distribution. (left) Instance histogram for fine-grained categories, colored by person-only, person-person or person-
object interactions showing the most and least common labels by frequency, (right) Fine-grained histogram for each coarse-grained category
to show the number of fine-grained categories in each hierarchical grouping. Figure B.22 shows the full hierarchical label set.

dresses or person gestures into a two level, tree structured
hierarchy.

Collection Campaign. The CAP campaign was set up to
run on the Collector platform during the period of Apr 2020
to Dec 2021. The CAP dataset was collected in two stages,
Apr 2020 - Mar 2021 which focused on collection of MEVA
activity classes [14] and July - Dec 2021 which focused on
the remaining CAP activity classes. The campaign specifi-
cation includes 842 unique collection types, each specifies
one of 512 activity labels and 157 object types. In total,
288/842 collection types were specified so that the subject
is facing away from the camera to increase diversity, 87/842
collections were specified to be collected to support tempo-
ral activity detection and 38/842 collection types were phys-
ically stabilized. The overall collection statistics are shown
in figure 2, such that 905,369 clips are for activity classi-
fication (AC) train/val, 132,271 clips for AC sequestered
test and 416,900 clips for activity detection (AD). Figure 4
shows the overall label frequency. Note that this histogram
is unbalanced due to frequent organic activities, such as per-
son sits down which often precedes object interactions.

The appendix discusses the key challenges (§B.3),
dataset design goals (§B.2), collection methodology (§B.4),
distribution format (§B.5) and visualizations (Figure B.19,
B.21) for curating a large scale dataset of daily activities.

5. Benchmark Suite

Performance benchmarking is the specification of an
evaluation methodology, task, dataset and a baseline sys-
tem design to evaluate system performance. Typical bench-
marking considers test data that is in-domain, meaning it

is collected and annotated exactly as it will be used in
practice. However, consider the challenge of benchmark-
ing fine-grained activity recognition in third-person security
video. We may collect many hours of video from many se-
curity cameras, without ever collecting an organic instance
of a fine-grained target label like person puts down back-
pack. If our goal is to benchmark performance for rarely
occurring activities, then how do we benchmark in practice
when the labels to evaluate almost never occur?

We address this key challenge by introducing domain ad-
jacent benchmarking. In this strategy, we collect test sets
that are from the required viewpoint, but with actors per-
forming the test activities in short bursts. This provides per-
formance evaluation of a target domain (e.g. third person,
long duration videos, organic activities) in a closely related
adjacent domain (e.g. third person, short duration videos,
actors). The test data in the adjacent domain can be col-
lected and distributed ethically, and performance evaluation
on the domain adjacent data is used as a surrogate for the
target domain. Further discussion of the implicit biases in
this strategy is provided in appendix B.7.

5.1. Evaluation Tasks

Activity Classification (AC). The Activity Classification
(AC) task is to assign one or more activity class labels and
confidence scores to each video clip from a set of prede-
fined classes. The metric for AC performance is Mean Av-
erage Precision (mAP), top-1 and top-5 classification per-
formance averaged over all classes.

The AC task is separated into two domains, AC (Hand-
held) and AC (Stabilized). AC (Handheld) is constructed
using videos collected from handheld cameras, and AC



Experiment mAP Top-1 Top-5 mAP Top-1 Top-5 mAP (.2) mAP (.5) mAP (.8) mAP (.2) mAP (.5) mAP (.8)

Handheld (Fine) 0.453 0.435 0.690 0.421 0.395 0.638 0.171 0.064 0.003 0.182 0.073 0.007
Stabilized (Fine) 0.341 0.302 0.555 0.448 0.423 0.674 0.113 0.044 0.002 0.193 0.079 0.005
Handheld (Coarse) 0.483 0.534 0.783 0.421 0.491 0.731 0.182 0.075 0.004 0.200 0.081 0.003
Stabilized (Coarse) 0.362 0.387 0.683 0.465 0.515 0.754 0.136 0.054 0.003 0.225 0.090 0.004
Handheld (Coarsened) 0.470 0.518 0.781 0.413 0.474 0.724 0.177 0.069 0.003 0.184 0.071 0.003
Stabilized (Coarsened) 0.345 0.370 0.662 0.451 0.499 0.755 0.112 0.043 0.002 0.195 0.076 0.003

Activity Classification 
(Handheld)

Activity Classification 
(Stabilized)

Activity Detection                
(Handheld)

Activity Detection                       
(Rigid)

Figure 5. CAP Benchmark Evaluation. This result shows the performance of six experimental systems (rows) on four evaluation tasks
(columns). The experimental systems differ in the training set, such that Handheld|Stabilized refers to the handheld or background sta-
bilized video data and Fine|Coarse|Coarsened refers the training set labels (e.g. Fine labels, Coarse labels, or Coarsened labels trained
on fine labels, then transformed to coarse labels at test time). The evaluation tasks are Activity Classification|Activity Detection (§5.1)
evaluated on Handheld|Stabilized|Rigid video subsets (e.g. handheld, software background stabilized or rigidly mounted video).

(Stabilized) is constructed by performing software back-
ground stabilization on AC (Handheld) videos. Appendix
B.5 discusses this background stabilization algorithm with
examples shown in figure B.18. The stabilization is used as
a post-processing step to evaluate the domain mismatch of
stabilized videos to rigidly mounted cameras.

Figures B.17 and B.18 show examples from the train-
ing set for the activity classification task. The videos show
untrimmed clips which include repetitions of an activity
performed multiple times in a row by a subject. The ob-
jective of the activity classification task is to specify a label
for a three second trimmed clip containing one activity.

Temporal Activity Detection (AD). The Temporal Activity
Detection (AD) task is to detect and temporally localize all
activity instances in untrimmed video. The metric for AD
performance is Mean Average Precision (mAP) at a fixed
temporal intersection over union (IoU) of 0.2, 0.5 and 0.8.

The AD Task is separated into two collection domains,
AD (Handheld) and AD (Rigid). AD (Handheld) is con-
structed from handheld cameras, and AD (Rigid) is con-
structed from rigidly mounted, unmoving cameras. This
separation is designed to evaluate a system trained with soft-
ware stabilization, and tested on rigid cameras.

Appendix figure B.21 shows eight sample videos in the
activity detection task. This visualization shows seven
frames extracted from a video on each row. Each video is
from a specific collection scenario, as described in section
B.4. Each scenario has a subject performing between 7 and
11 activities in a sequence that is chosen by the subject.

5.2. Baseline system

The baseline system for activity detection is based on
activity classification of tracked cuboids [39]. The system
operates by performing SORT tracking [5] of people and
vehicles, using a framewise YOLO-v5 [67] object detector
on 5Hz videos followed by spatiotemporal IoU track asso-
ciation. For each track above a minimum length (> 1s) and

Ablation Experiment mAP Top-1 Top-5 mAP Top-1 Top-5
No video augmentation 0.450 0.424 0.676 -0.004 -0.011 -0.014
Low collection diversity 0.451 0.416 0.668 -0.002 -0.019 -0.022
Top-100 collectors only 0.471 0.445 0.688 0.018 0.010 -0.002

AC (Δ Baseline)AC (Handheld)

Figure 6. CAP Ablation Study. We retrained the baseline system
removing video augmentation, removing the “from behind” col-
lection diversity or removing all but the top-100 collectors, then
compared the relative performance to the baseline.

minimum confidence (> 0.2), define an activity cuboid pro-
posal as the spatiotemporal sequence of bounding boxes for
the object instance. The cuboid is split into three second
proposals, with overlap (4 frames), with replicated bound-
ary conditions for short tracks, dilated by a constant fac-
tor (1.2), cropped to maximum square shape preserving
the centroid and resized to 16x4x224x224 (frames, chan-
nels,height, width). The cuboid is converted into a RGBA
representation, with an alpha channel (A) encoding a binary
mask for the tracked bounding box within the cuboid. Fi-
nally, we classify each cuboid proposal using a 3D-Resnet-
50 [32] with softmax classification followed by a non-
maximum suppression at temporal IoU ≥ 0.5.

Baseline training is performed using uniform random
weight initialization, cross-entropy focal loss [51], on 8
GPUs with minibatch size 256, ADAM optimization [42]
and inverse class frequency instance weighting on CAP
dataset until validation loss saturates. Data augmentation
includes spatial mirroring and random clips by shifting ±3
frames. The baseline system is GPU optimized, real-time,
python only and available at github.com/visym/heyvi.

6. Performance Evaluation

In this section, we describe the benchmark results on
the CAP dataset, and results on the Activities in Extended
Video (ActEV) Sequestered Data Leaderboard (SDL) [14].

https://github.com/visym/heyvi
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Figure 8. Confusion graph for activity classification showing edges
connecting commonly confused fine-grained activity labels.

6.1. Benchmark Results

The experimental system runs the baseline with the fol-
lowing six combinations: Handheld, Stabilized or Rigid
videos with Fine, Coarse or Coarsened label sets. Hand-
held refers to videos recorded directly from handheld mo-
bile devices, Stabilized are the handheld videos with soft-
ware background stabilization, and Rigid are test subset col-
lected using rigidly mounted cameras. The baseline system
is trained using either handheld or background stabilized
videos, with Fine labels (e.g. figure B.22 outer), Coarse
labels (e.g. figure B.22 inner), or Coarsened labels which

is trained using fine labels, then mapped via lookup to the
coarse label at test time. The benchmark datasets are the
AC or AD sequestered test sets, subdivided into AC (Hand-
held), AC (Stabilized) and AD (Rigid) video subsets.

Figure 5 provides a benchmark evaluation on the activity
classification and activity detection tasks. Results in fig-
ure 5 show: (i) background stabilization training helps for
AD (Rigid), (ii) stabilized vs. handheld training exhibits
a domain bias, (iii) AC (Handheld) performance is slightly
better than AC (Stabilized) due to minor stabilization arti-
facts, (iv) AD is significantly more difficult than AC and (v)
coarse labels are better than coarsened.

Figure 7 (left) shows activities on the AC (Stabilized)
task ranked by mean AP per class and colored by object
interaction type. This provides a deeper insight into the
classes that are the highest and lowest performing. Results
show that the best performing classes still leverage scene
context (e.g. crates dog, loads dishwasher) and worst per-
forming classes (mAP=0) and are poorly represented using
the baseline system (e.g. puts up smoke detector). Figure
7 (right) shows an aggregate result on the AD (Handheld)
task, which demonstrates that fine-grained activity detection
at precise temporal localization (IoU=0.8) is challenging.

6.2. Benchmark Analysis

Figure 6 shows the results of an ablation study to un-
derstand the effect of three training set configurations on
baseline performance. In all experiments, we renormal-
ized the inverse class frequency weighting for the revised
trainset, retrained the baseline system, then used the re-
vised valset for model selection. First, we removed only
the video augmentation (e.g. collectors performing activi-
ties multiple times), preserving all other data augmentation.
Results show that relative baseline performance is lower,
which demonstrates that video augmentation helps. Next,



we removed only the “from behind” collections introduced
for diversity. Relative performance for this trainset is lower,
which shows that collection diversity helps. Finally, we
kept only the videos from the top-100 collectors, compris-
ing 65% of training set. Relative performance for top-100
trainset is higher, which suggests that for fine-grained ac-
tivities (and our baseline system), it is better to have each
collector perform many fine-grained activities.

Figure 8 shows a confusion graph of the AC task. This
visualization shows a 2-d graph embedding constructed by
transforming a confusion matrix to a graph adjacency ma-
trix such that nodes are fine grained activity labels, node
colors are coarse grained labels, and edge thickness cor-
responds to commonly confused fine-grained activities. A
larger version is shown in appendix figure B.20.

Analysis of the confusion graph provides four insights.
First, casual pairs (e.g. open and close) are commonly con-
fused, since causal pairs often co-occur in a short temporal
sequence. Second, we observe approximately one fourth
of labels are not significantly confused, as shown by dis-
connected nodes. Third, there are small connected com-
ponents with long range connections for common activities
performed in sequence, such as interacting with drawers and
cabinets in a kitchen. Finally, the three nodes that are most
confused are person trips on object on floor, person enters
car and person opens facility door, which suggests that im-
provement on these high degree labels should be prioritized.

6.3. ActEV SDL

The ActEV SDL is a sequestered data leaderboard for ac-
tivity detection in long duration security videos. The ActEV
SDL is labeled using the MEVA label set [14], which in-
clude 37 simple activities in security video. The MEVA
labels are a subset of the CAP labels with five additional
labels for vehicles turning, stopping and starting. We split
the CAP dataset into a CAP-MEVA subset containing only
the MEVA labels, which contains 405,781 background sta-
bilized clips, split into 370K/35K train/val set. CAP-MEVA
was used to re-train the baseline system, and compared re-
sults to training using MEVA only, which contained 35,022
training clips, as of when this analysis was performed.

Figure 9 shows an evaluation result on this dataset. The
performance metric is mean probability of missed detec-
tion over activity classes vs. time based false alarm rate
(TFA). We trained the baseline system using the MEVA
dataset only or the union of CAP-MEVA and MEVA. We
made four submissions to the ActEV SDL that differed only
by the training set and validation set assumptions. Results
show a 32% improvement at a fixed TFA=0.2 due only to
training with the CAP-MEVA data, when controlling for the
training hyperparameters and system configuration. Both
green (MEVA + CAP-MEVA training) and red (MEVA only
training) were trained from scratch rather than fine-tuned

32% performance 
improvement using CAP 
(stabilized) training data

MEVA only training

CAP only training

CAP + MEVA Training, 
MEVA validation

CAP + MEVA Training, 
CAP + MEVA validation

Figure 9. ActEV SDL Evaluation. (red) Trained with MEVA data
only, (purple) trained with the union of MEVA and a CAP subset
containing MEVA labels. Comparing the red/purple curves shows
a 32% improvement using CAP data for identical systems.

starting from a pretrained model. All training data is back-
ground stabilized. This result shows that when controlling
all other hyperparameters, the CAP dataset improves se-
questered temporal AD performance in long duration video.
This provides an independent validation of the CAP data for
activity detection on static, long duration security video.

7. Conclusions
In this paper, we introduced the Consented Activities of

People dataset, the largest fine grained activity dataset of
people ever collected. Our benchmark provides a standard-
ized evaluation of this new problem, with analysis to high-
light the unique challenges of representing fine-grained ac-
tivities. Finally, we believe that the Collector platform may
be useful for the research community to address the never-
ending demand for more ethical visual data.
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Appendix
A. Collector Platform

Collector is a global platform for collecting large scale
consented video datasets of people for visual AI applica-
tions. Collector is able to record, annotate and verify cus-
tom video datasets of rarely occurring activities for training
visual AI systems. The Collector platform provides:

• On-demand collection of rarely occurring activities.
• Simultaneous video recording, annotation and verifica-

tion into a single unified platform.
• Touchscreen UI for live annotation of bounding boxes,

activity clips and object categories.
• Specification of required collection attributes such as

pose, illumination, location or object interactions.
• IRB approved informed consent for ethical dataset con-

struction with in-app face anonymization.

In this section, we will describe the motivation and de-
sign of the Collector platform. This platform includes a
mobile app for collecting labeled videos sourced from free-
lancers around the world, a campaign dashboard for setup,
control and monitoring of a world-wide collection cam-
paign by a dataset administrator and quality control for hu-
man review and distributed consensus for annotation qual-
ity. This platform was used for collection of the dataset
in section 4, and we believe will be useful for the research
community to support future dataset collection.

A.1. Mobile App for Recording and Annotation

The front end of the Collector platform is a free mobile
app designed to streamline consenting, recording, annota-
tion and verification from collectors around the world.

Figure 3 shows an overview of the collector workflow.
Collectors are invited onto the platform, and they download
the collector mobile app to their device. Collectors are pre-
sented collections which are video collection tasks grouped
by required objects (e.g. a car, a motorcycle) or locations
(e.g. parking lot, dining room). Each collection specifies
the requirements of the submitted video, which include re-
quired activities, objects, location, illumination conditions,
actor pose and camera viewpoint. Once a collector chooses
a collection to record, they get consent from their subject,
including a video recording to ensure that the person con-
senting is the person being recorded. Collector recruitment
requires proficient readers of English in order to provide us
informed consent in this step. Next, the collector watches an
example video which shows a gold standard exemplar of the
collection. We use visual exemplars to bypass language is-
sues and communicate an idea of what the collection should
look like. Finally, the collector records and annotates the

video live using touch gestures on their device, corrects er-
rors using an in-app annotation editor and submits the an-
notated collection for review. Annotations include bound-
ing boxes around objects, object labels and start and end
times for each activity in the collection, all collected while
the video is being recorded. The best submissions from
our worldwide collection team as adjudicated by the review
team are used as new training examples for newer collec-
tors. In other words, collectors “see one, do one, and teach
one” on our platform.

Figure A.11 shows an example of the in-app annotation
editor. This editor is used to annotate videos in-app after
they have been collected. This is useful for collecting data
to support the Activity Detection (Rigid) task, where the
device must be stationary during recording, where collec-
tor cannot annotate in-app while they record. Annotations
include bounding boxes for objects and people, which is
specified using multi-touch gestures for fast video annota-
tion. Further annotations include start and end times for ac-
tivities, which are specified by press gestures in a bounding
box for the start (press-down) and end (lift) when an activity
occurs. The saved edited video is uploaded to the Collector
backend for further processing.

Figure A.10 shows an example of increasing the diver-
sity of collections by controlling the collections available
in the campaign. These screenshots show what is presented
to the collectors in-app when they are tasked with collecting
diverse data. The key component for this workflow is show-
ing the collectors an example video for what should attempt
to collect along with a written description. This provides
multiple resources to the collectors to aid them in collecting
high quality data of the form needed by the campaign.

The Collector mobile app is freely available in the iOS
and Android app stores. This app has been downloaded and
used by thousands of freelance collectors worldwide. More
information and a tutorial video for collector usage is avail-
able at visym.com/collector.

A.2. Campaign Dashboard for Global Coordination

Large scale dataset collection includes a large volume of
videos to be collected, annotated and verified. Each collec-
tion campaign may contain hundreds of different collection
types, and each collection type may have tens of thousands
of video submissions from all around the world. Campaign
management tools are critical to coordinate the workforce,
monitor submissions for fraud or unclear instructions, and
maintain high quality for this volume of data.

The collector platform coordinates a global workforce
using a campaign dashboard. The campaign dashboard pro-
vides a real-time interface for an administrator to set up,
control and monitor a campaign. The dashboard enables an
administrator to:

• Plan. The admin defines the campaign by specify-

https://visym.com/collector


Figure A.10. Collection diversity on the Collector platform. The platform allows for controlling the diversity of collections, by introducing
collection variants with simultaneously occurring activities, new objects, within-class variation or rarely occurring activities.

ing each collection, along with the required objects,
viewpoints, styles, illuminations, locations and IRB ap-
proved consent language.

• Train. The admin team collects one or more reference
videos for each collection. Each collector is shown the
description of a collection, and they view one or more
reference videos for this collection. This provides a “see
one, do one” strategy for non-native English speakers.

• Deploy. The campaign is deployed based on a collec-
tion schedule, including a maximum number of collec-
tions allowed per collector and per campaign. Admins
can onboard and offboard collectors worldwide.

• Monitor. The dashboard shows a view live submission
stream from collectors and reviewers worldwide. This
allows the dataset admin to confirm that the collection
is being submitted correctly and successfully.

• Refine. The dataset admin can refine the collection or
training videos based on the performance of the the col-
lector community. For example, appendix figure A.10
shows examples of refining a collection to increase di-
versity of objects and activities.

• Pay. Freelance collectors worldwide are paid per video
that is submitted and accepted by the review team. Pay-
ments are made on a bi-weekly basis.

Figure A.12 shows an example of the live dashboarding
providing the state of the campaign. This dashboard is the
primary visualization of the state of the collection campaign
that is used by an administrator for monitoring, command
and control. This captures a global near real-time view of
the worldwide submissions along with the ability to visual-
ize submissions from any collector or reviewer.

A.3. Human Review for Annotation Quality

Large scale dataset collection requires careful review of
videos to maintain dataset quality. In the Collector plat-
form, the review team is tasked with daily verification of
submissions to check that they satisfy the collection require-
ments. Reviewers are promoted from within the worldwide
collector pool, and are selected based on their historical sub-
mission quality, and their interest in reviewing the work of
fellow collectors in exchange for a fixed price per review.

Figure A.13 shows the reviewing interface. These screen
shots show what is presented with reviewers when they are
tasked with maintaining quality control. We have devel-
oped an HTML based interface for quickly reviewing the
annotation quality of a video submitted by the collectors.
Reviewers are sent a daily email with an HTML review link
containing their reviews for the day. This review interface
displays animated WEBP clips, in a montage format that
allows for fast reviewing of a video at a glance. Reviewers
are tasked with (i) reading the collection description, (ii)
watching the reference example video for this collection,
(iii) watching the submitted video and (iv) selecting one or
more reviews by pressing the appropriate HTML button.

Each video is reviewed by a fixed number of reviewers
(usually three), and a mean quality score is assigned to each
video. Reviews are streamed to the Collector backend for
aggregation, and reviewers are paid a fixed fee for each re-
view submitted. Reviewers are audited by providing them
reviews in their review stream with a known label (e.g. a
synthetically corrupted video or a video reviewed by an ad-
ministrator), to check their review quality and give them
feedback. Finally, if this video quality is above a campaign
specified threshold, then it is authorized for payment.



Figure A.11. Editing in the Collector mobile app. The editor is an in-app tool that allows for modifying the bounding box and activity
timing for objects in video. This allows for correction of live annotations that were inaccurately collected at recording time. Editing is
performed by using multi-touch gestures to define bounding boxes that deform through time to track objects, and press gestures within
boxes to define start and end times for activities. A video tutorial for the editor is available at visym.com/editor.

B. Consented Activities of People Dataset

In this section, we discuss the related work, key chal-
lenges, collection methodology and distribution format for
curating a large scale dataset of activities of daily life. Sec-
tion B.3 specifies the design challenges of this dataset and
motivates our design goals. Section B.4 describes the col-
lection parameters using the Collector platform. Finally,
section B.5 describes the format of the dataset and the eval-
uation tasks.

B.1. Related Work

Table 1 shows a dataset comparison with the state of the
art. For datasets with multiple evaluation tasks, we select
the task and associated data most closely related to activ-
ity classification or activity detection. For example, Ego4D
has five benchmark tasks, and we compare with the subset
of data labeled for the Moment Query (MQ) task. For those
datasets with label space organized as a multi-level hierar-
chy (e.g. ActivityNet) we select the lowest level as the num-
ber of fine classes and the immediate parents as the number
of coarse classes. If there is no hierarchical organization,
we report the number of classes as coarse classes. Clips re-
ports the number of instances of each class (e.g. a trimmed
clip containing an activity) available for testing, validation
or training. We show only those mean clips per class that are

reported by the authors in the source publication. The CAP
dataset reports the mean clips per class across all classes,
and mean clips per class considering only the top-250 fine-
classes with the largest number of instances, as shown in
figure 4 (left). Finally, note that this analysis does not in-
clude specialized domains such as fine-grained activities in
sports datasets [17][40][54][50][63][68][53][49].

This table shows that the proposed CAP dataset is the
largest consented dataset of people as measured by mean
clips per class for training.

B.2. Design Objectives

The CAP dataset has the following design objectives:

• Atomic. Activities should be short duration with length
≤ 3 seconds and visually grounded (e.g. activities
should be discriminative from the pixels).

• Fine-grained. Activities should be selected where mo-
tion is critical for discrimination, rather than the scene
context or object appearance.

• Daily-life. The collection should involve locations, ac-
tivities and objects that people use or perform every day,
without practice or expertise.

• Non-overlapping. All activities should be performed
independently. (e.g. a subject will not simultaneously

https://visym.com/editor
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Campaign Parameters
Program PIP
Organization IARPA
Start date 19-Jul-2021
End date 31-Dec-2021
Max submissions per collection
Price per video ($) 1.10
Review overlap 1
Collection rate limit (hr) 24
Minimum payment score 0.5
Reviews per sheet 500
Price per review ($) 0.03
Max submissions per collector 2000
Collection budget ($) 324000
Max concurrent collectors 500
Total instances 1500000
Live Campaign

Collection Statistics
Total collected instances 1138125
Total verified instances 966288
Total collected videos 142372
Active Collectors 46
Last collection 2021-12-05
Last collected location

Price per activity ($) 0.19
Price per reviewed activity ($) 0.22
Number of activity labels 577
Number of object labels 157
Total payments ($) 187135
Pending reviews 176
Last updated 2021-12-06 10:04:35 ET

Contact info
Program manager collector@visym.com
More info visym.com/collector

Figure A.12. Campaign Dashboard on the Collector platform. The campaign dashboard is a live HTML interface used by a campaign
administrator to monitor collection status, view live submission stream, list active collectors worldwide, modify collections in-app, define
new labels and specify IRB consent language. The bottom tabs expand into specific views of the campaign focused on Ratings, Workforce
payments, Recruitment onboarding/offboarding and Campaign specification. The dashboard shows the live histogram of total collected
instances, collected and accepted videos by week, submissions by geographic distribution, and pie graph of labels submitted and total
collection statistics. Finally, the campaign parameters provide command and control of the collection campaign.

use a cell phone while taking off a hat).
• Person-centered. All videos should include a primary

consented person performing the activity.
• Third-person. All videos should be collected from a

third-person viewpoint, looking down on the scene from
above, consistent with a ceiling/wall mounted camera.

• Diverse. Activities should be collected to encourage di-
versity in culture, geographic location, viewpoint, ob-
jects, pose and illumination.

• Worldwide. Videos should be collected from many
countries around the world.

• Ethical. All videos must be collected with informed
consent for how the videos will be shared and used.

• Balanced. Activities should be collected so that the
number of instances per class is approximately equal,
including labels that are rare in natural video.

• Large-scale. The dataset should include a liberal li-
cense with open distribution format and easily down-
loadable training and validation set.

• Annotated. Videos should be annotated with bounding
box tracks around the primary actor along with temporal
start/end frames for each activity instance.

B.3. Design Challenges

These design objectives introduce a number of chal-
lenges and open questions. What is a fine-grained activity?
How are the activity labels selected? How can we collect
balanced data of infrequent labels? How do we control the



Good activity instance (Accept for payment)

Perfect instance (Use for training)

Wrong activity label

Bounding Box too big

Bounding Box too small

Bounding Box not centered on actor

Timing of start or end of activity is off

Activity not visible in video

Require viewpoint not present (e.g. security, selfie, stabilized)

Required joint activity not present (e.g. talking on cell phone while walking) 

Required activity style not present (e.g. excited, lethargic)

Required location not present (e.g. indoors, outdoors)

Required illumination not present (e.g. daylight, dusk)

Required actor pose not present (e.g. standing, sitting, facing away)

Required object not present (e.g. must be using a cell phone)

Consented subject not in video

Warning!  Something is not right about this video

Junk video (e.g. a video of the floor, thumb in front of lens)

Help (e.g. show this legend and collection description)

Rating Legend

Subject Consent Video HTML Video Animation

Activity and Object  Annotations

Active Rating
Buttons 

Inactive Rating
Buttons

Figure A.13. Reviewing interface on the Collector platform. Reviewers are provided an HTML interface for each video under review, that
provides buttons for feedback. The reviewer can click on the image to show a WEBP animation of annotated video, along with the consent
video in the upper left to confirm that the recorded subject is the subject that provided consent. Reviewers are tasked with selecting one of
the review buttons at the bottom for this video, which are streamed to the Collector backend for aggregation. The rating legend shows the
description for each buttons, such that “grey” is disabled and is not required for this submission.

diversity of the data collected? How do we ensure a dataset
is collected both globally and ethically?

What are fine-grained activities? Fine-grained visual cat-
egorization is an established task in the object recognition
literature [23, 15, 75, 66, 58, 77, 52, 44, 12]. The term “fine-
grained label” or “fine grained category” was originally in-
troduced in the context of image classification of subordi-
nate object categories, such as bird species, plant species or
product brands. These are classes with subtle discrimina-
tive features, such as the color of a wingtip or shape of a
leaf. These annotations often require an expert to specify
the class label, and the differences between classes are sub-
tle, highly localized and require expert training. However,
the differences between classes are visually grounded in the
pixels, if you know where to look.

A fine-grained activity is not as straightforward to define.
An activity is typically defined by a verb being performed
by a noun. For example, the activity person sits has the noun
“person” performing the verb “sits”. Is this a fine-grained
category? Compare the activity category of person sits to
person squats vs. person drinks. In the first case, there are

subtle differences in how the lower body is moved in sitting
by resting your body weight against a flat surface as com-
pared to squatting down by bending your knees while rest-
ing your body weight on your feet. In the second case, there
are clear motion differences between drinking with your up-
per body as compared to sitting with your lower body. This
suggests that a fine-grained class requires subtle motion dif-
ferences with other closely related verbs.

Is a fine-grained activity defined by the noun perform-
ing it? For example, compare the activity category of dog
sits vs. person sits. The kinematics of a four legged animal
sitting on hind legs exhibits a different motion than a two
legged person sitting in a chair. Furthermore, the object ap-
pearance of the noun “dog” can provide context to aid in the
recognition of dog sits as compared to person sits. The dis-
crimination of a fine-grained activity class should primar-
ily require representation of the motion being performed
and not exploiting object appearance or scene context cues.
This suggests that the set of fine grained activities should
be performed by the same noun in order to remove the con-
founding effects of object or scene context. This does intro-



duce a challenge of combinatorial scale when composing
noun/verb pairs, however a dataset focused on people only
will avoid this combinatorial explosion.

Is a fine-grained activity defined by an object being inter-
acted with? There exist scenarios with an actor interacting
with visually distinct objects that exhibit the same or differ-
ent motion pattern when performing the activity. For exam-
ple, consider the activities person throws baseball vs. per-
son throws rock. These activities exhibit largely the same
throwing motion of either a rock or a baseball and the use of
the object does not change the motion of the activity. These
motions are not visually distinct, and are only distinguish-
able through identification of the object category “rock” or
“baseball”. However, consider person carries bicycle vs.
person carries groceries. Carrying a heavy bicycle is awk-
ward and requires a different strategy of carrying over your
shoulder or pulling the object towards your chest, as com-
pared to lifting grocery bags with handles in either hand.
These are both examples of carrying a heavy object lifting
using your upper body then walking, but the motion induced
by the object when performing the activity is different. This
suggests that a set of fine-grained activities should include
object interactions that induce visually distinct motions.

Is a fine-grained activity defined by the style in which it
is performed? An activity style can be described in terms
of an adverb that modifies the verb being performed, such
as “skillful” or “clumsy”. We humans are experts at subtle
discrimination between gestures or social interactions and
we are highly tuned to picking up on the body language in
how an activity is performed. However, the same visually
grounded style can be performed for more than one activity,
such as person sits skillfully as a dancer would or person
jumps skillfully using an efficient economy of motion. This
suggests that style is an important attribute for within-class
variation, but should not be considered as a separate class.

Finally, why do we need atomic fine-grained activities?
Our core hypothesis is that training a visual AI system that
represents the diversity of human activities will result in a
representation of subtle motions with improved generaliza-
tion performance for real scenes. Large-scale pretraining
requires significant overlap between label set and target do-
main [55][11]. Our collection goals are to collect the ac-
tivities of daily life from third person viewpoints to provide
a pretraining and fine-tuning dataset for activity detection
of daily life. For example, to detect when a person is talk-
ing on a cell phone, we can include closely related activities
in training such as scratching your head or putting on head-
phones. This forces a more precise learned representation of
talking on a cell phone that is not always predicted simply
when you touch your ear. Furthermore, a training dataset
that includes simple, short and atomic activities can provide
a foundation for study of longer complex or composite ac-
tivities of daily life that require reasoning about intent or

identity. Our goal is to explore this representational abil-
ity for atomic activities, and provide a foundational open
dataset to explore ethical human activity detection.

Long-tailed classes. Human activities are diverse and long-
tailed. There exist activities that each of us perform many
times per day, such as standing up or sitting down, opening
or closing doors or getting dressed. These common activ-
ities are diverse in that there are many ways that one can
perform each activity which change the appearance, such as
sitting criss-cross on the floor vs. sitting in a chair, opening
a sliding glass door vs. opening a facility door or putting
on a hat vs. putting on a jacket. These within-class varia-
tions of activities are in addition to the more common varia-
tions due to camera pose, actor pose or illumination. These
within-class variations of activities are diverse which cap-
ture the variability of naturally occurring human activities.

Human activities are also long-tailed. Just as there are
activities that each of us perform frequently, there are many
more activities that we perform infrequently or possibly
never. For example, for some people this may be domes-
tic activities such as cooking, cleaning or folding, for oth-
ers it may be violent activities, such as fighting, others may
be potentially harmful activities such as tripping or falling.
These are activities that may occur so rarely that in months
of video (or scraping videos from social media) no exam-
ples are captured. Furthermore, even if these activities oc-
cur, annotating them in long duration videos requires man-
ual search through many hours of video to localize rare ac-
tivity instances. It becomes increasingly difficult for anno-
tators to remember all activities that have been specified as
the number of activity classes increases. This imbalanced
frequency distribution of the occurrence of human activities
is long tailed in that there are fewer classes that are per-
formed frequently, but many more classes in the tail of this
distribution that are infrequent.

Importance sampling. How can we create a balanced
dataset that includes both diverse and long-tailed human ac-
tivities? One strategy is to consider a video as a sample of
the visual world, such that a video dataset contains a finite
sample for a specific task. Direct sampling (e.g. point a
camera out the window) leads to a dataset that may be large
scale, but imbalanced, containing frequently occurring la-
bels (e.g. people walking), but will under-represent rare and
fine activities that may never occur here.

Consider an alternative strategy of importance sampling,
which samples videos given pre-selected labels. This strat-
egy generating samples on-demand for nearly any desired
label.This introduces a tradeoff between direct sampling
which curates videos that are naturally occurring and fre-
quent (but imbalanced) vs. importance sampling that are
engineered and balanced (but potentially biased).

Section 3 introduced the Collector platform to address
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Figure B.14. CAP Dataset statistics. (left) Mean duration in seconds of each activity label, (middle) The number of submissions for each
collector sorted by maximum number of submissions which shows that some collectors are enthusiastic about making contributions, (right)
The sorted density of the number of activity instances per video, which shows that the most common number of activity instances per video
are 1, 2 or 8 instances. We recommend zooming into the PDF to see the activity labels.

the issue of diverse and long-tailed classes by enabling on-
demand collection. The Collector mobile app enables activ-
ities to be requested, recorded, annotated and submitted on-
demand from a global workforce of collectors. These col-
lection requests are controlled to balance out the frequency
of long-tailed classes. Furthermore, the collections break
down activities into variations that capture the diversity of
the activity class. For example, to address the diversity of
“person dressing” we can release a collection request for
different variations of dressing: person puts on hat, person
puts on shirt, person puts on belt, person puts on pants, per-
son puts on socks, person puts on shoes, etc. To address
the diversity of illuminations, we can request a video in
indoor illumination conditions or in darkened conditions.
This platform operationalizes the dataset collection strategy
of importance sampling. Section B.4 discusses this further.

Domain Adjacency. Domain adjacency is the problem of
collecting training and testing data in a given source do-
main, which will be deployed to a closely related (but not
identical) target domain. An ideal machine learning system
will be evaluated on the same domain data used for training
to maximize performance, however there exist domains for
which collection of source test data is prohibited by cost,
ethical restrictions or policy. This introduces a domain shift
between training and testing that will affect performance,
and must be mitigated by fine-tuning on source domain data
or domain adaptation.

Visual AI has the potential to give us helpful and person-
alized insights into the rich patterns of our daily life. How-
ever, we humans spend the majority of our time in what may
be called the dark domains of visual AI. These are locations
or data sources that are not broadly exposed to visual AI to-
day due to privacy concerns, robustness issues or a lack of
datasets. For example, third person viewpoints of people
in private or shared spaces could enable helpful applica-
tions of ambient healthcare [31][56], wellness monitoring
[4][30] or ethical security [14][65][34][7]. However, these

spaces contain our private data, and privacy regulations (e.g.
GDPR, BIPA, CPRA) require that visual AI address collec-
tion and protection of private data by design.

Consider the collection of long duration videos from
a third-person viewpoint in private spaces. These videos
may require hundreds or thousands of hours per camera to
capture rarely occurring activities, all while watching and
recording the intimate details of the private lives of subjects.
This introduces (i) an engineering challenge of sharing this
huge volume of data, (ii) a sparsity challenge of efficiently
sharing data that is mostly empty video between interesting
activities, (iii) a long-tailed challenge of collecting data of
rare activities that may never occur organically, (iv) a bias
challenge where people who have consented to recording
and know they are being recorded change their behavior [4]
and (v) an ethical challenge of whether we should share data
from private spaces in the first place.

This suggests that direct collection and distribution of
in-domain data for these dark domains should be avoided.
There exists a tradeoff between the volume of data cu-
rated vs. the quality of the data collected for target do-
main deployment. Our fundamental hypothesis is that col-
lecting a large amount of annotated data in a closely re-
lated source domain (e.g. short duration, on-demand, third-
person videos), then deploying the trained system to an ad-
jacent target domain with privacy restrictions (e.g. long du-
ration third-person videos in private spaces) will enable eth-
ical deployment of a trained system for dark domains. How-
ever, a key challenge is collecting domain adjacent data for
these dark domains without compromising visual AI system
performance. This issue will be explored in section B.7.

B.4. Dataset Collection

Dataset collection is the process of defining, recording,
annotating, verifying and distributing a dataset that achieves
the design goals in section B.2 while addressing the key
challenges in section B.3. The dataset collection leverages



Figure B.15. CAP mobile devices. Distribution of mobile devices and mobile OS from collector submissions. This shows that there is a
wide variety of mobile devices used to collect the CAP dataset, with a slight preference for Android devices.

the Collector platform introduced in section 3 to collect the
data. In this section, we address design issues related to
setting up the Collector campaign.

Collection Campaign. The collection campaign was spec-
ified on the Collector platform as follows:

• Collections. The campaign specification includes 842
unique collection types, each specifies one of 512 ac-
tivity labels with person interaction or interactions with
157 object types. 288 of 842 collection types were spec-
ified to be collected so that the subject is “facing away”
from the camera, so that the back of the subject is more
visible than the front, such that the activity may be par-
tially occluded to increase diversity.

• Repetitions. Collectors were tasked with repeating ac-
tivities between 5-10 times in each submission. This
provides in-video data augmentation, but rather than
synthetic augmentations (e.g. mirror, crop, scale). We
ask collectors to perform the activity slightly differently
each time, enabling natural data augmentation.

• Third-person viewpoint. Collectors were tasked with
collecting all videos from a third-person viewpoint,
looking slightly down on the scene from above, to
model a security camera on the wall or ceiling.

• Physically stabilized. 38 of 842 collection types were
specified to be physically stabilized. We tasked collec-
tors to rigidly mount their device to a simple triangular
cardboard stand and put it on a flat surface up high look-
ing down (e.g. a shelf, a stack of boxes, a ladder). Col-
lectors record their subject (or themselves) performing
the scenario, then they use the in-app editor to annotate
when and where the activities were performed.

• Temporal activity detection. 87 of 842 collections

were specified to be collected to support temporal ac-
tivity detection. We instruct the collectors to choose
from a list of 11 activities to perform in a natural se-
quence called a “scenario”. For example, one scenario
is “Come inside from the cold” which includes the activ-
ities of entering a room and taking off winter outerwear.
The subject performs at most 11 activities in any order
they choose, then the collector records the scenario, and
edits in-app to annotate the performed activities.

The overall collection statistics are shown in figure 2
which shows the submission locations of collectors world-
wide, along with the label histogram in figure 4. Fig-
ure B.14 describes additional supporting details about the
dataset including collector submission frequency, bounding
box size distribution (Figure B.16), mean duration per col-
lection type and activity density per video, and mobile OS
and device type distribution (Figure B.15).

Finally, a visualization of the scale of this dataset is
shown in figure B.19, which shows a montage of less than
1% of the videos, along with a visualization tool to inter-
actively explore the dataset. Figure B.21 shows a mon-
tage of ground truth examples of the activity detection task.
This shows samples of frames from the activity detection
task that shows the sequences of activities that a collector is
tasked to perform in eight scenarios.

B.5. Dataset Format

The CAP dataset is publicly available for download. In
this section, we provide details on the dataset format, in-
cluding the selection of the label naming format, post pro-
cessing for bounding box improvement and background sta-
bilization and additional video metadata.

Activity Label Nomenclature. The label format for atomic



Figure B.16. CAP 2D Bounding Box Distribution showing the size
variation of labeled people boxes.

activity labels follows the following compositional struc-
ture: “noun verb adjective noun”. For example, person
opens car door or person opens refrigerator door. This
structure provides a consistent naming structure for atomic
activities, that allows unambiguous description of an atomic
activity with optional adjective extensions to provide speci-
ficity for person-object or person-person interactions. Fur-
thermore, we specify the hierarchical label structure using
only the “noun verb” components of this label, with the
remaining label components specifying the within-class or
fine-grained variation.

The label format for this dataset is in contrast with other
large scale activity datasets. For example, the caption label
style of Charades [72] or Something-Something v2 [27] de-
scribes a label as a phrase or short natural language narrative
of the contents of the video (e.g. Putting a book somewhere,
Approaching something with your camera). The verb only
label style of Moments in Time [59], AVA [28], HMDB
[46], Kinetics [41] and ActivityNet [8] describes an activity
in terms of the verb being performed, largely independent
of the object being interacted with or actor performing the
verb. Finally, our nomenclature goal is to provide a more
intuitive label description than alternatives previously de-
ployed, such as wordnet synsets [18]. Our goal is to provide
more specific representation of the within class variation of
activity classes, by exploring the actor, person-object and
person-person interactions as represented in the label name.
This label nomenclature is closely related to the Multiview
Extended Video with Activities (MEVA) class naming [14].

The label format for this dataset is also in contrast with
open vocabulary datasets [20][29]. In this style of dataset
collection, raw data is recorded in a target domain explicitly
without a target task in mind for this data. The raw data is
collected, then it is post processed by an annotation team

to provide labels or natural language captions for the data
that was collected for a task defined after collection was per-
formed. For example, the Ego4D dataset [20] recorded ego-
centric video from first person perspective of wearers going
about their daily lives, which is captioned after collection.
This data provides a sample of the common activities that
were performed during the recording period, but this does
not provide the training data needed for supervised learn-
ing. Similarly, the LVIS dataset [29] for large vocabulary
long tailed object recognition collects cluttered images in
natural settings and asks annotators to achieve consensus
for labeling all of the objects that are present in these im-
ages. This can achieve dense labels in naturally occurring
images, however it cannot achieve balanced datasets.

Weak Annotation. Videos are post-processed after collec-
tion to include an optional step of weakly annotated bound-
ing box refinement. Weak annotation refinement is the pro-
cess improving the bounding box provided in-app by the
collector. The annotation by the collector provides a weak
label that is collected quickly and easily, which coarsely
overlaps the true object, with minor misalignment errors.
Then, a pretrained object detector selects an optimal low
confidence proposal that maximizes overlap and confidence
with the weak annotation. This strategy significantly re-
duces the cost of large scale annotation by performing the
annotation while recording videos, with error correction in
post-processing.

The weak annotation refinement is performed as follows.
Videos are processed with a low confidence object detec-
tor for the target actor in the video (e.g. a person detec-
tor) forming low confidence object proposals. Note that this
strategy requires a pretrained object detector for the target
class. Next, proposals per frame are grouped using maxi-
mum intersection over union (IoU) assignment forming ob-
ject tracks for each object instance in the video. Next, given
a sequence of object bounding boxes from a human anno-
tator, object tracks are rescored to compute the framewise
product of proposal confidence and IoU with the annotated
box, followed by a mean score over all frames in the track.
Finally, the object tracks are sorted by this rescored confi-
dence, and the track with the highest score selected as the
weak annotation refinement. This selects the object track
that maximally overlaps the weak annotation with highest
confidence, forming a weak annotation refinement. This
procedure assumes that the annotated box from the collec-
tor overlaps the primary actor by at least 50%, which is en-
forced during the human review process. Both the refined
box and the collected box are exported in the dataset release.
The weak annotation code is open source.

Figure B.17 shows an example of the weak annotation
refinement. In this montage, each montage element is a
frame from a collected video. We show the bounding box
annotated by the collector live during collection with the

https://visym.github.io/vipy


Weak Annota*on Refinement

Figure B.17. Dataset post-processing by weak annotation refinement. The human annotation (captioned “weak annotation”) shows the box
defined by the collector in-app while recording, which is generally centered on the subject, but may not be tight around the limbs. The
refinement (captioned “Person”) selects an person track using object detection proposals that optimally overlaps with the weak annotation.
Both annotations are available in the public dataset release.

caption “weak annotation”. This provides the weak label
which is improved into the refined bounding box with the
caption “Person” (or “Person Opens Window” if the subject
was in the process of performing this activity in this video).
This shows that the refinement procedure creates boxes that
are tight around the torso and limbs, even when the subject
is in a atypical pose or partially occluded in the scene. How-
ever, this derived method can still introduce rare assignment
errors (e.g. row 3 column 2), or missing annotations if there
is no overlap between tracks and annotations, so the end-
user should be aware of possible corner cases and fall back
on the weak annotations as needed. The weak annotated
refinement is best shown in a video, showing weakly anno-
tated bounding boxes sampled from the CAP dataset.

Background Stabilization. Background stabilization is the
process of stabilizing the camera to the first frame so that
the background is unmoving. This strategy reduces the cost
of large scale dataset collection by not requiring that the
cameras be rigidly mounted on a tripod, since few free-
lancers have tripods with mobile device mounts available
for use. The collector can record videos handheld, which
are post-processed to stabilize the videos as if they were
rigidly mounted and unmoving.

The approach for background stabilization is affine sta-

bilization to frame zero using multi-scale optical flow corre-
spondence with foreground object keepouts. This pipeline
supports optical flow based stabilization of video which re-
duces the artifacts due to hand-held cameras to stabilize
the background. Remaining artifacts are due to non-planar
scenes, rolling shutter distortion and subpixel optical flow
correspondence errors. The stabilization is only valid within
the tracked actor bounding box for small camera motions.
Large motions will introduce stabilization artifacts due to
non-planar scene effects and should be filtered prior to us-
age. The stabilization artifacts will manifest as a slightly
shifting background relative to the actor which may affect
flow based methods. Finally, the approach transforms all
bounding boxes to be aligned with the stabilized video, and
includes the stabilization residual in video metadata to en-
able filtering stabilization with poor alignment. The stabi-
lization code is open source.

Figure B.18 shows an example of the background sta-
bilization. The background stabilization is best shown
in video, comparing unstabilized handheld video collected
from mobile devices to 5Hz background stabilized video.
Observe that the background stabilized video in these
YouTube links has the background unmoving as if the video
was collected from a rigidly mounted static camera.

https://youtu.be/Qyth4z3XlYk
https://youtu.be/Qyth4z3XlYk
https://youtu.be/Qyth4z3XlYk
https://visym.github.io/vipy
https://youtu.be/Je91vWjSHpo
https://youtu.be/Iyo4fRLR65Q


Figure B.18. Dataset post-processing by background stabilization. We use a flow based affine stabilization method to align each frame to
the first frame of the video to enforce that that the background is unmoving, as if the video was collected from a rigidly mounted camera.
The background stabilization is best shown in video, comparing unstabilized handheld video collected from mobile devices to background
stabilized video. Bounding boxes are affine transformed using the affine stabilization transformation to align boxes to the stabilized video.

Privacy and Consent. We require that all subjects review
a consent form, and provide their informed consent for the
dataset collection. This consent form is Institutional Review
Board (IRB) approved and describes how the data will be
collected, what data will be collected, how it will be shared
and who it will be shared with. The all subjects consent to
their likeness to be shared in publication material and a pub-
licly accessible dataset release for the purposes of visual AI
research. Each subject is required to provide a video con-
sent, which is a selfie video of this subject stating that they
consent to the video collection. This selfie video is used
by the review team to compare that the subject recorded in
the video is the consented subject. This enables rejection
of fraudulent video submissions of non-consented subjects.
An example of this selfie consent video is shown in the up-
per left of the review interface in figure A.13. IRB consent
forms shown in-app are customizable for local IRBs.

Non-consented subjects in the video field of view have
their faces blurred out in-app prior to submission. All sub-
jects with visible personally identifiable information (PII) in
the videos have consented to having their PII shared for the
purposes of visual AI research. Non-consented subjects are
those subjects that are not within the foreground box of the
primary actor. All non-consented subjects have their faces
blurred out on-device in the mobile app prior to submission.

This feature is currently enabled only in the iOS release.

Collection Metadata. The collection platform includes the
following additional metadata released for each video:

• Program name/ID. This is the name of the campaign
under collection. For the CAP dataset, the program
name was either PIP or MEVA. Program names (and
associated program ID) are globally unique on the col-
lector platform.

• Collection name/ID. This is the description of the col-
lection that is given to the collectors. Collection names
are globally unique to a program. The ID is a globally
unique string that uniquely identifies this collection.

• Collection date. This is the timestamp when the video
was collected in the local timezone of the device.

• Geolocation. This is the region of the world that the
collection was recorded (with consent). The geoloca-
tion is captured with the field “ipAddress” which is the
public IP address of the internet service provider of the
device. IP geolocation services can be used to convert
this IP address to a geographic region.

• Collector ID. A globally unique identifier for the reg-
istered collector who was logged into the mobile app
and is recording the video. Collector IDs have been

https://youtu.be/Iyo4fRLR65Q
https://youtu.be/Je91vWjSHpo
https://youtu.be/Iyo4fRLR65Q
https://youtu.be/Iyo4fRLR65Q


anonymized to avoid association with email addresses.
• Subject ID. A globally unique identifier for the con-

sented subject who is in the video. This is the ID of the
subject who was identified at consent time.

• Mobile device. The mobile OS (Android, iOS) and de-
vice hardware that was used to collect the source video.

• Frame rate. The frame rate in fractional frames per
second at which the original video was collected.

• Video dimensions. The video (height, width) in pixels.
• Rotation. The rotation state (e.g. landscape, portrait,

left, right) of the device when recording.
• Blurred faces. The number of non-consented faces

blurred on-device prior to video submission. This fea-
ture is enabled for iOS devices only. Non-consented
faces are those not within the collector annotation box.

• App version. A version string that identifies the release
version of the mobile app used to collect this video.

• Video ID. A globally unique ID that uniquely identifies
this video on the collector platform.

Bias Engineering. Our collections organize activities into
groups to introduce diversity in the scene. For example,
we specify to the collectors to load and unload both from
a trunk and from a rear door of a vehicle to help introduce
within-class diversity. Also, we introduce joint activities
such as ”Leave this scene while talking on a phone”. Fi-
nally, we specify that collectors should be facing or facing
away from the camera to introduce more pose diversity. The
full list of collection names are self explanatory and may be
filtered to remove variants that may not reflect the target
domain bias, or which do not satisfy the assumptions of the
loss function of the target system.

Temporal Padding. All data is distributed in a clipped or
padded form. The clipped dataset includes activities that
are tightly temporally cropped around each activity, such
that the duration of the clip is the duration of the video. The
padded dataset temporally pads each video to ≥ 3s, along
with the metadata to recover the tight clip. This provides
additional video context for each training video to support
the temporal assumptions of a target system or additional
data augmentation.

Recommended Splits. The training, validation and test set
splits are generated using an 80/10/10 split strategy control-
ling for collector ID. The dominant source of bias in the
dataset is the effect of collectors submitting different activ-
ities in closely related locations, such as the same house
or yard. We seek to avoid the same collector providing
videos for both training and testing, in order to create a more
realistic testing scenario. To achieve this, we randomly
split the collector IDs into 80/10/10 splits, then assign all
videos submitted by this collector into the corresponding

training/validation/test sets. The test set is sequestered for
leaderboard evaluation purposes, and videos are available
for download behind a license agreement restricting redis-
tribution.

Figure B.14 shows the distribution of videos per collec-
tor which shows a falloff in submission frequency and al-
lows a random sample of collectors to avoid unbalanced
video distribution in the dataset. The final split enforces
that collector IDs are disjoint between training, validation
and test. The splits are included in the release metadata.

Annotation format. Dataset management includes pro-
cessing annotations and pixels for a large number of videos.
In order to streamline this data processing pipeline, we have
developed the open source vipy package. Vipy is a Python
package for representation, transformation and visualiza-
tion of annotated videos and images. Vipy provides tools
to apply transformations such as downsampling, padding,
scaling, cropping and rotating so that the annotations are
transformed along with the pixels. The vipy annotation for-
mat is open JSON designed for representation of activity
and object annotations in video.

B.6. Benchmark Research Questions

This dataset provides the data to answer the following
research questions. The answers to these research questions
are provided in section 6.1.

Fine grained categories. Is there an improvement when
training using fine grained categories (e.g. person picks up
object from floor vs. person picks up object from table) vs.
coarse grained categories (e.g. person picks up object) when
testing coarse grained activity classification and temporal
activity detection?

Collection diversity. Is there an improvement when train-
ing with explicitly engineered within-class diversity (e.g.
two biases are are controlling for are activity instances col-
lected with actor pose explicitly ”facing away” from the
camera, and instances collected in a crowded scene with
nearby occluding people).

Collector diversity. What is the relationship between the
number of unique collectors in the training set vs. test set
performance? How many unique collectors do we need?
Does it help to have one collector doing many collections in
the same location and clothes?

Stabilization. What is the effect when training soft-
ware background stabilization from handheld collection on
rigidly mounted videos? Can we correct for this domain
shift through software stabilization?

Video data augmentation. Is there a benefit using ac-
tor data augmentation (e.g. collectors repeating activities
slightly differently each time) vs. synthetic data augmenta-
tion (e.g. crops, scales, rotations)?

https://visym.github.io/vipy


B.7. Benchmark Evaluation

Performance benchmarking is the specification of an
evaluation methodology, task and dataset along with a base-
line system design to evaluate system performance. How-
ever, section B.3 discussed that this is impractical for long
duration third person videos. For example, we may collect
thousands of hours of video from a security camera without
ever collecting an organic instance of person puts on shoes.
How do we realistically benchmark a task where the labels
to evaluate may never occur? Furthermore, even if we did
have enough instances of all the target labels, how do we
address the ethical concerns of publicly sharing long dura-
tion video of the private daily lives of humans without this
being interpreted as a fishbowl or worse, exploiting people
to create a human zoo?

Section B.3 addressed this key challenge by introducing
domain adjacent benchmarking. In this strategy, we col-
lect test sets that are from the required viewpoint, but with
actors performing the test activities in short bursts, rather
than real subjects going about their daily lives. This pro-
vides performance evaluation of the dark domain (e.g. third
person, long duration videos collected in private spaces) in
a closely related adjacent domain (e.g. third person, short
duration videos acted in shared spaces). The test data in the
adjacent domain can be collected and distributed ethically,
and performance evaluation on the domain adjacent data is
used as a surrogate for the dark domain.

However, this strategy exposes a fundamental tradeoff
between bias and diversity. As discussed in section B.5,
the Collector platform controls diversity through bias en-
gineering, where we explicitly request collection parame-
ters to encourage diversity of videos submitted. This al-
lows collection of rare activities that may not occur organi-
cally, however these subjects know they are being recorded.
Their payment depends on their submission passing verifi-
cation, which can encourage movements in an exaggerated
or unnatural manner. This introduces an “acting bias” into
the dataset, that would not be present in the target dark do-
main. More generally, we have observed the following bi-
ases when collecting domain adjacent test data:

• Duration bias. All videos are limited to a maximum
duration of 45 seconds. This duration bound is due to
the practical limitations of uploading large videos from
cellular data connections in less developed countries,
and the design goal of avoid long duration videos where
nothing interesting occurs.

• Actor bias. People sometimes perform in an exagger-
ated manner when they know they are being filmed, re-
sulting in awkward or too well-framed scenes.

• Handheld bias. 95% of the dataset is collected hand-
held which leads to moving camera artifacts. Approx-
imately 5% is collected physically stabilized, and all

videos are background stabilized in post-processing.
• Sequence bias. Activities are often performed in a pro-

scribed sequence. It is difficult for a subject to remem-
ber all the things they are supposed to do, so they often
perform the same activities in the same order.

• Center bias. Actors are always in the video center and
never occluded by image boundary. This is due to the in-
app annotation methodology where the bounding box is
specified by keeping the subject in the box in the center
of the camera while recording.

• Consent bias. All our subjects are required to consent
to using their personally identifiable information for im-
proving visual AI research. As such, we do not have
videos of people in large crowds due to the need to get
consent from every subject.

Finally, validation of the domain adjacent benchmark-
ing strategy requires an evaluation of the same system on a
private (and unreleasable) test set from the dark domain as
compared to the public test set in the adjacent domain. This
validation is important to establish trust that performance
on the domain adjacent test set is predictive of performance
in the dark domain, and an initial study was performed in
section 6.3 on a subset of the CAP labels. However, addi-
tional work is needed to characterize the performance of the
full fine-grained label set on security video.



Figure B.19. CAP Dataset Explorer. This visualization shows a 1% sample of the CAP dataset, tightly cropped spatially around the actor
and cropped temporally around the fine-grained activity being performed. The full dataset includes the larger spatiotemporal context in
each video around the activity, and the complete set of activity labels. This open source visualization tool can hover over a specific video
in the montage to show a high resolution animation. The explorer can be sorted by category or color, and shown in full screen.

https://visym.github.io/cap
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Figure B.20. A confusion graph embedding for the activity classification task in the CAP Benchmark showing edges connecting commonly
confused fine-grained activity labels. Node colors correspond to coarse-grained activity labels, and edge thickness corresponds to the
confusion weight. The graph embedding was constructed by computing a confusion matrix on the activity classification test set, such
that each row of the confusion matrix was normalized to sum to one, then thresholded at 0.07 removing self edges. This forms a sparse
adjacency matrix of pairs of labels that are commonly confused. This confusion graph visualization provides a 2-d graph embedding
of neighborhood structures for commonly confused labels, such that the 2-d graph layout was constructed using a force-directed graph
embedding to maintain constant edge length and minimize edge crossings. This provides a visualization of the visual similarity of fine-
grained activity classes as compared to the semantic similarity as specified in the coarse-grained label space. We recommend zooming into
the PDF to see the node labels.



Figure B.21. Activity detection benchmark examples. This visualization shows eight videos sampled from the activity detection task. Each
video is collected as a “scenario”, which is a sequence of seven to eleven activities performed in any order that the subject in the video
chooses. Each row shows the middle frame of the temporal activity annotation, spatially cropped around the primary actor and annotated
with an activity caption. The scenarios by row are: “Get ready to go on a trip”, “Organize a cluttered room by putting things away where
they belong”, “Exercise”, “Eat a snack”, “Sit and watch TV”, “Set the dinner table”, “Cook a meal in the microwave” and “Drink a glass
of water”. For example, the scenario “Get ready to go on a trip” includes the activities: take clothes from a closet, put objects onto the
bed, open suitcase, load and unload clothes into a suitcase, close a suitcase. A system evaluated on the activity detection task is required to
temporally localize these activities in untrimmed clips.
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Figure B.22. CAP hierarchical label structure, visualized as a circular tree with outer fine labels grouped by inner coarse labels. We
recommend zooming into the PDF to view the labels.


