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Abstract

Many online action prediction models observe complete
frames to locate and attend to informative subregions in the
frames called glimpses and recognize an ongoing action
based on global and local information. However, in ap-
plications with constrained resources, an agent may not be
able to observe the complete frame, yet must still locate use-
ful glimpses to predict an incomplete action based on local
information only. In this paper, we develop Glimpse Trans-
formers (GliTr), which observe only narrow glimpses at all
times, thus predicting an ongoing action and the following
most informative glimpse location based on the partial spa-
tiotemporal information collected so far. In the absence of
a ground truth for the optimal glimpse locations for action
recognition, we train GliTr using a novel spatiotemporal
consistency objective: We require GliTr to attend to the
glimpses with features similar to the corresponding com-
plete frames (i.e. spatial consistency) and the resultant class
logits at time t equivalent to the ones predicted using whole
frames up to t (i.e. temporal consistency). Inclusion of our
proposed consistency objective yields ∼ 10% higher accu-
racy on the Something-Something-v2 (SSv2) dataset than
the baseline cross-entropy objective. Overall, despite ob-
serving only ∼ 33% of the total area per frame, GliTr
achieves 53.02% and 93.91% accuracy on the SSv2 and
Jester datasets, respectively.

1. Introduction
Recent models such as TSM [37], Swin-B [38], or

VideoMAE [53] have achieved impressive performance on
video action recognition benchmarks, but they often make
several assumptions that limit their use for certain appli-
cations. For example, the aforementioned models oper-
ate in an offline manner, assuming the full clip (i.e. af-
ter the action has concluded) is available to make a de-
cision. Offline models are often inefficient in online set-
tings, where action recognition must be performed based
on the incomplete clip seen up until the current time. For
example, the performance of Swin-B drops by ∼30% on

Figure 1: We propose Glimpse Transformers (GliTr), an
online action prediction model that only attends to the most
informative glimpses (gt) in the frames (xt). While never
observing frames completely, GliTr predicts label ŷt (i.e. an
estimate of ongoing action at time t) and the next glimpse
location l̂t+1 based solely on the glimpses observed up to t.

the Something-Something-v2 (SSv2) dataset when only the
first 70% frames are observed [52].

Another common assumption is the requirement of com-
plete spatial information over time. But, due to spatial re-
dundancy, it is enough to observe only small but informa-
tive subregions of the full frames to make an accurate pre-
diction. Several approaches [6, 25, 40, 62, 64] primarily
process narrow regions called “glimpses”. However, these
approaches still require the entire frame to determine infor-
mative glimpses. While using a lightweight model for this
“global” view reduces the overall computational cost, it still
requires having a wide field of view initially, which does
not come free. High-resolution, large FOV cameras are ex-
pensive, require more power, and consume more bandwidth
to transmit data. It is essential to minimize such costs in
certain high-risk time-sensitive applications, such as mobile
drones for disaster recovery, monitoring at-risk animals in
the wild, or real-time translation of sign language.

We thus develop an inexpensive model that predicts
informative glimpse locations without observing whole
frames, therefore obviating the need for high-resolution,
large FOV cameras. Starting from a glimpse at a given loca-
tion, our model decides which location to attend to in subse-
quent frames solely based on previously observed glimpses.
Consequently, our model predicts an action using only the
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local information and in an online fashion. We choose trans-
formers [57] to learn glimpse-based attention mechanism
and action prediction, as they can efficiently encode the re-
lations between spatially and temporally distant glimpses.
We thus call our model Glimpse Transformers (GliTr).
Following a factorized encoder architecture [2], we use a)
a spatial encoder that solely models relations between the
patches from a single glimpse to predict spatial features,
and b) two temporal encoders that model interactions be-
tween various glimpse features across time to predict the
class label and the next glimpse location, respectively.

Since the ground truth for optimal glimpse locations is
unavailable, we propose a novel spatiotemporal teacher-
student consistency objective to incentivize GliTr to learn
glimpse location in a weakly supervised manner. With only
glimpses, GliTr (as the student model) is trained to repro-
duce the spatial features and class distribution of a teacher
model ingesting the complete frames of the video. As the
teacher learns to produce predictive features and logits for
the downstream task of online action recognition from the
full frames, enforcing this consistency loss on the student
model implicitly requires focusing attention on the most
informative regions, leading to learning a glimpse mecha-
nism. We demonstrate GliTr’s effectiveness on Something-
Something-v2 [22] and Jester [41] datasets. Our main con-
tributions are as follows.

• We develop GliTr: an online action prediction model
that observes only glimpses and predicts ongoing
action based on partial spatiotemporal observations.
While previous works locate glimpses by first observ-
ing full frames, GliTr predicts the next informative
glimpse location solely based on the past glimpses.

• We propose a novel spatiotemporal consistency ob-
jective to train GliTr without the ground truth for
glimpse location. Under this objective, GliTr must se-
lect glimpses that summarize features and class distri-
bution predicted from the entire frames. Our proposed
consistency yields ∼ 10% gain in accuracy on SSv2
compared to the baseline cross-entropy objective.

• Our model that never observes complete frames and
recognizes action solely based on local information
gathered through glimpses achieves nearly 53% and
94% accuracy on SSv2 and Jester dataset, respectively,
while reducing the total area observed per frame by
nearly 67% (with the glimpses of size 128×128 ex-
tracted from frames of size 224×224).

Our code can be found at: https://github.com/
facebookresearch/GliTr.

2. Related Works

Online Action Recognition. Many state-of-the-art meth-
ods perform offline action recognition once the entire video

is available [17, 19, 10, 27, 55, 56, 59, 60]. However, these
methods are not optimized for the case where the entire
video is not yet available, and the model has to predict the
action based on a preliminary, incomplete video.

Performing an online or early action recognition based
on a partially observed video is a challenging task. A par-
tially observed video may associate with multiple possi-
ble actions, leading to the inherent uncertainty in the pre-
diction task. Several methods focus on predicting actions
from partial videos. Zhao et al. [69], Wu et al. [65], and
Pang et al. [43] anticipate future actions based on the mo-
tion and object relations in the past frames. Many ana-
lyze micro-motions in the available early frames [52, 34,
30, 28]. Other approaches such as dynamic bag-of-words
[49], global-local saliency [32], memorizing hard-to-predict
samples [29], soft regression with multiple soft labels [24],
and probabilistic modeling [35, 9] are also used. While the
existing online action recognition methods focus on partial
observation in the temporal dimension, we focus on partial
information in the temporal as well as the spatial dimension.

Spatial Selection for Action Recognition. Spatial selec-
tion is typically performed using hard attention [42]. As
opposed to soft attention models [68] that observe all re-
gions of the scene with varying attention level, hard at-
tention models sequentially attend to the most informative
glimpses. Hard attention is widely used for image classifi-
cation [3, 16, 42, 68, 44, 48, 47, 63].

Recently, hard attention has also been applied to video
action recognition. Wang et al. propose online action recog-
nition model called Adafocus [62, 64]. Chen et al. [11],
Huang et al. [25] and Wang et al. [58] present offline mod-
els that first observe the entire video in order to predict
attention-worthy glimpse locations. Mac et al. [40] and Ba-
radel et al. [6] also present offline models but locate and
observe multiple informative glimpses per-frame. Another
line of approach leverages pose information and focuses
only on the relevant body parts [5, 13]. The previous ap-
proaches, irrespective of their online or offline nature, ac-
cess full frames to locate informative glimpses. In contrast,
our model never observes complete frames; it only observes
a narrow glimpse from each frame.

Consistency Learning. Consistency is widely used for the
problem of semi-supervised learning [50, 51, 66, 7, 33].
The idea is to force the output of the model to be invariant
to different augmentations of the same input [51, 66, 7, 36],
or variations in the internal representations [4, 50], or the
model parameters at different training epochs [33]. Another
related approach is pseudo-labeling [67, 45], where a sep-
arate teacher model generates pseudo-labels for unlabeled
samples under no perturbations, and the student model is
trained to predict the pseudo-labels under some perturba-
tions. This approach is similar to Knowledge Distillation

https://github.com/facebookresearch/GliTr
https://github.com/facebookresearch/GliTr


Figure 2: An overview of our GliTr. GliTr consists of a frame-level spatial transformer Tf and causal temporal transformers
Tc and Tl. One training iteration requires T forward passes through our model. Above, we show two consecutive forward
passes at time t ≤ T − 1 and t+ 1 ≤ T . Forward pass t (blue path): Given a new glimpse gt, Tf extracts glimpse-features
f̂t. We append f̂t to f̂1:t−1, i.e. features extracted from g1:t−1 during previous passes. Next, Tc predicts label ŷt from f̂1:t.
Simultaneously, Tl predicts next glimpse location l̂t+1 from f̂1:t. Forward pass t+1 (orange path): Given a predicted location
l̂t+1, we extract a glimpse gt+1 at l̂t+1 from a frame xt+1. Then, we follow the same steps as the blue path. After T forward
passes, we compute the losses shown in the right. To find targets ỹ1:T and f̃1:T for spatial and temporal consistency, we use
a separate pre-trained and fixed teacher model (shown on the left and explained in Figure 3) that observes complete frames
x1:T . To maintain stability, we stop gradients from Tl to Tf .

[23], where the student is trained to reconstruct the output
or internal representation [1] of the teacher.

Many early action recognition models learn to predict
the class distribution consistent with the complete video us-
ing only a subset of early frames [8, 20, 31, 46, 61]. Oth-
ers have also leveraged spatiotemporal consistency for com-
plete frames [53, 18]. Inspired by previous work, we use a
teacher model that predicts features from complete frames
and predicts class distribution in an online fashion. Our
student model observes partial spatiotemporal information
and tries to predict features and class distribution consistent
with the teacher model.

3. Models

We use a teacher model to i) initialize our GliTr - a stu-
dent model and ii) compute targets for the spatiotemporal
consistency objective used for training GliTr. We discuss
our teacher model in Sec 3.1 followed by GliTr in Sec 3.2.
We crown the quantities computed by our models using
complete frames and glimpses with (˜) and (ˆ), respectively.

3.1. Teacher

Given spatially complete frames x1:t from a preliminary
video at time t ≤ T , our online teacher model predicts
ỹt, an early estimate of true action yGT . We adapt factor-
ized transformers encoder architecture [2] for our teacher

model, and aggregate spatial and temporal information se-
quentially. It includes the following components.

Feature Extraction (Tf ). We use a spatial transformer Tf
to extract features f̃t from each individual frame xt for all
t. We use the ViT architecture [57, 54] without the final
classification head and collect features from the output cor-
responding to the input class token.

Early Action Prediction (Tc). We use a temporal trans-
former Tc to aggregate features f̃1:t and predict label ỹt.
Since transformers are permutation invariant, we enforce
order in the input sequence using temporal position embed-
dings. Moreover, we do not use a separate class token and
pass the output corresponding to f̃t to the linear classifier to
predict ỹt. Further, to reduce training time, we use causal
attention masking [21, 12]. Hence, during training, Tc ob-
serves f̃1:T and produces ỹ1:T in a single forward pass while
aggregating features in an online progressive manner, refer-
encing only f̃1:t to produce output ỹt at index t.

Glimpse Location Prediction (Tl). We include temporal
transformer Tl to predict glimpse location l̃t+1 from f̃1:t.
Tl has the same architecture as Tc, except the final linear
classifier is replaced by a linear regression head to predict
coordinates l̃t+1. Though not required for online action pre-
diction from full frames, we train Tl to initialize the corre-
sponding module in our student model. Once the student
model is initialized, we discard Tl from the teacher model.



Algorithm 1 Inference using GliTr

1: l̂1 is predefined.
2: for t ∈ {1, . . . , T} do
3: Sample gt at l̂t from xt. ▷ Glimpse Extraction
4: f̂t = Tf (gt, l̂t) ▷ Feature Extraction
5: ŷt = Tc(f̂1:t) ▷ Early Action Prediction
6: l̂t+1 = Tl(f̂1:t) ▷ Glimpse Location Prediction
7: Save f̂t.
8: end for

3.2. Glimpse Transformer (GliTr) — Student

Our Glimpse Transformer (GliTr) is derived and initial-
ized from the teacher model discussed in Sec 3.1. It is an
iterative model that actively locates and attends to narrow
glimpses in a scene and predicts an ongoing action early
based on spatially and temporally incomplete observations.
At time t, GliTr senses a new glimpse gt at location l̂t from
frame xt. Using glimpses g1:t, it predicts i) ŷt, an early ap-
proximation of label yGT and ii) l̂t+1, location of the next
glimpse. We display schematics of GliTr in Figure 1. We
illustrate GliTr’s operation in Algorithm 1 and Figure 2. It
consists of the following components.

Glimpse Extraction. Given a location l̂t = (i, j), we crop
a glimpse gt centered at location l̂t in frame xt. To maintain
differentiability through the cropping operation, we use a
spatial transformer network (STN) [26]1.

Feature Extraction (Tf ). Similar to the teacher model, we
use Tf to extract features f̂t from glimpse gt. We derive
position embeddings for patches in gt using STN.

Early Action Prediction (Tc). We input glimpse features
f̂1:t to Tc which in turn predicts class label ŷt.

Glimpse Location Prediction (Tl). Similarly, we pass the
features f̂1:t to Tl which predicts next glimpse location l̂t+1.

4. Training Objectives

We discuss training objectives for GliTr in Sec 4.1. Con-
sidering GliTr as the downstream model, we design train-
ing objectives suitable for our teacher model in Sec 4.2. We
crown training objectives of GliTr and the teacher model
with ( ̂ ) and ( ˜ ), respectively.

4.1. Glimpse Transformer (GliTr) — Student

Classification Loss. Since our goal is to predict action la-
bel yGT early using the spatially and temporally incomplete
video, we minimize the cross-entropy loss given by

L̂cls = CCE(ŷ1:T , yGT )/T. (1)

1Not to be confused with (spatial) Vision Transformers (ViT) [15].

Spatial Consistency Loss. We require GliTr to attend to the
glimpses that produce features as predictive of the action as
the ones predicted using complete frames by our teacher
model. Hence, we minimize the mean squared error (MSE)
between the glimpse features f̂t predicted by GliTr and the
frame features f̃t predicted by our teacher model, which is

L̂spatial = MSE(f̂1:T , f̃1:T )/T. (2)

Temporal Consistency Loss. While the teacher model has
all instantaneous spatial information available in a complete
frame, GliTr must rely on past glimpses to reason about the
unobserved yet informative regions in the current frame. To
incentivize GliTr to aggregate spatial information from the
past to mitigate partial observability, we minimize the KL-
divergence between the class logits predicted by GliTr using
glimpses (ŷt) and the teacher using complete frames (ỹt),
yielding

L̂temporal = KLD(ŷ1:T , ỹ1:T )/T. (3)

Our final training objective for GliTr is the following:

L̂ = L̂cls + L̂spatial + L̂temporal (4)

4.2. Teacher

Classification loss. For all t, we minimize cross-entropy
loss between the prediction ỹt and the ground-truth label
yGT of the action,

L̃cls = CCE(ỹ1:T , yGT )/T. (5)

Distillation loss. When available, we also use a more
powerful offline action recognition model such as Video-
MAE [53] to predict action yofflineT from a complete video,
i.e. x1:T . Then, we minimize the KL-divergence between
the final prediction ỹT and the above yofflineT given by

L̃dist = KLD(ỹT , y
offline
T ). (6)

Spatiotemporal Consistency losses. Note that the above
two losses train only Tf and Tc. We use the following strat-
egy to train Tl. First, we use the locations l̃1 (learnable pa-
rameter) and l̃2:T predicted by Tl, to extract glimpses g1:T
from frames x1:T . Next, we create copies of Tf and Tc
denoted as T ′

f and T ′
c . We input g1:T and the correspond-

ing position embeddings to T ′
f and predict glimpse features

f̂1:T . Given f̂1:T , T ′
c predicts actions ŷ1:T in an online fash-

ion. Then we minimize,

L̃spatial = MSE(f̂1:T , f̃1:T )/T, (7)

L̃temporal = KLD(ŷ1:T , ỹ1:T )/T. (8)



Figure 3: An overview of our teacher model. Our teacher model consists of a spatial transformer Tf and causal temporal
transformers Tc and Tl. Each training iteration of the teacher model consists of two steps. Step 1 (blue path): Given complete
video frames x1:T , Tf extracts frame features f̃1:T . Next, Tc and Tl predict class labels ỹ1:T and glimpse locations l̃2:T+1

from f̃1:T , respectively. We discard l̃T+1. Step 2 (orange path): Given l̃1 (learnable parameter) and l2:T (predicted in step 1),
we extract glimpses g1:T from x1:T . Then, we create non-learnable copies of Tf and Tc denoted as T ′

f and T ′
c . T ′

f extracts
glimpse-features f̂1:T from g1:T and T ′

c predicts labels ŷ1:T from f̂1:T . We compute losses shown on the right and update
model parameters. To achieve stability during training, we stop gradients from Tl to Tf .

We use the above two losses to update parameters of Tl
only. We design these consistency objectives based on the
spatiotemporal consistency objectives of GliTr (equations 2
and 3). As discussed in Sec 4.1, they encourage Tl to locate
glimpses covering the most useful task-relevant regions in
the frames, but based on complete frames observed in the
past. We demonstrate the training procedure in Figure 3.

The final objective for our teacher model is as follows.

L̃ = L̃cls + L̃dist + L̃spatial + L̃temporal (9)

5. Experiments

Datasets. We experiment with two publicly available large-
scale real-world datasets, namely, Something-Something-
v2 (SSv2) [22] and Jester [41]. We adopt the official
training-validation splits. SSv2 dataset contains videos
recording 174 human actions using everyday objects. There
are ∼170K videos for training and ∼25K for validation.
Jester dataset is a collection of videos capturing 27 basic
hand gestures, consisting of ∼120K videos for training and
∼15K videos for validation.

Implementation. We sample a sequence of 16 and 8 frames
per video from SSv2 and Jester, respectively. We resize
each frame to size 224 × 224 and use glimpses of size
96×96, unless stated otherwise. We use ViT-Small [54] ar-
chitecture for Tf . For Tc and Tl, we use a custom transform-
ers architecture with 768 embedding dimensions, 6 heads,
and a depth of 4.

Optimization. First, we discuss the common setting fol-
lowed by a model-specific setting. For all models and

datasets, we use the same data augmentation scheme as the
one used for VideoMAE [53]. Similar to Wang et al. [64],
we stop gradients from Tl to Tf to maintain stability during
training. We use AdamW optimizer [39] with weight decay
of 5e-2 and cosine learning rate schedule with no warmup
unless stated otherwise. We run experiments for SSv2 and
Jester on 4 A100 GPUs with 40 GB of memory and 4 V100-
SXM2 GPUs with 32 GB of memory, respectively.

To train a teacher model on SSv2 dataset, we initialize Tf
using an open-source ViT-S model [71] pretrained on the
ImageNet dataset [14], and initialize Tc and Tl randomly.
We form a mini-batch using b = 60 videos and use an initial
learning rate of αb

128 , with base learning rate α being 1e-5,
1e-4 and 1e-4 for Tf , Tc and Tl, respectively. We train the
teacher model for 40 epochs with a warmup of 15 epochs
for Tl. For the Jester dataset, we initialize the teacher model
with the teacher model trained on the SSv2 dataset. We do
not use distillation loss L̃dist for Jester dataset. We use a
batch size b of 100 and α of 1e-5 for all modules. The model
is trained for 50 epochs.

Each student model (GliTr) is initialized from a teacher
model trained on the corresponding dataset. We use base
learning rate α = 1e-5 for all modules and train them for
100 and 150 epochs with a batch-size b of 360 and 800
videos from SSv2 and Jester, respectively.

5.1. Empirical Comparisons

Glimpse Mechanisms Under Partial Observability
We compare the glimpse attention strategy learned by

GliTr with four baselines and an approximate upper bound:
• Uniform random: Glimpse locations are independently



Figure 4: Glimpses selected by GliTr on (left) SSv2 and (right) Jester. The complete frames are shown for reference only.
GliTr does not observe full frames. It only observes glimpses. We show additional examples in Appendix A.

drawn from a uniform distribution for each t.
• Gaussian random: Similar to uniform random but in-

stead, the glimpse locations are sampled from Gaus-
sian distribution with zero mean and unit variance and
passed through a tanh() function to constrain loca-
tions to remain within the bounds of the frame.

• Center: The model observes glimpses from a constant
location at the center of each frame.

• Bottom Left: The model attends to the glimpses in the
bottom left corner of the frames.

• Teacher (an upper bound): Glimpse locations are cho-
sen as predicted by the teacher model which looks at
the full frames. In the absence of ground truth glimpse
locations, this provides an approximate upper bound.

To isolate the glimpse strategy’s effect on performance, we
evaluate the glimpses selected by various strategies using
the same model i.e. GliTr. While assessing the baselines
and the upper bound, we ignore predictions from Tl and in-
stead use locations given by the specific strategies described
above. We show results in Figure 5, plotting online action
prediction accuracy after each t. As expected, the prediction
accuracy for all strategies increases as the model observes
more glimpses. The Center and the Bottom Left strategies
outperform other baselines on SSv2 and Jester datasets, re-
spectively. We suspect this is because the object of interest
frequently appears in the center in SSv2; while in most ex-
amples from Jester, hand movements begin and end in the
region near the bottom left corner of the frames. On the
other hand, GliTr outperforms all baselines and achieves
performance closest to the upper bound (i.e. the Teacher
strategy). We plot a histogram of glimpse regions selected
by GliTr in Figure 6. We observe that not only does GliTr
successfully capture different biases (center vs. bottom left)
in the two datasets, but it also ignores the bias if necessary.
Notice the spread in the histograms for t > 1, suggesting
GliTr observes various regions in different videos. Conse-
quently, GliTr achieves better accuracy faster than the base-
lines, and at time T , outperforms the best performing base-
lines with the respective margins of nearly 5% and 11% on
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Figure 5: Comparison of online action prediction accu-
racy using different glimpse mechanisms. (a) SSv2 and
(b) Jester. The Uniform and the Gaussian strategies sam-
ple locations from the respective distributions. We dis-
play mean±5×std computed using five independent runs.
The Center and the Bottom Left strategies always observe
glimpses at the constant locations. The Teacher (an ap-
proximate upper bound) and our GliTr locate informative
glimpses based on past frames and glimpses, respectively.

(a) (b)
Figure 6: Histograms of the glimpse regions selected by
GliTr with increasing time (raster scan order) on (a) SSv2
and (b) Jester. Recall that GliTr observes the first glimpse
at a predetermined location followed by active selection.

SSv2 and Jester. We visualize glimpses selected by GliTr
on example videos from SSv2 and Jester in Figure 4.

Models with Complete Spatial Observability

Glimpse-based offline models. We compare our GliTr
with previous glimpse-based offline action recognition
models in Table 1. We note that a direct comparison be-
tween these approaches is unfair since previous models



Method Online/ Observes SSv2[22] Jester[41]
Offline? full frames? Glimpse-size #frames #pixels Accuracy (%) Glimpse-size #frames #pixels Accuracy (%)

AdaFocus [62]⋄ Offline Yes 144×144 8+12 1M 59.70 - - - -
160×160 8+12 1M 60.20 - - - -
176×176 8+12 1M 60.70 - - - -

AdaFocusV2 [64]⋄ Offline Yes 128×128 8+12 1M 59.60 128×128 8+12 1M 96.60
144×144 8+12 1M 60.50 176×176 8+12 1M 96.90
160×160 8+12 1M 60.80 - - - -
176×176 8+12 1M 61.30 - - - -

GFNet [25]§ Offline Yes 96×96 (×2)⋆ 8 401K 59.50 80×80 (×2)⋆ 8 401K 95.50
96×96 (×2)⋆ 12 602K 61.00 96×96 (×2)⋆ 12 602K 95.80
96×96 (×2)⋆ 16 803K 62.00 128×128 (×2)⋆ 16 803K 96.10

GliTr (Ours) Online No 64×64 16 66K 38.24 64×64 8 33K 84.03
96×96 16 147K 47.56 96×96 8 74K 91.15

128×128 16 262K 53.02 128×128 8 131K 93.91

Table 1: Comparison with glimpse-based action recognition models. We count the number of pixels sensed by different
approaches to perform recognition. Previous approaches are offline and use complete frames to locate informative glimpses
and to recognize actions. GliTr is an online model and only observes glimpses, not complete frames. GliTr achieves com-
petitive performance with a significant saving in the total area observed. ⋄AdaFocus [62] and AdaFocusV2 [64] first observe
8 frames to locate useful glimpses and then sample additional 12 frames to extract glimpses, which requires sensing total 20
frames in advance due to their offline nature. §Results are based on Figure 13 from [25]. ⋆GFNet observes two glimpses per
frame. For comparison with online methods, refer to Figure 7.

also observe complete frames. Further, unlike offline ap-
proaches that initially observe a complete video and select
an informative glimpse at t based on the current, past, and
future frames, our GliTr - an online model - relies only
on the past information to locate glimpses in the current
frame. Moreover, previous methods use global information
gathered from complete frames to locate glimpses and pre-
dict actions; however, GliTr only uses local information.
Nevertheless, we include this analysis to highlight the sav-
ings achieved by GliTr in terms of the amount of area ob-
served for recognition while still achieving competitive per-
formance with partial observations.

We calculate and compare the number of pixels sensed
by various methods to perform action recognition. AdaFo-
cus [62] and AdaFocusV2 [64] uniformly sample 8 frames
from a complete video to predict glimpse locations, fol-
lowed by uniform sampling of another 12 frames to extract
glimpses. In total, they require sensing 20 complete frames
(20×(224×224)≈1M pixels) in advance due to their offline
nature. GFNet [25], on the other hand, locates and extracts
glimpses from the same set of complete frames. When com-
pared to AdaFocusV2 with glimpses of size 128× 128, our
GliTr reduces the amount of sensing by nearly 74% and
87% while compromising only around 6% and 3% accuracy
on SSv2 and Jester, respectively. Further, while GFNet out-
performs GliTr by nearly 14.4% and 4.7% with glimpses
of size 96×96 on SSv2 and Jester, GliTr (with 16 and 8
glimpses, respectively) reduces the amount of sensing by
nearly 82% and 88% compared to GFNet (with 16 and 12
frames, respectively) on these datasets. We emphasize that
GFNet observes full frames and two glimpses per frame in
an offline manner, while GliTr observes only one glimpse
per frame in an online fashion.
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Figure 7: Comparison with early action prediction mod-
els. (a) SSv2 and (b) Jester. While Swin-B [38], TemPr
[52] and TRN [70] predict action early based on complete
frames, GliTr predicts action based on early glimpses.

Early action prediction models. We additionally com-
pare GliTr with early action prediction models in Figure 7.
We emphasize that these approaches observe entire frames
(i.e. global information) from a preliminary video; whereas,
GliTr observes frames only partially through glimpses (i.e.
local information). For SSv2 dataset, we consider Swin-
B [38] and TemPr [52]. We cite Swin-B results from [52],
who evaluate Swin-B for early action prediction before (i.e.
direct inference with pretrained model) and after finetun-
ing on preliminary videos. Notice that, with glimpses of
size 96 × 96 and higher, GliTr outperforms Swin-B fine-
tuned for early action prediction. Further, GliTr also out-
performs TemPr with the glimpses of size 128× 128 when
both have observed early 70% video. For the Jester dataset,
GliTr outperforms TRN [70] for early action prediction with
glimpses of size 96×96 and higher. The results demonstrate
the efficiency of GliTr for early action prediction using only
local information.
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Figure 8: Ablation study on the spatiotemporal consis-
tency objective on SSv2 dataset. (a) accuracy of GliTr
when trained using different combinations of the training
objectives (b) accuracy of the teacher with the glimpses se-
lected by the above variants. (c) accuracy of the above vari-
ants of GliTr when tested with the Uniform random strategy.
We display mean±5×std from five independent runs.

5.2. Ablation on Spatiotemporal Consistency

To demonstrate the value of the proposed spatiotemporal
training objectives, we perform an ablation study for each
on the SSv2 dataset. We train four variants of GliTr us-
ing the following combinations of the training objectives: i)
GliTrbaseline using L̂cls, ii) GliTrspatial using L̂cls + L̂spatial,
iii) GliTrtemporal using L̂cls + L̂temporal, and iv) our default
variant GliTrspatiotemporal using L̂cls + L̂spatial + L̂temporal.
Note that the above variants have the same architecture and
operation; only their training objectives are different. Fig-
ure 8(a) shows results. We observe that including only spa-
tial or only temporal consistency in the training objectives
boosts GliTr’s accuracy by nearly 6% at t=16. Moreover,
including both spatial and temporal consistency provides
the highest improvement of around 10%.

To understand the sources of improvements provided by
the two consistency losses, we perform two more experi-
ments. First, we evaluate glimpse selection strategies learnt
by the above versions of GliTr using an impartial teacher
model in Figure 8(b). We observe better performance for
GliTr when spatial consistency is included in the training
objectives, indicating that spatial consistency helps GliTr
learn better glimpse selection strategy and in turn improves
its performance. Second, we evaluate above four versions
of GliTr using an impartial Uniform random strategy in Fig-
ure 8(c). We observe that GliTr provides the highest per-
formance for the Uniform random strategy when we in-
clude temporal consistency in the training objective, sug-
gesting that temporal consistency improves GliTr’s perfor-
mance by learning a better classifier under partial observ-
ability. We experiment with different training procedures
for the teacher model in Appendix A.
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Figure 9: GliTr with early exit. We display accuracy vs
an average number of glimpses seen by GliTr per video to
predict a class with probability > γ. (a) SSv2 and (b) Jester.

5.3. Early Exit

We extend GliTr for applications that require timely
decision-making. We terminate sensing and conclude a
class when GliTr makes a sufficiently confident prediction.
We evaluate confidence using the maximum value in the
predicted class logits, Ct = max(p(ŷt)) and exit when
GliTr achieves confidence Ct > γ. We show the perfor-
mance of GliTr for varying γ in Figure 9. We observe a
trade-off between the glimpse size and the average num-
ber of glimpses required for confident prediction. GliTr
achieves higher confidence early with larger glimpse sizes
and thus requires fewer glimpses to achieve certain perfor-
mance. While continued sensing improves GliTr’s perfor-
mance on SSv2, the performance saturates on Jester after
the initial 50% of the glimpses, rendering further sensing
unnecessary.

6. Conclusions

We develop a novel online action prediction model called
Glimpse Transformer (GliTr) that observes video frames
only partially through glimpses and predicts an ongoing ac-
tion solely based on spatially and temporally incomplete ob-
servations. It predicts an informative glimpse location for
a current frame based on the glimpses observed in the past.
Without any ground truth for the glimpse locations, we train
GliTr using a novel spatiotemporal consistency objective.
On the Something-Something-v2 (SSv2) dataset, the pro-
posed consistency objective yields around 10% higher accu-
racy than the cross-entropy-based baseline objective. Fur-
ther, we establish that spatial consistency helps GliTr learn
a better glimpse selection strategy, whereas temporal con-
sistency improves classification performance under partial
observability. While never observing frames completely,
GliTr achieves 53.02% and 93.91% accuracy on SSv2 and
Jester datasets and reduces the sensing area per frame by
∼ 67%. Finally, we also showcase a trade-off between the
glimpse size and the number of glimpses required for early
action prediction. GliTr is useful for lightweight, low-cost
devices with small field-of-view cameras.
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A. Additional Results

Ablation on L̃dist. We distill VideoMAE [53] (a
transformers-based offline action recognition model) to our
teacher model on SSv2 dataset. To do so, we minimize
L̃dist i.e. KL-divergence between the class distributions
predicted by our teacher model and VideoMAE based on
complete video (equation 6 in main paper). To assess im-
portance of this objective, we train our teacher model with
and without L̃dist and display results in Figure 10(a). We
observe improvement of approximately 6% in accuracy at
t = 16 when L̃dist is included in the training objectives.
Note, since a pretrained VideoMAE [53] in unavailable for
Jester, we do not use L̃dist for training the teacher model on
this dataset.

Ablation on Initialization Scheme. To improve the per-
formance of the teacher model on the Jester dataset, we
initialize its parameters using the parameters of the teacher
model pretrained on SSv2 with a complete set of training
objectives (equation 9 in the main paper), including L̃dist.
We compare the performance of the above model with the
performance of the teacher initialized using default scheme
i.e. Tf initialized using an open-source ViT-S model [71]
pretrained on the ImageNet, and Tc and Tl initialized ran-
domly. The result shown in Figure 10(b) indicates that
once finetuned on Jester dataset, the teacher pretrained on
SSv2 achieves higher performance than the teacher initial-
ized with default scheme, especially for t > 4. Finally, at
t = 8, the teacher with pretrained weights achieves nearly
1.5% higher accuracy.
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Figure 10: (a) Ablation on L̃dist objective for the teacher
trained on SSv2 dataset. (b) Ablation on initialization
scheme for the teacher trained on Jester dataset.

Visualization. We show more visual results on example
videos from SSv2 in Figure 11.



t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11 t = 12 t = 13 t = 14 t = 15

ŷ1:9=Throwing something in the air and catching it; ŷ10:16=Squeezing something; yGT =Squeezing something

ŷ1:4=Letting something roll down a slanted surface; ŷ5:16=Tearing something into two pieces; yGT =Tearing something into two
pieces

ŷ1:2=Moving something up; ŷ3:16=Showing that something is empty; yGT =Showing that something is empty

ŷ1:4=Taking one of many similar things on the table; ŷ5:16=Folding something; yGT =Folding something

ŷ1=Moving something down; ŷ2:16=Something falling like a feather or paper; yGT =Something falling like a feather or paper

ŷ1:8=Folding something; ŷ9:16=Unfolding something; yGT =Unfolding something

ŷ1:3=Poking something so lightly that it doesn’t or almost doesn’t move; ŷ4:16=Stuffing something into something;
yGT =Stuffing something into something

ŷ1:3=Covering something with something; ŷ4:7=Pulling something from right to left; ŷ8:16=Moving something up;
yGT =Moving something up

Figure 11: Visualization of glimpses (bottom rows) selected by GliTr on SSv2 dataset. Complete frames (top rows) are
shown for reference.


