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Figure 1: We introduce video-to-video (V2V) face-swapping, a novel task of face-swapping that aims to swap the identity and expressions
from a source face video to a target face video. This differs from the face-swapping task that aims to swap only an identity. There are many
downstream applications of V2V face-swapping, such as automating the process of an actor replacing their double in movie scenes, which
today is handled manually using expensive CGI technology. In this example, Nolan, an actor (source video), is recording his dialogues and
expressions at the convenience of his home. Joey Tribiani (target video) is acting as his double in a scene of the famous sitcom FRIENDS.
FaceOff face-swaps Nolan into the scene. Please note the zoomed-in source (yellow box) and face-swapped (red box) output. In this
output, although the source face pose and skin complexion have changed and blended with the background, identity and expressions are
preserved.

Abstract

Doubles play an indispensable role in the movie indus-
try. They take the place of the actors in dangerous stunt
scenes or scenes where the same actor plays multiple char-
acters. The double’s face is later replaced with the actor’s
face and expressions manually using expensive CGI tech-
nology, costing millions of dollars and taking months to
complete. An automated, inexpensive, and fast way can be
to use face-swapping techniques that aim to swap an iden-
tity from a source face video (or an image) to a target face
video. However, such methods cannot preserve the source
expressions of the actor important for the scene’s context.

*Equal contribution

To tackle this challenge, we introduce video-to-video (V2V)
face-swapping, a novel task of face-swapping that can pre-
serve (1) the identity and expressions of the source (actor)
face video and (2) the background and pose of the target
(double) video. We propose FaceOff, a V2V face-swapping
system that operates by learning a robust blending oper-
ation to merge two face videos following the constraints
above. It reduces the videos to a quantized latent space and
then blends them in the reduced space. FaceOff is trained
in a self-supervised manner and robustly tackles the non-
trivial challenges of V2V face-swapping. As shown in the
experimental section, FaceOff significantly outperforms al-
ternate approaches qualitatively and quantitatively.
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1. Introduction

Having doubles
1

for the starring actors in movies is an
indispensable component of movie-making. A double may
take the actor’s place during stunt scenes involving difficult
and dangerous life-risking acts. They may even stand-in
for the actor during regular fill scenes or multiple retakes.
For instance, ‘The Social Network’ extensively used body
doubles as a stand-in for actor Armie Hammer who played
multiple roles of twin brothers
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. In such scenes, the dou-
ble’s face is later replaced by the actor’s face and expres-
sions using CGI technology requiring hundreds of hours of
manual multimedia edits on heavy graphical units costing
millions of dollars and taking months to complete. Thus,
the production team is generally forced to avoid such scenes
by changing the mechanics of the scene such that only the
double’s body is captured to provide an illusion of the ac-
tor. This may act as a constraint on the director’s creativity.
However, such adjustments are not always possible.

A different scenario is post-production scene modifica-
tions. If a dialogue is discovered in post-production that
suits a scene better than the original, the entire scene is reset
and re-shot. We propose that the actor could instead record
in a studio and get their face superimposed on the previous
recording. In fact, like other industries, the movie indus-
try is also headed in the direction where actors can work
from home. In today’s era, CGI technologies can produce
incredible human structures, scenes, and realistic graphics.
However, it is known that they struggle to create realistic-
looking skin
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. As shown in Fig. 1, an actor could lend their
identity and expressions from the comfort of their home or
studio while leaving the heavy-duty to graphics or a dou-
ble. CGI technologies needed for such tasks are manually
operated, expensive, and time-consuming.

To automate such tasks, fast and inexpensive computer
vision based face-swapping [17, 23, 15, 14, 11, 1] tech-
niques that aim to swap an identity between a source (ac-
tor) video and target (double) video can be considered.
However, such techniques cannot be directly used. Face-
swapping swaps only the source identity while retaining the
rest of the target video characteristics. In this case, the ac-
tor’s expressions (source) are not captured in the output.
To tackle this, we introduce ”video-to-video (V2V) face-
swapping” as a novel task of face-swapping that aims to (1)
swap the identity and expressions of a source face video and
(2) retain the pose and background of the target face video.
The target pose is essential as it depends on the scene’s con-
text. E.g., a stunt man performs at an outdoor location deal-

1
https://en.wikipedia.org/wiki/Double (filmmaking)
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ing with machines or talking to a fellow double; the actor
acts in front of a green screen at a studio. Here, the dou-
ble’s pose is context-aware, and the actor only improvises.

How is the proposed task a video-to-video face-
swapping task? Unlike the face-swapping task that swaps
a fixed identity component from one video to another video,
V2V face-swapping swaps expressions changing over time
(a video) with another video with changing pose and back-
ground (another video), making our task video-to-video.

Approach: Swapping faces across videos is non-trivial
as it involves merging two different motions - the actor’s
face motion (such as eye, cheek, or lip movements) and the
double’s head motion (such as pose and jaw motion). This
needs a network that can take two different motions as input
and produce a third coherent motion. We propose FaceOff,
a video-to-video face swapping system that reduces the face
videos to a quantized latent space and blends them in the
reduced space. A fundamental challenge in training such
a network is the absence of ground truth. Face-swapping
approaches [23, 15, 17] use a discriminator-generator setup
for training the networks. The discriminator is responsi-
ble for monitoring the desired characteristic of the swapped
output. However, using a discriminator leads to hallucinat-
ing components of the output different from the input - for
instance, modified identity or novel expressions. Thus, we
devise a self-supervised training strategy for training our
network: We use a single video as the source and target. We
then introduce pseudo motion errors on the source video.
Finally, we train a network to ‘fix’ these pseudo errors to
regenerate the source video.

FaceOff can face-swap unseen cross-identities directly
at inference without any finetuning. Moreover, unlike most
face-swapping methods that need inference time optimiza-
tion ranging from 5 minutes to 24 hours on high-end GPUs,
FaceOff face-swaps videos in just one forward pass, taking
less than a second. A key feature of FaceOff is that it pre-
serves at least one of the input expressions (source in our
case), whereas, as we show later, existing methods fail to
preserve either of the expressions (source or target expres-
sions). Lastly, we curate and benchmark V2VFaceSwap,
a V2V face-swapping test dataset made of instances from
unconstrained YouTube videos on unseen identities, back-
grounds, and lighting conditions.

Our contributions in this work are as follows: (1)
We introduce V2V face-swapping, a novel task of face-
swapping that aims to swap source face identity and expres-
sions while retaining the target background and pose. (2)
We propose FaceOff: a V2V face-swapping system trained
in a self-supervised manner. FaceOff generates coherent
videos by merging two different face videos. (3) Our ap-
proach works on unseen identities directly at the inference
time without any finetuning. (4) Our approach does not
need any inference time optimization taking less than a sec-

https://en.wikipedia.org/wiki/Double_(filmmaking)
https://www.youtube.com/watch?v=spIdefyvjTs
https://www.youtube.com/watch?v=fCrYfRjpuXU&t=26s
https://www.cinemablend.com/new/Armie-Hammer-Didn-t-Play-Both-Winklevoss-Twins-Social-Network-20994.html
https://www.youtube.com/watch?v=FtifBqf2Z50


Source Target
Method Identity Expression Pose Background
Face Swapping ✓ × ✓ ✓
Face Reenactment × ✓ × ✓
Face Editing × × ✓ ✓
FaceOff (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison of FaceOff with existing tasks. ✓and
× indicate if the characteristic is preserved and lost respec-
tively. FaceOff solves a unique task of preserving source
identity and expressions that has not been tackled before.

ond to infer. (5) We release the V2VFaceSwap test dataset
and establish a benchmark for the V2V face-swapping task.

2. Related Work
Table 1 provides a comparison between the existing tasks

and FaceOff. FaceOff aims to solve a unique challenge of
V2V face-swapping that has not been tackled before.

Face Swapping: Swapping faces across images and
videos have been well-studied [17, 15, 23, 2, 10, 11, 14, 1,
3] over the years. These works aim to swap an identity ob-
tained from a source video (or an image) with a target video
of a different identity such that all the other target charac-
teristics are preserved in the swapped output. DeepFakes
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,
DeepFaceLabs [17], and FSGAN [15] swap the entire iden-
tity of the source; Motion-coseg [23] specifically swaps the
identity of single/multiple segments of a given source image
(either hair or lips or nose, etc.) to a target video. Unlike
these approaches that swap only the identity or a specific
part of an image, we swap temporally changing expressions
along with the identity of the source. Moreover, FSGAN
takes 5 minutes of inference time optimization, DeepFace-
Labs and DeepFakes take up to 24 hours of inference time
optimization on high-end GPUs. FaceOff takes less than a
second to face swap in-the-wild videos of unseen identities.

Face Manipulation: Face manipulation animates the
pose and expressions of a target image/video according to
a given prior [30, 24, 22, 31, 17, 33, 25, 35]. In audio-
driven talking face generation [18, 19, 12, 34, 25, 21, 7],
the expressions, pose, and lip-sync in the target video
are conditioned on a given input speech audio. Unlike
such works, we do not assume an audio prior for our ap-
proach. A different direction of face reenactment animates
the source face movements according to the driving video
[26, 21, 27, 9, 22, 24]. The identity is not exchanged in these
works. This can tackle a special case of our task – when
the target and source have the same identity. Here, a target
image can be re-enacted according to the source video ex-
pressions. As we show in Section 4.2, FaceOff captures the
micro-expression of the driving video, unlike the existing

6
https://github.com/deepfakes/faceswap

approaches. This is because we rely on a blending mecha-
nism - allowing a perfect transfer of the driving expressions.
Another direction that handles this special case is face edit-
ing, which involves editing the expressions of a face video.
Using this approach, one can directly edit the target video
according to the source expressions. Image-based face edit-
ing works such as [8, 4, 5, 13] have gained considerable
attention. However, realizing these edits on a sequence of
frames without modeling the temporal dynamics often re-
sults in temporally incoherent videos. Recently, STIT [28]
was proposed that can coherently edit a given video to dif-
ferent expressions by applying careful edits in the video’s
latent space. Despite the success, these techniques allow
limited control over expression types and variations. More-
over, obtaining a correct target expression that matches the
source expressions is a manual hit and trial. FaceOff can
add micro-expressions undefined in the label space simply
by blending the emotion from a different video of the same
identity with the desired expressions.

3. FaceOff: Face Swapping in videos
We aim to swap a source face video with a target face

video such that (1) the identity and the expression of the
source video are preserved and (2) the pose and background
of the target video are retained. To do this, we learn to blend
the foreground of the source face video with the background
and pose of the target face video (as shown in Fig. 3) such
that the blended output is coherent and meaningful. This
is non-trivial as it involves merging two separate motions.
Please note that we only aim to blend the two motions;
thus, the desired input characteristics – identity, expres-
sions, pose, and background – are naturally retained from
the inputs without additional supervision. The main chal-
lenge is to align the foreground and background videos so
that the output forms a coherent identity and has a single co-
herent pose. All the other characteristics are reconstructed
from the inputs. Our core idea is to use a temporal autoen-
coding model that merges these motions using a quantized
latent space. Overall, our approach relies on (1) Encoding
the two input motions to a quantized latent space and learn-
ing a robust blending operation in the reduced space. (2)
A temporally and spatially coherent decoding. (3) In the
absence of ground truth, a self-supervised training scheme.

3.1. Merging Videos using Quantized Latents

We pose face-swapping in videos as a blending problem:
given two videos as input, blend the videos into a coherent
and meaningful output. We rely on an encoder to encode
the input videos to a meaningful latent space. Our over-
all network is a special autoencoder that can then learn to
blend the reduced videos in the latent space robustly and
generate a blended output. We select our encoder model
carefully, focusing on “blending” rather than learning an

https://github.com/deepfakes/faceswap
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Figure 2: FaceOff is a temporal autoencoder operating in a hierarchical quantized latent space. We use a self-supervised
training scheme to train FaceOff using a distance loss on the exact output-ground truth pairs. In the scheme, we first extract
the face, f , and background, b, from a single video, s. We then apply “pseudo errors” made of random rotation, translation,
scaling, colors, and non-linear distortions to modify f . Next, modified f (acting as a source) and b (acting as a target) are
concatenated at each corresponding frame channel-wise to form a single video input. This video input is then reduced and
blended, generating a coherent and meaningful output. This output is expected to match the source video, s.
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Figure 3: Inference pipeline: FaceOff can be directly in-
ferred on any unseen identity without any finetuning. At
inference, the source video is first aligned frame-by-frame
using the target face landmarks. FaceOff then takes (1) fore-
ground of the aligned source video and (2) background and
pose of the target video as input and generates the output.

overall data distribution. Encoder networks with a contin-
uous latent space reduce the dimension of a given input,
often down to a single vector that can be considered a part
of an underlying distribution. This latent vector is highly
stochastic; a very different latent is generated for each new
input, introducing high variations that a decoder needs to
handle. Recently, “vector quantization” was proposed in
[16, 6, 20]. Quantization reduces the variation in latents by
fixing the number of possible latent codes. However, retain-
ing the input properties using a single quantized latent vec-
tor is impossible. Thus the inputs are reduced to a higher
dimensional quantized space (such as 64 × 64) such that
properties of the input needed for a full reconstruction are

preserved. We adopt such an encoder in our proposed au-
toencoder for encoding our videos. As shown in Fig. 2, our
encoder is a modified VQVAE2 [20] encoder that encodes
videos instead of images. We introduce temporal modules
made of non-linear 3D convolution operations to do so.

The input to our encoder is a single video made by
concatenating the source foreground and target background
frames channel-wise, as shown in Fig. 3. Like VQVAE2,
our encoder first encodes the concatenated video input
framewise into 32 × 32 and 64 × 64 dimensional top and
bottom hierarchies, respectively. Before the quantization
step at each of these hierarchies, our temporal modules are
added that process the reduced video frames. This step al-
lows the network to backpropagate with temporal connec-
tions between the frames. The further processing is then
again done framewise using a standard VQVAE2 decoder.
In practice, we observed that this temporal module plays an
important role in generating temporally coherent outputs,
as we show through ablations in Sec. 5. Our special autoen-
coder differs from standard autoencoders in the loss com-
putation step. Instead of reconstructing the inputs, a six-
channel video input – the first three channels belonging to
the source foreground and the last three channels belonging
to the target pose and background – FaceOff aims to gen-
erate a three-channel blended video output. Therefore, the
loss computation is between a ground truth three-channel
video and the three-channel video output.

3.2. Self-supervised Training Approach

Existing face-swapping approaches employ generators
and discriminators to train their networks. These discrimi-
nators are classifiers that indicate a relationship between the



Figure 4: Existing face-swapping methods [17, 23, 15] use
a generator-discriminator training strategy. This results in
outputs with novel expressions as explained in Sec. 3.2. We
show this phenomenon on DeepFaceLabs [17]. The expres-
sions in the output (red boxes) do not match either of the
inputs, source, or target. E.g., direction of eye gaze (second
row) or overall laugh expression (first row). FaceOff suc-
cessfully preserves the source expressions (green boxes).

generator’s outputs and underlying data distribution, such
as an identity or an expression distribution. In such a setup,
the generators are encouraged to hallucinate some aspects
of the outputs to match the discriminator’s data distribu-
tion causing it to output novel identities or expressions. We
show this phenomenon in Fig. 4. A hard distance loss (e.g.,
Euclidean distance) indicating the exact output-ground truth
relationship instead of a stochastic discriminator loss can
be used to overcome this issue. In V2V face-swapping, re-
taining the exact source expressions is essential. Thus, we
train our network using a distance loss by devising a self-
supervised training scheme that forces the network to re-
construct a denoised version of a given input video.

To understand the training scheme, we first look at the
challenges we encounter when trying to blend two motions
naively. First, there is a global and local pose difference be-
tween the faces in the source and target videos. We fix the
global pose difference by aligning (rotating, translating, and
scaling) the source poses according to the target poses us-
ing face landmarks, as shown in Fig. 3. However, the local
pose difference is not overcome this way, and we observe
temporal incoherence across the frames. Next, we observe
a difference in the foreground and background color (illu-
mination, hue, saturation, and contrast). Thus, we train our
network to solve these known issues by reproducing these
errors during training. As illustrated in Fig. 2, we train our
model in the following manner: (1) Take a video, say s. (2)
From s, extract the face region, say f ; and the background
region, say b. (3) Introduce pseudo errors (rotation, color,
scale, etc.) on f . (4) Construct the input v by concatenat-

ing f and b channel-wise at every corresponding frame. (5)
Train the network to construct s from v. Although we train
the network using the same identity in the self-supervised
scheme, it can face-swap unseen identities directly at infer-
ence without any finetuning.

3.3. Reproducing Inference Errors at Training

Given two talking-head videos, source and target, de-
noted by S and T , respectively, our aim is to generate an
output that preserves (1) the identity and the emotions from
S and (2) the pose and background from T . We assume
the number of frames, denoted by N , in S and T are equal.
Given two frames, si ∈ S and ti ∈ T such that i = 1...N ,
we denote fsi ∈ Fs and bti ∈ Bt as the foreground and
background of si and ti, respectively. Given Fs and Bt as
input, the network fixes the following issues:

First, the network encounters a local pose difference be-
tween fsi and bti . This pose difference can be fixed using an
affine transformation function: δ(fsi , bti) = m(rfsi +d)+
m(rbti +d) where m, r, and d denote scaling, rotation, and
translation. Face being a non-rigid body; the affine trans-
formation only results in the two faces with a perfect match
in the pose but a mismatch in shape. One can imagine try-
ing to fit a square in a circle. One would need a non-linear
function to first transform the square to a shape similar to
the circle so that they fit. We denote this non-linear trans-
formation as a learnable function ω(fsi , bti). Being non-
linear, a network can perform such transformations on the
input frames as long as both faces fit. These transforma-
tions can be constrained using a distance loss to encourage
spatially-consistent transformations that generate a mean-
ingful frame. However, these spatially-consistent trans-
formations may be temporally-incoherent across the video.
This would result in a video with a face that wobbles, as
shown in Sec. 5. Thus, we constrain the transformations as
ω(fsi , bti , fsk , btk) where k = 1..N such that k ̸= i. Here,
the transformation on the current frame is constrained by the
transformations on all the other frames in the video. This is
enabled by the temporal module, as explained in Sec. 3.1.
Lastly, the network encounters a difference in color between
fsi and bti that is fixed as c(fsi , bti).

As shown in Fig. 2, at the time of training S = T . For
each frame si ∈ S, we first extract the foreground, fsi ∈ Fs

(acting as the source), and the background, bti ∈ Bt (act-
ing as the target) from si. Next, we apply random rotation,
translation, scaling, color, and distortion (Barrel, Mustache)
errors on fsi . The training setting is then formulated as:

Φ : Ω(δ, ω, c) (1)

J =
1

N

N∑
i=1

[si − Φ(fsi , bti , fsk , btk)] + P (Fs, Bt) (2)



Figure 5: “Inference Cost” denotes the time taken for a single face-swap. FSGAN, with 400× FaceOff’s inference cost, fails
to swap the identities fully. DeepFakes and DeepFaceLabs swap the identities successfully but are 9000× less efficient than
FaceOff. FaceOff perfectly swaps source identity and expressions. None of the other methods can swap source expressions.

Quantitative Evaluation Human Evaluation
Method SPIDis ↓ LMD ↓ TL-ID ↑ TG-ID ↑ FVD ↓ Identity ↑ Exps. ↑ Ntrl. ↑
Motion-coseg [23] 0.48 0.59 0.872 0.893 293.652 6.82 5.81 7.44

FSGAN [15] 0.49 0.57 0.914 0.923 242.691 7.84 6.83 8.31

FaceOff ( Ours ) 0.38 0.41 0.925 0.915 255.980 9.64 9.86 8.18

Table 2: Quantitative metrics on V2VFaceSwap dataset. DeepFakes and DeepFaceLabs take up to 24 hours for best inference
on a single face-swap [17]; thus, we do not compare with them. The metrics used for comparisons are explained in Sec. 4.
For fair comparisons, FSGAN scores are reported without any inference time optimization. Although FSGAN has a slightly
better FVD and Naturalness (Ntrl.) score, it fails to swap the identity fully, as can be clearly seen from SPIDis, LMD, and
Identity metric. Moreover, the difference in the FVD of FSGAN and FaceOff is not statistically significant perceptually [29].

where Ω is a learnable function, J is the overall cost of
the network to be minimized, and P is a perceptual metric
(LPIPS [32] in our case), and k = 1 . . . N such that k ̸= i.

4. Experiments and Results

In this section, we try to answer the following questions:
(1) How well can we preserve the source identity compared
to the alternate approaches? (2) How well do we preserve
the expressions of the input videos? (3) How efficient is
FaceOff when compared to other techniques?

We compare FaceOff against different tasks: “face-
swapping”, “face reenactment”, and “face editing”. Please
note that none of these methods can fully solve the task of
V2V face-swapping that we aim to solve. Specifically, V2V
face-swapping aims to (1) swap source identity and expres-
sions and (2) retain the target pose and background.

Quantitative Metrics: (1) Source-Prediction Identity

Distance (SPIDis): computes the difference in identity be-
tween face images. It is computed as the Euclidean distance
between the face embeddings generated using dlib’s face
detection module. (2) Fréchet Video Distance (FVD), as
proposed in [29], computes the temporal coherence in the
generated video output. (3) Landmark Distance (LMD):
evaluates the overall face structure and expressions of the
source and swapped output. To compute LMD, the source
and the swapped face landmarks are normalized: faces are
first centered and then rotated about the x-axis so that the
centroid and angle between the eye coordinates align a
mean image. Next, the faces are scaled to the mean im-
age. Euclidean distance between the normalized swapped
and source video landmarks gives the LMD. We com-
pute LMD between the source and the output face ex-
pressions (excluding the landmarks of the face permiter).
(4) Temporally Locally (TL-ID) and Temporally Globally
(TG-ID) Identity Preservation: proposed in [28]. They



Figure 6: Qualitative results of FaceOff. Note that there is a significant difference in the source and target expressions in all
the cases. FaceOff swaps the source expressions (mouth, eyes, etc.) and identity; and retains the target pose and background.

evaluate a video’s identity consistency at a local and global
level. For both metrics, a score of 1 would indicate that the
method successfully maintains the identity consistency of
the original video.

Qualitative Metrics: A mean absolute opinion score on
a scale of 1−10 is reported for (1) Identity: How similar is
the swapped-output identity with the source identity? (2)
Expressions (Exps.): How similar is the swapped-output
expression with the source expression?, and (3) Naturalness
(Ntrl.): Is the generated output natural?

Experimental Dataset: We benchmark the
V2VFaceSwap dataset made of unconstrained YouTube
videos with many unseen identities, backgrounds, and
lighting conditions. The supplementary paper reports
further details about the dataset and evaluation setup.

4.1. Face-Swapping Results

Fig. 5 and Table 2 present a qualitative and quantita-
tive comparison, respectively, between the existing methods
and FaceOff. Fig. 6 demonstrates FaceOff’s face-swapping
results on videos. As shown in Fig. 5, FaceOff success-
fully swaps the identity and expressions of the source face
video. Existing methods cannot swap the source expres-
sions, which shows that FaceOff solves a unique challenge
of V2V face-swapping. An interesting finding of our ex-
periments is that the existing methods do not preserve any
input expressions – source or target – at the output and
generate novel expressions, e.g., novel gaze direction or
mouth movements. This phenomenon is also demonstrated
in Fig. 4. FSGAN and Motion-Coseg fail to swap the iden-
tity entirely. This is further corroborated through quanti-

Figure 7: Qualitative demonstration of Face Manipulation.
As can be seen, none of the methods, except FaceOff, pre-
serve the source expressions or pose information perfectly.

tative metrics in Table 2. FaceOff shows an improvement
of ∼ 22% and ∼ 28% on SPIDis and LMD over FSGAN,
indicating FaceOff’s superiority.

FSGAN achieves a slightly better FVD and is voted more
natural in human evaluation. This is expected as FSGAN
does not change the target identity much and retains the
original target video making it more natural to observe.
FaceOff swaps identity near-perfectly. Moreover, existing
methods only have a single target motion to follow. FaceOff
tackles an additional challenge of motion-to-motion swap-
ping that needs source-target pose alignment at every frame.
This requires FaceOff to generate a novel motion such that
the identity, expressions, and pose in the motion look nat-
ural and match the inputs. Despite this challenge, the dif-



ference between FSGAN and FaceOff’s FVD is not percep-
tually significant [29]. DeepFaceLabs and DeepFakes swap
identity well but are 9000× more computationally expen-
sive than FaceOff, making FaceOff much more scalable and
applicable in the real world.

4.2. Target Face Manipulation Results

Given that the source and target have the same identity,
the problem reduces to the following - transfer expressions
from a source video to a target video. This is fundamentally
the setting of “face reenactment.” One could also modify
the expression of the target by identifying and quantifying
the source expressions and using a “face-editing” network
to edit the target expressions. Fig. 7 presents a qualitative
comparison between FaceOff, “face reenactment” (Face-
Vid2Vid) and “face-editing” (STIT).

Face Reenactment: We compare against Face-
Vid2Vid [30], a SOTA face reenactment network that reen-
acts the pose and expression of a target image using a source
(driving) video. As shown in Fig. 7, FaceOff preserves the
source’s micro-expression, such as exact mouth opening
and eye-frown. FaceOff relies on a deterministic distance
loss, so it can retain the precise input expressions in the out-
put. Moreover, FaceOff retains the temporal target pose and
background, whereas Face-Vid2Vid modifies a static frame.

Face Editing: Using a powerful neural network, one
can introduce the desired expressions in a video by perform-
ing edits. We compare our method against STIT [28]. STIT
modifies the expressions of a face video based on an input
label. We observe the source expression and manually try
out various intensities of the ”smile” emotion ranging from
negative to positive direction. As seen in Fig. 7, although
STIT can change the overall expression, it needs a manual
hit-and-trial to pinpoint the exact expression. It also lacks
personalized expression (amount of mouth opening, subtle
brow changes). Also, each and every expression cannot be
defined using a single label, and introducing variations in
emotion along the temporal dimension is hard. With our
proposed method, one can incorporate any emotion in the
video (as long as we have access to a source video).

5. Ablation Study
We investigate the contribution of different modules and

errors in achieving FaceOff. Fig. 8 demonstrates the perfor-
mance of FaceOff without the proposed temporal module.
As shown, although at a frame level, the output is spatially-
coherent, as we look across the frames, we can notice the
temporal incoherence. The face seems to ‘wobble’ across
the frames - squishing up and down. In fact, without the
temporal module, the network does not understand an over-
all face structure and generates unnatural frames (marked
in red). Jumping from one red box to another, we can
see that the face structure has completely changed. This

Figure 8: FaceOff without Temporal Module. As we jump from
one frame to another (red boxes), we can observe a ”wobble ef-
fect”: significant change in the facial structure (elongated and then
squeezed). This occurs as the model does not have an understand-
ing of the neighboring frames while generating the current frame.

Component SPIDis ↓ LMD ↓ FVD ↓
FaceOff 0.38 0.41 255.980

w/o Temporal. 0.71 0.49 350.60
w/o Rotation 0.65 0.44 292.76
w/o Color 0.74 0.42 303.35
w/o Translation 0.58 0.47 271.82
w/o Distortion 0.55 0.45 285.54

Table 3: We remove different components and errors and evaluate
their contributions in achieving FaceOff.

suggests that constraining the network by the neighboring
frames using the temporal module enables the network to
learn a global shape fitting problem, consequently generat-
ing a temporally coherent output.

Table 3 presents the quantitative contribution of the tem-
poral module and each of the errors used for self-supervised
training. The metrics indicate that each of them contributes
significantly to achieving FaceOff.

6. Conclusion
We introduce “video-to-video (V2V) face-swapping”, a

novel task of face-swapping. Unlike face-swapping, which
aims to swap an identity from a source face video (or an
image) to a target face video, V2V face-swapping aims to
swap the source expressions along with the identity. To
tackle this, we propose FaceOff, a self-supervised temporal
autoencoding network that takes two face videos as input
and produces a single coherent blended output. As shown
in the experimental section, FaceOff swaps the source iden-
tity much better than the existing approaches while also be-
ing 400× computationally efficient. It also swaps the exact
source identity that none of the methods can do. V2V face-
swapping has many applications; a significant application
can be automating the task of replacing the double’s face
with the actor’s identity and expressions in movies. We be-
lieve our work adds a whole new dimension to movie edit-
ing that can potentially save months of tedious manual effort
and millions of dollars.
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