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Abstract

Deep Neural Networks (DNNs) have been shown to be

susceptible to memorization or overfitting in the presence

of noisily-labelled data. For the problem of robust

learning under such noisy data, several algorithms have

been proposed. A prominent class of algorithms rely on

sample selection strategies wherein, essentially, a fraction

of samples with loss values below a certain threshold

are selected for training. These algorithms are sensitive

to such thresholds, and it is difficult to fix or learn

these thresholds. Often, these algorithms also require

information such as label noise rates which are typically

unavailable in practice. In this paper, we propose an

adaptive sample selection strategy that relies only on

batch statistics of a given mini-batch to provide robustness

against label noise. The algorithm does not have any

additional hyperparameters for sample selection, does

not need any information on noise rates and does not

need access to separate data with clean labels. We

empirically demonstrate the effectiveness of our algorithm

on benchmark datasets.1

1. Introduction

The deep learning models, which are highly effective in

many applications, need vast amounts of training data. Such

large-scale labelled data is often generated through crowd-

sourcing or automated labeling, which naturally cause

random labelling errors. In addition, subjective biases in

human annotators too can cause such errors. The training

of deep networks is adversely affected by label noise and

hence robust learning under label noise is an important

problem of current interest.

In recent years many different approaches for robust

learning of classifiers have been proposed, such as, robust

loss functions [9, 6, 53, 42], loss correction [35], meta-

learning [25, 43], sample reweighting [38, 39, 41, 16,

1Codes for reproducibility will be made available here:

https://github.com/dbp1994/masters_thesis_codes/

tree/main/BARE

11], etc. In this paper we present a novel algorithm

that adaptively selects samples based on the statistics of

observed loss values in a minibatch and achieves good

robustness to label noise. Our algorithm does not use any

additional system for learning weights for examples, does

not need extra data with clean labels and does not assume

any knowledge of noise rates. The algorithm is motivated

by curriculum learning and can be thought of as a way to

design an adaptive curriculum.

The curriculum learning [4, 21] is a general strategy of

sequencing of examples so that the networks learn from

the ‘easy’ examples well before learning from the ‘hard’

ones. This is often brought about by giving different

weights to different examples in the training set. Many of

the recent algorithms for robust learning based on sample

reweighting can be seen as motivated by a similar idea. A

good justification for this approach comes from some recent

studies [50] that have shown that deep networks can learn to

achieve zero training error on completely randomly labelled

data, a phenomenon termed as ‘memorization’. Further

studies such as [3, 29] have shown that the networks, when

trained on noisily-labelled data, learn simpler patterns first

before overfitting to the noisily-labelled data.

In the last few years, several strategies have been

proposed that aim to select (or give more weightage to)

‘clean’ samples for obtaining a degree of robustness against

label noise (e.g., [16, 11, 49, 47, 27, 38, 13]). All such

methods essentially employ the heuristic of ‘small loss’ for

sample selection wherein (a fraction of) small-loss valued

samples are preferentially used for learning the network.

Many of these methods use an auxiliary network to assess

the loss of an example or to learn to map loss values to

sample weights. Such methods need additional computing

resources to learn multiple networks and may also need

separate clean data (without label noise) and the methods

involve careful choice of additional hyperparameters. In

general, it is difficult to directly relate the loss value of an

example with the reliability of its label. Loss value of any

specific example is itself a function of the current state of

learning and it evolves with epochs. Loss values of even
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clean samples may change over a significant range during

the course of learning. Further, the loss values achievable

by a network even on clean samples may be different for

examples of different classes.

Motivated by these considerations, we propose a simple,

adaptive selection strategy called BAtch REweighting

(BARE). Our algorithm utilizes the statistics of loss values

in a mini-batch to compute the threshold for sample

selection in that mini-batch. Since, it is possible that this

automatically calculated threshold is different for different

mini-batches even within the same epoch, our method

amounts to using a dynamic threshold which naturally

evolves as learning proceeds. In addition, while calculating

the batch statistics we take into consideration the class

labels also and hence the dynamic thresholds are also

dependent on the given labels of the examples.

The main contribution of this paper is an adaptive

sample selection strategy for robust learning that is simple

to implement, does not need any clean validation data,

needs no knowledge at all of the noise rates and also

does not have any hyperparameters in the sample selection

strategy. It does not need any auxiliary network for sample

selection. We empirically demonstrate the effectiveness

of our algorithm on benchmark datasets: MNIST [22],

CIFAR-10 [19], and Clothing-1M [46] and show that our

algorithm is much more efficient in terms of time and has

as good or better robustness compared to other algorithms

for different types of label noise and noise rates.

The rest of the paper is organized as follows: Section 2

discusses related work, Section 3 discusses our proposed

algorithm. Section 4 discusses our empirical results and

concluding remarks are provided in Section 5.

2. Related Work

Curriculum learning (CL) as proposed in [4] is the

designing of an (optimal) manner of sequencing of training

samples (based on a notion of easiness of an example)

to improve the performance of the learning system. A

curriculum called Self-Paced Learning (SPL) is proposed

in [21] wherein easiness is decided upon based on how

small the loss values are. A framework to unify CL and

SPL is proposed in [15]. SPL with diversity [14] proposes a

sample selection scheme to encourage selection of a diverse

set of easy examples. This is further improved in [56]

by encouraging more exploration during early phases of

learning. More recently, [18] propose a curriculum which

computes exponential moving averages of loss values as

difficulty scores for training samples.

Motivated by similar ideas, many sample reweighting

algorithms are proposed for tackling label noise in neural

networks. Many different ways of fixing/learning such

weights have been proposed (e.g., [16, 11, 49, 47, 27,

38, 13, 39]) with the general heuristic being that low loss

values indicate reliable labels. Algorithms such as Co-

Teaching [11] and Co-Teaching+ [49] use two networks

and select samples with loss value below a threshold in one

network to train the other. In Co-Teaching, the threshold is

chosen based on the knowledge of noise rates. The same

threshold is used in Co-Teaching+ but the sample selection

is based on disagreement between the two networks. [27]

also relies on ‘small loss’ heuristic but the threshold for

sample selection is adapted based on the knowledge of

label noise rates. MentorNet [16], another recent algorithm

based on curriculum learning, uses an auxiliary neural

network trained to serve as a sample selection function.

Another sample selection algorithm is proposed in [31]

where the idea is to train two networks and update the

network parameters only in case of a disagreement between

the two networks. These sample selection functions are

mostly hand-crafted and, hence, they can be sub-optimal.

Another strategy is to solve a bilevel optimization problem

to find the optimal sample weights (e.g., [13]). The sample

selection function used in [11, 49] is sub-optimally chosen

for which [47] proposes an AutoML-based approach to find

a better function, by fine-tuning on separate data with clean

labels. Sample reweighting algorithms proposed in [38] and

[39] use online meta-learning and need some extra data with

clean labels.

Apart from the sample selection/reweighting approaches

described above, there are other approaches to tackling label

noise. Label cleaning algorithms [41, 48, 40] attempt at

identifying and correcting the potentially incorrect labels

through joint optimization of sample weights and network

weights. Loss correction methods [35, 43] suitably modify

loss function (or posterior probabilities) to correct for

the effects of label noise on risk minimization; however,

they need to know (or estimate) the noise rates. There

are also theoretical results that investigate robustness of

risk minimization [9, 53, 20, 42, 28, 32]. Regularization

methods, of which sample reweighting approaches are a

part, employ explicit or implicit regularization to reduce

overfitting to noisy data [1, 24, 30, 51, 37, 33]. More

recently, some works have used self-supervised learning

methods to obtain better initializations for robustness

[10, 54], second-order statistics for label cleaning [57]

and cluster-based consensus methods [58] to improve

noise transition matrix estimations thereby improving loss-

correction methods. In this paper, our interest is in the

approach of sample selection for achieving robustness to

label noise.

The proposed algorithm, BARE, is a simple, adaptive

method to select samples which relies only on statistics

of loss values (or, equivalently, statistics of class posterior

probabilities because we use CCE loss) in a given mini-

batch. We do not need any extra data with clean labels

or any knowledge about label noise rates. Since it uses

batch statistics, the selection thresholds are naturally tied
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to the evolving state of learning of the network without

needing any tunable hyperparameters. Unlike in many

of the aforementioned algorithms, we do not need any

auxiliary networks for learning sample selection function,

or cross-training, or noise rate estimation and, thus, our

algorithm is computationally more efficient.

3. Batch Reweighting Algorithm

In this section we describe the proposed sample

reweighting algorithm that relies on mini-batch statistics.

3.1. Problem Formualtion and Notation

Under label noise, the labels provided in the training set

may be ‘wrong’ and we want a classifier whose test error

with respect to ‘correct’ labels is good.

Consider a K-class problem with X as the

feature/pattern space and Y = {0, 1}K as the label

space. We assume all labels are one-hot vectors and

denote by ek the one-hot vector corresponding to class

k. Let Sc = {(xi, y
c
i ), i = 1, 2, · · · ,m} be iid samples

drawn according to a distribution D on X × Y . We are

interested in learning a classifier that does well on a test

set drawn according to D. We can do so if we are given

Sc as training set. However, what we have is a training

set S = {(xi, yi), i = 1, 2, · · · ,m} drawn according to a

distribution Dη . The yi here are the ‘corrupted’ labels and

they are related to yci , the ‘correct’ labels through

P [yi = ek′ | yci = ek] = ηkk′ (1)

The ηkk′ are called noise rates. (In general the above

probability can also depend on the feature vector, xi, though

we do not consider that possibility in this paper). We call

this general model as class conditional noise because here

the probability of label corruption depends on the original

label. A special case of this is the so called symmetric noise

where we assume ηkk = (1−η) and ηkk′ = η
K−1 , ∀k

′ �= k.

Here, η represents the probability of a ‘wrong’ label. With

symmetric noise, the corrupted label is equally likely to be

any other label.

We can represent ηkk′ as a matrix and we assume it is

diagonally dominant (that is, ηkk > ηkk′ , ∀k′ �= k). (Note

that this is true for symmetric noise if η < K−1
K

). Under

this condition, if we take all patterns labelled by a specific

class in the label-corrupted training set, then patterns that

truly belong to that specific class are still in majority in that

set. Now the problem of robust learning under label noise

can be stated as follows: We want to learn a classifier for

the distribution D but given training data drawn from Dη .

We denote by f(·; θ) a classifier function parameterized

by θ. We assume that the neural network classifiers that we

use have softmax output layer. Hence, while the training

set labels, yi, are one-hot vectors, we will have f(x; θ) ∈
ΔK−1, where ΔK−1 ⊂ [0, 1]K is the probability simplex.

We denote by L(f(x; θ), y) the loss function used for the

classifier training which in our case is the CCE loss.

3.2. Adaptive Curriculum through Batch Statistics

General curriculum learning can be viewed as

minimization of a weighted loss [21, 16]

min
θ,w∈[0,1]m

Lwtd(θ,w) =

m∑
i=1

wiL(f(xi; θ), yi)

+G(w) + β||θ||2

(2)

where G(w) represents the curriculum. Since one normally

employs SGD for learning, we will take m here to be the

size of a mini-batch. One simple choice for the curriculum

is [21]: G(w) = −λ||w||1, λ > 0. Putting this in the

above, omitting the regularization term and taking li =
L(f(xi; θ), yi), the optimization problem becomes

min
θ,w∈[0,1]m

Lwtd(θ,w) =

m∑
i=1

(wili − λwi) (3)

=

m∑
i=1

(wili + (1− wi)λ)−mλ (4)

Under the usual assumption that loss function is non-

negative, for the above problem, the optimal w for any fixed

θ is: wi = 1 if li < λ and wi = 0 otherwise. We first

consider a modification where we make λ depend on the

class label. The optimization problem becomes

min
θ,w∈[0,1]m

Lwtd(θ,w) =
m∑
i=1

(wili − λ(yi)wi) (5)

=

K∑
j=1

m∑
i=1

i:yi=ej

(wili + (1− wi)λj)−

K∑
j=1

m∑
i=1

i:yi=ej

λj (6)

where λj = λ(ej). As is easy to see, the optimal wi (for

any fixed θ) are still given by the same relation: for an i with

yi = ej , wi = 1 when li < λj . Note that this relation for

optimal wi is true even if we make λj a function of θ and of

all xi with yi = ej . Thus we can have a truly dynamically

adaptive curriculum by making these λj depend on all xi of

that class in the mini-batch and the current θ.

The above is an interesting insight: in the Self-Paced

Learning formulation [21], the nature of the final solution

is same even if we make the λ parameter a function of the

class-labels and also other feature vectors corresponding

to that class. This gives rise to class-label-dependent

thresholds on loss values. To the best of our knowledge, this

direction of curriculum learning has not been explored. The

next question is how should we decide or evolve these λj .

As we mentioned earlier, we want these to be determined

by the statistics of loss values in the mini-batch.
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Consider those i for which yi = ej . We would be setting

wi = 1 and hence use this example to update θ in this

minibatch if this li < λj . We want λj to be fixed based

on the observed loss values of this mini-batch. Since there

is sufficient empirical evidence that we tend to learn from

the clean samples before overfitting to the noisy ones, some

quantile or similar statistic of the set of observed loss values

in the mini-batch (among patterns labelled with a specific

class) would be a good choice for λj .

Since we are using CCE loss, we have li =
− ln (fj(xi; θ)) and as the network has softmax output

layer, fj(xi; θ) is the posterior probability of class-j under

current θ for xi. Since the loss and this posterior probability

are inversely related, our criterion for selection of an

example could be that the assigned posterior probability is

above a threshold which is some statistic of the observed

posterior probabilities in the mini-batch. In this paper we

take the statistic to be mean plus one standard deviation.

In other words, in any mini-batch, we set the weights for

samples as

wi =

{
1 if fyi

(xi; θ) ≥ λyi
= μyi

+ κ ∗ σyi

0 else
(7)

where μyi
= 1

|Syi
|

∑
s∈Syi

fyi
(xs; θ) and σ2

yi
=

1
|Syi

|

∑
s∈Syi

(fyi
(xs; θ) − μyi

)2 indicate the sample mean

and sample variance of the class posterior probabilities

for samples having class label yi. [Note: Syi
= {k ∈

[m] | yk = yi} where m is the size of mini-batch]. We

use κ = 1 in this paper but we empirically observe that

as long as samples from the ‘top quantiles’ are chosen (i.e.

κ > 0), we get good and similar robustness against label

noise across different κ. See Table 19 in Supplementary for

an ablation study.

Figures 9–12 (in Supplementary) show that the threshold

value (RHS of Equation 7 with κ = 1) varies across

different mini-batches for a given class or epoch. This

varying nature of statistics of the loss values in a mini-batch

further justifies the rationale for our method of choosing an

adaptive threshold.

Algorithm Implementation

Algorithm 1 outlines the proposed method. Keeping

in mind that neural networks are trained in a mini-batch

manner, Algorithm 1 consists of three parts: i.) computing

sample selection thresholds, λyx
, for a given mini-batch

of data (Step 8-13), ii.) sample selection based on these

thresholds (Steps 15-19) as per Equation 7, and iii.) network

parameter updation using these selected samples (Step 20).

4. Experiments on Noisy Dataset

Dataset: We demonstrate the effectiveness of the proposed

algorithm on two benchmark image datasets: MNIST and

Algorithm 1 BAtch REweighting (BARE) Algorithm

1: Input: noisy dataset Dη , # of classes K, # of epochs

Tmax, learning rate α, mini-batch size |M|
2: Initialize: Network parameters, θ0, for classifier f(·; θ)

3: for t = 0 to Tmax − 1 do

4: Shuffle the training dataset Dη

5: for i = 1 to |Dη|/|M| do

6: Draw a mini-batch M from Dη

7: m = |M| // mini-batch size

8: for p = 1 to K do

9: Sp = {k ∈ [m] | yk = ep}
// collect indices of samples with class-p

10: μp = 1
|Sp|

∑
s∈Sp

fp(xs; θt)
// mean posterior prob. for samples with class-p

11: σ2
p = 1

|Sp|

∑
s∈Sp

(fp(xs; θt)− μp)2

// variance in posterior prob. for samples with class-p

12: λp ← μp + σp // sample selection threshold for

class-p as per Equation 7

13: end for

14: R ← φ // selected samples in M
15: for each x ∈ M do

16: if fyx
(x; θt) ≥ λyx

then

17: R ← R∪ (x, yx)
// Select sample as per Equation 7

18: end if

19: end for

20: θt+1 = θt − α∇
(

1
|R|

∑
(x,yx)∈R L(x, yx; θt)

)
// parameter updates

21: end for

22: end for

23: Output: θt

CIFAR10. These data sets are used to benchmark almost

all algorithms for robust learning under label noise and

we briefly describe the data sets. MNIST contains 60,000

training images and 10,000 test images (of size 28 × 28)

with 10 classes. CIFAR-10 contains 50,000 training images

and 10,000 test images (of size 32×32) with 10 classes. We

test the algorithms on two types of label noise: symmetric

and class-conditional label noise. In symmetric label noise,

each label is randomly flipped to any of the remaining

classes with equal probability, whereas for class-conditional

noise, label flipping is done in a set of similar classes. For

the simulations here, for MNIST, the following flipping is

done: 1 ← 7, 2 → 7, 3 → 8, and 5 ↔ 6. Similarly,

for CIFAR10, the following flipping is done: TRUCK →
AUTOMOBILE, BIRD → AIRPLANE, DEER → HORSE,

CAT ↔ DOG. We use this type of noise because it is

arguably a more realistic scenario and also because it is

the type of noise, in addition to symmetric noise, that other

algorithms for learning under label noise have used. We

also provide results with an arbitrary noise rate matrix (see
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Supplementary). For all the datasets, 80% of the training

set is used for training and, from the remaining 20% data,

we sample 1000 images that constitute the validation set.

We also experiment with the Clothing-1M dataset [46]

which is a large-scale dataset obtained by scrapping off the

web for different images related to clothing. It contains

noise that can be characterized as somewhat close to

feature-dependent noise, the most generic kind of label

noise. An estimated 40% images have noisy labels. The

training dataset contains 1 million images and the number of

classes are 14. There are additional training, validation, and

test sets of 50k, 14k, and 10k images respectively with clean

labels. Since there’s a class imbalance, following similar

procedure as in existing baselines, we use 260k images from

the original noisy training set for training while ensuring

equal number of images per class in the set and test set of

10k images for performance evaluation.

Data Augmentations: No data augmentation is used for

MNIST. Random croppings with padding of 4, and random

horizontal flips are used for CIFAR-10. For Clothing-1M.

we do random cropping while ensuring image size is fixed.

Baselines: We compare the proposed algorithm with the

following algorithms from literature: 1.) Co-Teaching

(CoT) [11] which involves cross-training of two similar

networks by selecting a fraction (dependent on noise rates)

of low loss valued samples; 2.) Co-Teaching+ (CoT+)

[49] which improves upon CoT with the difference being

sample selection only from the subset upon which the two

networks’ predictions disagree; 3.) Meta-Ren (MR) [38],

which involves meta-learning of sample weights on-the-fly

by comparing gradients for clean and noisy data; 4.) Meta-

Net (MN) [39], which improves upon MR by explicitly

learning sample weights via a separate neural network;

Curriculum Loss (CL) [27], which involves a curriculum

for sample selection based on (estimated) noise rates; and

6.) Standard (CCE) which is the usual training through

empirical risk minimization with cross-entropy loss (using

the data with noisy labels).

Among these baselines, CoT, CoT+, and CL are sample

selection algorithms that require knowledge of noise rates.

The algorithms CoT+ and CL need a few initial iterations

without any sample selection as a warm-up period; we

used 5 epochs and 10 epochs as warm up period during

training for MNIST and CIFAR-10 respectively. MR and

MN assume access to a small set of clean validation data.

Because of this, and for a fair comparison among all the

baselines, a clean validation set of 1000 samples is used

in case of MR and MN, and the same set of samples but

with the noisy labels is used for the rest of the algorithms

including the proposed one.

Network architectures & Optimizers: While most

algorithms for learning under label noise use MNIST

and CIFAR10 data, different algorithms use different

network architectures. Hence, for a fairer comparison, we

have decided to use small networks that give state of art

performance on clean data and investigate the robustness

we get by using our algorithm on these networks. Please

refer the supplementary material for details about the

network architectures and optimization routines.

Performance Metrics: For all algorithms we compare test

accuracies on a separate test set with clean labels. The

main idea in all sample selection schemes is to identify

noisy labels. Hence, in addition to test accuracies, we also

compare precision (# clean labels selected / # of selected

labels) and recall (# clean labels selected / # of clean

labels in the data) in identifying noisy labels.

4.1. Discussion of Results

Performance on MNIST. Figure 1 shows the evolution

of test accuracy (with training epochs) under symmetric

(η ∈ {0.5, 0.7}) and class conditional (η = 0.45) label

noise for different algorithms. We can see from the figure

that the proposed algorithm outperforms the baselines for

symmetric noise. For the case of class-conditional noise,

the test accuracy of the proposed algorithm is marginally

less than the best of the baselines, namely CoT and MR.

Performance on CIFAR-10. Figure 2 shows the

test accuracies of the various algorithms as the training

progresses for both symmetric (η ∈ {0.3, 0.7}) and class-

conditional (η = 0.4) label noise. We can see from the

figure that the proposed algorithm outperforms the baseline

schemes and its test accuracies are uniformly good for

all types of label noise. It is to be noted that while test

accuracies for our algorithm stay saturated after attaining

maximum performance, the other algorithms’ performance

seems to deteriorate as can be seen in the form of accuracy

dips towards the end of training. This suggests that our

proposed algorithm doesn’t let the network overfit even

after long durations of training unlike the case with other

algorithms.

All the algorithms, except the proposed one, have

hyperparameters (in the sample selection/weighting

method) and the accuracies reported here are for the best

possible hyperparameter values obtained through tuning.

The MR and MN algorithms are particularly sensitive to

hyperparameter values in the meta learning algorithm. In

contrast, BARE has no hyperparameters for the sample

selection and hence no such tuning is involved. It may be

noted for the test accuracies on MNIST and CIFAR-10 that

sometimes the standard deviation in the accuracy for MN is

high. As we mentioned earlier, we noticed that MN is very

sensitive to the tuning of hyper parameters. While we tried

our best to tune all the hyper parameters, may be the final

ones we found for these cases are still not the best and that

is why the standard deviation is high.

Performance on Clothing1M. On this dataset, BARE

achieved a test accuracy of 72.28% against the accuracy
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(a) (b) (c)

Figure 1: Test Accuracies - MNIST - Symmetric (a & b) & Class-conditional (c) Label Noise

(a) (b) (c)

Figure 2: Test Accuracies - CIFAR10 - Symmetric (a & b) & Class-conditional (c) Label Noise

(a) (b) (c)

Figure 3: Label Precision - MNIST - Symmetric (a & b) & Class-conditional (c) Label Noise

of 68.8% achieved by CCE. The accuracy achieved by

BARE is better than that reported in the corresponding

papers for all other baselines except for C2D [54] &

DivideMix [24] which reported accuracy of 74.58% &

74.76% resp. (The results are summarized in Table 3

in the Supplementary). These results show that even for

datasets used in practice which have feature-dependent

label noise, BARE performs better than all but two

baselines. We note that the best performing baseline,

DivideMix, requires about 2.4 times the computation time

required for BARE. In addition to this, DivideMix requires

tuning of 5 hyperparameters whereas no such tuning is

required for BARE. The second best performing baseline,

C2D, is also computationally expensive than BARE as it

relies on self-supervised learning.

Efficacy of detecting clean samples. Figure 3

and Figure 4 show the label precision (across epochs)

of the various algorithms on MNIST and CIFAR-10

respectively. One can see from these figures that BARE has

comparable or better precision. Thus, compared to other

sample selection algorithms, a somewhat higher fraction of

examples selected for training by BARE have clean labels.
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(a) (b) (c)

Figure 4: Label Precision - CIFAR10 - Symmetric (a & b) & Class-conditional (c) Label Noise

(a) (b) (c)

Figure 5: Label Recall - Symmetric (a & b) & Class-conditional (c) Label Noise

While test accuracies and label precision values do

demonstrate the effectiveness of algorithms, it’s also

instructive to look at the label recall values. Label recall

tells us how a sample selection algorithm performs when it

comes to selecting reliable, clean samples. Figure 5 shows

the label recall values for CoT, CoT+, CL, and BARE for

MNIST (5a) and CIFAR-10 (5b & 5c). It can be noted that

BARE consistently achieves better recall values compared

to the baselines. Higher recall values indicate that the

algorithm is able to identify clean samples more reliably.

This is useful, for example, to employ a label cleaning

algorithm on the samples flagged as noisy (i.e., not selected)

by BARE. CoT+ selects a fraction of samples where two

networks disagree and, hence, after the first few epochs, it

selects very few samples (∼ 3000) in each epoch. Since

these are samples in which the networks disagree, a good

fraction of them may have noisy labels. This may be the

reason for the poor precision and recall values of CoT+ as

seen in these figures.

This can be seen from Figure 6c as well which shows

the fraction of samples chosen by the sample selection

algorithms as epochs go by for η = 0.4 (class-conditional

noise) on CIFAR-10 dataset. It can be noted that, as noise

rate is to be supplied to CoT and CL, they select 1−η = 0.6
fraction of data with every epoch. Whereas, in case of

Table 1: Algorithm run times for training (in seconds)

ALGORITHM MNIST CIFAR10

BARE 310.64 930.78

COT 504.5 1687.9

COT+ 537.7 1790.57

MR 807.4 8130.87

MN 1138.4 8891.6

CL 730.15 1254.3

CCE 229.27 825.68

CoT+, the samples where the networks disagree is small

because of the training dynamics and as a result, after a

few epochs, it consistently selects very few samples. Since

the noise is class-conditional, even though η = 0.4, the

actual amount of label flipping is ∼ 20%. And this is why

it’s interesting to note that BARE leads to an approximate

sample selection ratio of 80%. (We provide similar plots for

different noise rates and datasets in the supplementary.)

Efficiency of BARE. Table 1 shows the typical run times

for 200 epochs of training with all the algorithms. It can

be seen from the table that the proposed algorithm takes

roughly the same time as the usual training with CCE loss
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(a) (b) (c)

Figure 6: (a & b): Test accuracies when estimated (symmetric) noise rate, η = 0.5, and true noise rate, η = 0.7, for MNIST

& CIFAR-10 resp.; (c): sample fraction values for η = 0.4 (class-conditional noise) on CIFAR-10

whereas all other baselines are significantly more expensive

computationally. In case of MR and MN, the run times are

around 8 times that of BARE for CIFAR-10.

Sensitivity to noise rates. Some of the baselines

schemes such as CoT, CoT+, and CL require knowledge

of true noise rates beforehand. (In fact, in the simulations

shown so far, we have used the actual noise rate for these

baselines). This information is typically unavailable in

practice. One can estimate the noise rates but there would

be inevitable errors in estimation. Figure 6 shows the effect

of mis-specification of noise rates for these 3 baselines

schemes. As can be seen from these figures, while the

algorithms can exhibit robust learning when the true noise

rate is known, the performance deteriorates if the estimated

noise rate is erroneous. BARE does not have this issue

because it does not need any information on noise rate.

Sensitivity to batch size. To show the insensitivity to

batch size, we show in Table 2 results on MNIST & CIFAR-

10 for both types of label noise and three batch sizes: 64,

128 (used in paper), and 256.

5. Conclusions

We proposed an adaptive sample selection scheme,

BARE, for robust learning under label noise. The algorithm

relies on statistics of scores (posterior probabilities) of

all samples in a minibatch to select samples from that

minibatch. The current algorithms for sample selection in

literature rely on heuristics such as cross-training multiple

networks or meta-learning of sample weights which is

often computationally expensive. They may also need

knowledge of noise rates or some data with clean labels

which may not be easily available. In contrast, BARE

neither needs an extra data set with clean labels nor does

it need any knowledge of the noise rates, nor does it

need to learn multiple networks. Furthermore, it has no

hyperparameters in the selection algorithm. Comparisons

with baseline schemes on benchmark datasets show the

effectiveness of the proposed algorithm both in terms of

performance metrics and computational complexity. In

addition, performance figures in terms of precision and

recall show that BARE is very reliable in selecting clean

samples. This, combined with the fact that there are no

additional hyperparameters to tune, shows the advantage

that BARE can offer for robust learning under label noise.

Table 2: Test Accuracy (%) of BARE on MNIST & CIFAR-

10 with batch sizes ∈ {64, 128, 256}

DATASET NOISE (η) BATCH SIZE TEST ACCURACY

64 95.31± 0.16
MNIST 50% (SYM.) 128 94.38± 0.13

256 94.44± 0.48

64 93.31± 0.63
MNIST 45% (CC) 128 94.11± 0.77

256 94.68± 0.63

64 76.77± 0.38
CIFAR-10 30% (SYM.) 128 75.85± 0.41

256 74.56± 0.53

64 71.87± 0.28
CIFAR-10 40% (CC) 128 70.63± 0.46

256 69.03± 0.35

The mini-batch statistics used in BARE are class-

specific. Hence, one may wonder whether such statistics

would be reliable when the number of classes is large

and hence is comparable to the mini-batch size. Our

preliminary investigations show that the method delivers

good performance even on a 101-class dataset with a

minibatch size of 128 (see Table 18 in Supplementary

material). A possible approach for tackling large number

of classes would be to make mini-batches in such a way

that any given mini-batch contains examples of only a few

of the classes (though for a full epoch there would be no

class-imbalance). More investigations are needed to study

this aspect of BARE.
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[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and

Jason Weston. Curriculum learning. In Proceedings of the

26th annual international conference on machine learning,

pages 41–48, 2009.

[5] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.

Food-101–mining discriminative components with random

forests. In European conference on computer vision, pages

446–461. Springer, 2014.

[6] Nontawat Charoenphakdee, Jongyeong Lee, and Masashi

Sugiyama. On symmetric losses for learning from corrupted

labels. In International Conference on Machine Learning,

pages 961–970. PMLR, 2019.

[7] Pengfei Chen, Junjie Ye, Guangyong Chen, Jingwei Zhao,

and Pheng-Ann Heng. Beyond class-conditional assumption:

A primary attempt to combat instance-dependent label noise.

arXiv preprint arXiv:2012.05458, 2020.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and

Geoffrey Hinton. A simple framework for contrastive

learning of visual representations. In International

conference on machine learning, pages 1597–1607. PMLR,

2020.

[9] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust

loss functions under label noise for deep neural networks.

In Proceedings of the Thirty-First AAAI Conference on

Artificial Intelligence, pages 1919–1925, 2017.

[10] Aritra Ghosh and Andrew Lan. Contrastive learning

improves model robustness under label noise. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR) Workshops, pages

2703–2708, June 2021.

[11] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao

Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-

teaching: Robust training of deep neural networks with

extremely noisy labels. In Advances in neural information

processing systems, pages 8527–8537, 2018.

[12] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt,
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