
Self-Attentive Pooling for Efficient Deep Learning

Fang Chen1,*, Gourav Datta1,*, Souvik Kundu2, Peter A. Beerel1
1Universiy of Southern California, Los Angeles, USA 2Intel Labs, USA
{fchen905, gdatta, pabeerel}@usc.edu souvikk.kundu@intel.com

Abstract

Efficient custom pooling techniques that can aggres-
sively trim the dimensions of a feature map for resource-
constrained computer vision applications have recently
gained significant traction. However, prior pooling works
extract only the local context of the activation maps, lim-
iting their effectiveness. In contrast, we propose a novel
non-local self-attentive pooling method that can be used as
a drop-in replacement to the standard pooling layers, such
as max/average pooling or strided convolution. The pro-
posed self-attention module uses patch embedding, multi-
head self-attention, and spatial-channel restoration, fol-
lowed by sigmoid activation and exponential soft-max. This
self-attention mechanism efficiently aggregates dependen-
cies between non-local activation patches during down-
sampling. Extensive experiments on standard object clas-
sification and detection tasks with various convolutional
neural network (CNN) architectures demonstrate the supe-
riority of our proposed mechanism over the state-of-the-
art (SOTA) pooling techniques. In particular, we surpass
the test accuracy of existing pooling techniques on differ-
ent variants of MobileNet-V2 on ImageNet by an average
of ∼1.2%. With the aggressive down-sampling of the acti-
vation maps in the initial layers (providing up to 22x re-
duction in memory consumption), our approach achieves
1.43% higher test accuracy compared to SOTA techniques
with iso-memory footprints. This enables the deployment of
our models in memory-constrained devices, such as micro-
controllers (without losing significant accuracy), because
the initial activation maps consume a significant amount
of on-chip memory for high-resolution images required for
complex vision tasks. Our pooling method also leverages
channel pruning to further reduce memory footprints.

1. Introduction
In the recent past, CNN architectures have shown im-

pressive stride in a wide range of complex vision tasks,
such as object classification [15] and semantic segmentation
[14]. With the ever-increasing resolution of images cap-
tured by modern camera sensors, large activation maps in
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the initial CNN layers are consuming a large amount of on-
chip memory, hindering the deployment of the CNN models
on resource-constrained edge devices [6]. Moreover, these
large activation maps increase the inference latency, which
impedes real-time use cases [6]. Pooling is one of the most
popular techniques that can reduce the resolution of these
activation maps and aggregate effective features. Histori-
cally, pooling layers (either as strided convolution layers or
standalone average/max pooling layers) have been used in
almost all the SOTA CNN backbones to reduce the spatial
size of the activation maps, and thereby decrease the mem-
ory footprint of models [40, 19, 15].

Existing pooling techniques aggregate features mainly
from the locality perspective. For example, LIP [11] utilizes
a convolution layer to extract locally-important aggregated
features. For relatively simple objects with less diverse fea-
ture distribution, it might be sufficient to express them by
aggregating local information. But for more complex ob-
jects, downsampling feature maps with only local informa-
tion might be difficult because different local regions of an
object might be correlated with each other. For example, an
animal’s legs can be in different local regions of an image,
which might provide useful information to classify the ani-
mal as a biped or a tetrapod. Additionally, the features ex-
tracted from an object and its background might also be re-
lated. For example, with the sea in background, it is highly
unlikely that we can find the class ‘car’ in the foreground,
and more likely that we can find classes like ‘boat’ or ‘ship’
in the foreground.

To reduce the significant on-chip memory consumed by
the initial activation maps, large kernel sizes and strides
are often required in the pooling layers to fit the models
in resource-constrained devices. This might lead to loss of
feature information when only leveraging locality for aggre-
gation. Moreover, recently proposed in-sensor [21, 5] and
in-pixel [6, 7, 8] computing approaches can benefit from
aggressive bandwidth reduction in the initial CNN layers
via down sampling. We hypothesize that the accuracy loss
typically associated with aggressive down-sampling can be
minimized by considering both local and non-local infor-
mation during down-sampling.

To explore this hypothesis, we divide the activation map
into patches and propose a novel non-local self-attentive
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pooling method to aggregate features and capture long-
range dependencies across different patches. The proposed
method consists of a patch embedding layer, a multi-head
self-attention layer, a spatial-channel restoration layer, fol-
lowed by a sigmoid and an exponential activation func-
tion. The patch embedding layer encodes each patch into
a one-pixel token that consists of multiple channels. The
multi-head self-attention layer models the long-range de-
pendencies between different patch tokens. The spatial-
channel restoration layer helps in decoding and restoring
the patch tokens to non-local self-attention maps. The sig-
moid and exponential activation functions rectify and am-
plify the non-local self-attention maps, respectively. Fi-
nally, the pooled activation maps compute the patch-wise
average of the element-wise multiplication of the input ac-
tivation maps and the non-local self-attention maps.

Our method surpasses the test accuracy (mAP) of all
existing pooling techniques in CNNs for a wide range of
on-device object recogniton (detection) tasks, particularly
when the initial activation maps need to be significantly
down-sampled for memory-efficiency. Our method can also
be coupled with structured model compression techniques,
such as channel pruning, that can further reduce the com-
pute and memory footprint of our models.

In summary, the key highlights of this paper can be sum-
marized as

• Inspired by the potential benefits of non-local feature
aggregation, we propose the use of multi-head self-
attention to aggressively downsample the activation
maps in the initial CNN layers that consume a signifi-
cant amount of on-chip memory.

• We propose the use of spatial channel restoration,
weighted averaging, and custom activation functions in
our self-attentive pooling approach. Additionally, we
jointly optimize our approach with channel pruning to
further reduce the memory and compute footprint of
our models.

• We demonstrate the memory-compute-accuracy
(mAP) trade-off benefits of our proposed approach
through extensive experiments with different on-
device CNN architectures on both object recogniton
and detection tasks, and comparisons with existing
pooling and memory-reduction approaches. More-
over, we provide visualization maps obtained by our
non-local pooling technique which provides deeper
insights on the efficacy of our approach.

2. Related Work
2.1. Pooling Techniques

Most popular CNN backbones consist of pooling layers
for feature aggregation. For example, VGG [39], Incep-
tion [40] and DenseNet [19] use either average/max pooling
layers, while ResNet [15], MobileNet [37], and their vari-
ants use convolutions with stride greater than 1 as trainable

pooling layers in a hierarchical fashion at regular locations
for feature down-sampling. However, these naive pooling
techniques might not be able to extract useful and relevant
features, particularly when the pooling stride needs to be
large for significant down-sampling. This has resulted in a
plethora of novel pooling layers that have been introduced
in the recent past.

In particular, mixed [45] and hybrid pooling [26] use
a combination of average and max pooling, which can be
learnt during training. Lp pooling [12] extracts features
from the local window using the Lp norm, where the param-
eter p can be learnt during training. Another work proposed
detail-preserving pooling (DPP) [35] where the authors ar-
gued that there are fine-grained details in an activation map
that should be preserved while the redundant features can be
discarded. However, the detail score is an arbitrary function
of the statistics of the pixel values in the receptive field that
may not be optimal. A more recent work introduced local
importance pooling (LIP) [11] that uses a trainable convo-
lution filter that captures the local importance of different
receptive fields and is used to scale the activations before
pooling. Gaussian based pooling [20] formulates the pool-
ing operator as a probabilistic model to flexibly represent
the activation maps. RNNPool [36] uses recurrent neural
networks (RNNs) to aggregate features of large 1D recep-
tive fields across different dimensions. In order to extract
context-aware rich features for fine-grained visual recogni-
tion, another recent work [3] called CAP proposed a novel
attentive pooling that correlates between different regions
of the convolutional feature map to help discriminate be-
tween subcategories and improve accuracy. In particular,
CAP is applied late in the network (after all convolutional
layers) and is not intended to reduce the model’s memory
footprint, in contrast to our work which applies pooling to
down-sample the large activation maps early in the network.
Interestingly, CAP transforms each feature using a novel
form of attention (involving only query and key) rather than
the traditional self-attention module adopted in this work.
Lastly, while CAP uses bi-linear pooling, global average
pooling, and LSTM, our approach uses a patch embedding,
spatial channel-restoration, and weighted pooling.

2.2. Model Compression

Pruning is one of the well-known forms of model com-
pression [25, 13, 17, 24] that can effectively reduce the
DNN inference costs [13, 22]. A recent surge in pruning
methods has opened various methods for pruning subnet-
works, including iterative magnitude pruning (IMP) [10],
reinforcement learning driven methods [16], additional op-
timization based methods [27]. However, these methods re-
quire additional training iterations and thus demand signifi-
cantly more training compute cost. In this work, we adopt a
more recent method of model pruning, namely sparse learn-
ing [23], that can effectively yield a pruned subnetwork
while training from scratch. In particular, as this method al-
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Figure 1. Illustration of locality based pooling and non-local self-attentive pooling. The pooling weight has the same shape with the input
activation I , of which only a local region is displayed in this figure. F(·) denotes the locality based pooling and π(·) denotes the proposed
non-local self-attentive pooling. For the locality based pooling, each pooling weight has limited sensitive field as shown in the red box. For
the proposed non-local self-attentive pooling, the input activation is divided to several patches and encoded into a series of patch tokens.
Based on these patch tokens, the pooling weights have global view, which makes it superior for capturing long-range dependencies and
aggregating features.

ways updates a sparse subnetwork to non-zero and ensures
meeting the target pruning ratio, we can safely avoid the fine
tuning stage yet obtain good accuracy. Readers interested in
pruning and sparse learning can refer to [18] for more de-
tails. Recently, neural architecture search [29] also enabled
significant model compression, particularly for memory-
limited devices. A recent work [28] proposed patch-based
inference and network redistribution to shift the receptive
field to later stages to reduce the memory overhead.

2.3. Low-Power Attention-based Models

There are a few self-attention-based transformer mod-
els in the literature that aim to reduce the compute/memory
footprint for edge deployments. MobileVit [32] proposed a
light-weight and general-purpose vision transformer, com-
bining the strengths of CNNs and ViTs. LVT [44] proposed
two enhanced self-attention mechanisms for low- and high-
level features to improve the models performance on mo-
bile devices. MobileFormer [4] parallelized MobileNet and
Transformer with a two-way bridge for information shar-
ing, which achieved SOTA performance in accuracy-latecy
trade-off on ImageNet. For other vision tasks, such as se-
mantic segmentation and cloud point downsampling, recent
works have proposed transformer-based models for mobile
devices. For example, LighTN [43] proposed a single-head
self-correlation module to aggregate global contextual fea-
tures and a down sampling loss function to guide training
for cloud point recognition. TopFormer [46] utilized to-
kens pyramid from various scales as input to generate scale-
aware semantic features for semantic segmentation.

3. Background
In this section, we explain the multi-head self-

attention [41] module that was first introduced by the ViT
architecture [9] in computer vision.

In ViT, the input image I ∈ RH×W×C is reshaped into a
sequence of non-overlapping patches Ip ∈ R(H·W

P2 )×(P 2·C),
where (H×W ) is the size of the input RGB image, andC is

the number of channels, and P 2 is the number of pixels in a
patch. The flattened 2D image patches are then fed into the
multi-head self-attention module. Specifically, the patch se-
quence Ip are divided intom heads Ip = {I1p , I2p , ..., Imp } ∈
RN×Cp

m , where N = (H·W
P 2 ) is the number of patches and

Cp = P 2 ·C is the number of channels in Ip. These tokens
are fed into the multi-head self-attention module MSA(·):

Ia = LN(MSA(Ip)) + Ip, (1)

where LN(·) is the layer normalization [42, 2].

In the j-th head, the token series Ijp ∈ RN×Cp
m is

first projected onto L(Ijp) ∈ RN×dk by a linear layer.
Then three weight matrices {W q,W k,W v} ∈ RD×dk are
used to obtain the query, key, and value tokens as Qj =
W qL(Ijp),K

j = W kL(Ijp), V
j = W vL(Ijp), respectively.

D is the hidden dimension and dk = D/m. The output
Ija ∈ RN×D of the self-attention layer is given by:

Ija = softmax(
QjKjT

√
dk

)V j . (2)

Finally, the results of the m heads are concatenated and
back projected onto the original space:

Ia = concat(I1a , I
2
a , ..., I

m
a )WO, (3)

where WO ∈ RCp×D is the projection weight and the final
output Ia ∈ RN×Cp .

4. Proposed Method
The weights of local pooling approaches are associated

with only a local region of the input feature maps as shown
in Fig. 1. These pooling approaches are limited by the
locality of the convolutional layer, and need a large num-
ber of layers to acquire a large sensitive field. To miti-
gate this issue, we can intuitively encode the global and
non-local information into the pooling weights, as shown
in Fig. 1. To realize this intuition, we propose a form of



self-attentive pooling that is based on a multi-head self-
attention mechanism which captures the non-local infor-
mation as self-attention maps that perform feature down-
sampling. Then, we jointly optimize the proposed pooling
method with channel pruning to further reduce the memory
footprint of the entire CNN models.
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Figure 2. Architecture of the non-local self-attentive pooling.

4.1. Non-Local Self-Attentive Pooling

The overall structure of the proposed method is shown
in Fig. 2. It consists of four main modules: patch embed-
ding, multi-head self-attention, spatial-channel restoration,
and weighted pooling.

1) Patch embedding is used to compress spatial-channel
information. We use a strided convolution layer to encode
and compact local information for different patches along
the spatial and channel dimensions of the input. More pre-
cisely, the input to the embedding is a feature map denoted
as x ∈ Rh×w×cx with resolution (h × w) and cx input
channels. The output of the embedding is a token series

xp ∈ R
(h·w
ε2p

)×(εr·cx)
, where εp is the patch size and εr sets

the number of output channels as εr · cx. The patch embed-
ding consists of a strided convolution layer with kernel size
and stride both equal to εp followed by a batch norm layer
and a ReLU function [1].

For each patch indexed by [ni, nj ], the patch embedding
layer output can be formulated as:

xp[ni, nj ] = φrelu

( εp∑
i=0

εp∑
j=0

wci,j · x(ni·εp+i,nj ·εp+j) + bc
)

(4)

where wc, bc are the weight and bias of the convolution ker-
nel, respectively, and φrelu denotes the ReLU activation

function. After patch embedding, a learnable positional en-
coding [9] is added to the token series xp to mitigate the
loss of positional information caused by sequentialization.

2) Multi-head self-attention is used to model the long-
range dependencies between different patch tokens. While
the input patch token series xp is fed into the module, the
output xattn is a self-attentive token sequence with the same
shape as xp.

3) Spatial-channel restoration decodes spatial and
channel information from the self-attentive token sequence

xattn. The token sequence xattn ∈ R
(h·w
ε2p

)×(εr·cx)
is

first reshaped to R
h
εp

× w
εp

×(εr·C), and then expanded to the
original spatial resolution (h,w) via bilinear interpolation.
A subsequent convolutional layer with 1 × 1 kernel size
projects the output to the same number of channels cx as
the input tensor x. A batch norm layer normalizes the re-
sponse of the output attention map xr ∈ Rh×w×cx . A sig-
moid function is then used to rectify the output range of xr
to [0,1], followed by an exponential function to amplify the
self-attentive response.

4) Weighted pooling is used to generate the down-
sampled output feature map from the output of the spatial-
channel restoration block, denoted as π(x) in Fig. 2. In
particular, assuming a kernel and stride size of (s×s) in our
pooling method, and considering a local region in x from
(p, q) to (p+ s, q + s), the pooled output corresponding to
this region can be estimated as

O =

∑i=p+s
i=p

∑j=q+s
j=q πi,j(x)xi,j∑i=p+s

i=p

∑j=q+s
j=q πi,j(x)

(5)

where πi,j(x) denotes the value of π(x) at the index (i,j).
Similarly, the whole output activation map can be estimated
from each local region separated with a stride of s.

4.2. Optimizing with Channel Pruning
To further reduce the activation map dimension we lever-

age the popular channel pruning [23] method. In particular,
channel pruning ensures all the values in some of the convo-
lutional filters to be zero. This in turn makes the associated
activation map channels redundant. Let us assume a layer
l with corresponding 4D weight tensor θθθl ∈ RM×N×h×w.
Here, h and w are the height and width of 2D kernel of the
tensor, withM andN representing the number of filters and
channels per filter, respectively. To perform channel prun-
ing of the layer weights, we first convert the weight tensor
θθθl to a 2D weight matrix, with M and N × h×w being the
number of rows and columns, respectively. We then parti-
tion this matrix into N sub-matrices of M rows and h × w
columns, one for each channel. To rank the importance of
the channels, for a channel c, we then compute the Frobe-
nius norm (F-norm) of its associated sub-matrix, meaning
effectively compute Ocl = |θθθ:,c,:,:l |2F . Based on the fraction
of non-zero weights that need to be rewired during an epoch
i, denoted by the pruning rate pi, we compute the number
of channels that must be pruned from each layer, cpil , and
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Figure 3. Illustration for two ways of using pooling methods.

prune the cpil channels with the lowest F-norms. We then
leverage the normalized momentum contributed by a layer’s
non-zero channels to compute its layer importance that are
then used to measure the number of zero-F-norm channels
ril ≥ 0 that should be re-grown for each layer l. Note that
we first pre-train CNN models with our self-attentive pool-
ing, and then jointly fine-tune our pooled models with this
channel pruning technique. While the pooling layers are
applied to all down-sampling layers, the channel pruning is
only applied on the initial activation maps (only in the first
stage in CNN backbones illustrated in Fig. 3) to maximize
its’ impact of reducing the memory footprint of the models.

5. Self-Attentive Pooling in CNN Backbones
The proposed pooling method can be used in any back-

bone networks, such as VGG [39], MobileNet [37] and
ResNet [15]. Generally, a backbone network can be roughly
divided into several stages and, the down-sampling layer
(either as a strided convolution or max/average pooling), if
present in a stage, is only applied at the first block. Specif-
ically, there are two ways to replace this down-sampling
layer with our (or any other SOTA) pooling method in the
backbone network, i.e., outer-stage pooling and inner-stage
pooling, as shown in Fig. 3. Outer stage pooling means that
the activation is down-sampled by the pooling layer after
each stage, which helps to reduce the size of the final out-
put activation map in each stage and customize the pooling
layer to learn the stage information. Inner stage pooling
means the activation is down-sampled after the first block
of each stage, which helps to reduce the initial activation
map. We optimize the use of these pooling methods for
each backbone evaluated, as specified in Section 6.1.

6. Experiments
6.1. Experimental Setup

The proposed pooling method is compared to several
pooling methods, such as strided convolution, LIP, Gaus-
sianPool, and RNNPool. All these methods are widely
used in deep learning and, to the best of our knowledge,
yield SOTA performance. Our proposed method is im-
plemented in PyTorch with the hyper-parameter settings,
along with for those we compare with, listed in Table 1.
Specifically, we evaluate the pooling approaches on two

Table 1. Hyper parameter settings of different pooling techniques

Methods Parameter Settings
Strided Conv. kernel size: 3× 3
LIP kernel size: 1× 1

Ours εp ∈ {1, 2, 4, 8},
εr ∈ {0.25, 1},m : 2

Channel Pruning 2×

compute- and memory-efficient backbone networks. Mo-
bileNetv2 and ResNet18. For both, we keep the same pool-
ing settings except the first pooling layer, where we employ
aggressive striding for memory reduction. For example,
in MobileNetV2, we use strides (s1, 2, 2, 2, 1, 2, 1), where
s1 ∈ {1, 2, 4}. More details are in supplementary materials.

To evaluate the performance of the pooling methods on
multi-object feature aggregation, we use two object detec-
tion frameworks, namely SSD [31] and Faster R-CNN [34].
To holistically evaluate the pooling methods, we use three
image recognition datasets, namely STL-10, VWW, and
ImageNet, which have varying complexities and use-cases.
Their details are in supplementary materials. To evaluate
on the multi-object detection task, we use the popular Mi-
crosoft COCO dataset [30]. Specifically, we use an image
resolution of 300×300 for the SSD framework, the same as
used in [31], 608×608 for the YoloV3 framework, the same
as used in [33], and 1333×800 for the Faster RCNN frame-
work. Eight classes related to autonomous driving which
includes {’person’, ’bicycle’, ’car’, ’motorcycle’, ’bus’,
’train’, ’truck’, ’traffic light’} are used for our experiments.
We evaluate the performance of each pooling method using
mAP averaged for IoU ∈ {0.5, 0.75, [0.5 : 0.05 : 0.95]},
denoted as mAP@0.5, mAP@0.75 and mAP@[0.5, 0.95],
respectively. We also report the individual mAPs for small
(area less than 322 pixels), medium (area between 322 and
962 pixels), and large (area more than 962 pixels) objects.

6.2. Accuracy & mAP Analysis

The experimental results on the image recognition
benchmarks are illustrated in Table 2, 3, and 5, where
each pooling method is applied on the different backbone
networks described in Section 6.1.2. Note that the re-
sulting network is names as ‘pooling method’s name’–
‘backbone network’s name’. For example, ‘Strided Conv.–
MobileNetV2’ means we use the strided convolution as the
pooling layer in the MobileNetV2 backbone network.

On the STL10 dataset, when evaluated with the Mo-
bileNetV2 and ResNet18 backbone network, the proposed
method outperforms the existing pooling approaches by ap-
proximately 0.7% for s1=1. In contrast, in ImageNet,
the accuracy gain ranges from 0.86% to 1.66% (1.2% on
average) for s1=1. Since VWW is a relatively simple
task, the accuracy gain of our proposed method is only
0.14∼0.7% across different values of s1. Further analysis



Table 2. Comparison of different pooling methods for different
CNN backbones on STL10 dataset.

Metrics Top 1 Acc. (%)

Methods∗
1st Pool Stride

s1 = 1 s1 = 2 s1 = 4

Strided Conv.–MobileNetV2 79.69 72.49 36.49
LIP–MobileNetV2 79.16 68.23 36.50
GaussianPool–MobileNetV2 81.50 74.56 33.31
RNNPool–MobileNetV2 81.62 74.62 37.42
Ours–MobileNetV2 81.75 75.39 40.66
Ours+CP∗∗–MobileNetV2 82.38 74.12 37.44
Strided Conv.–MobileNetV2-0.35x 69.89 63.72 31.45
LIP–MobileNetV2-0.35x 73.02 65.91 33.97
GaussianPool–MobileNetV2-0.35x 71.67 67.88 35.03
RNNPool–MobileNetV2-0.35x 72.90 67.41 35.09
Ours–MobileNetV2-0.35x 77.99 69.30 36.68
Ours+CP-MbNetV2-0.35x 77.43 68.08 33.30
Strided Conv.–ResNet18 79.80 76.05 66.49
LIP–ResNet18 81.94 80.53 78.55
GaussianPool–ResNet18 81.57 78.70 74.61
RNNPool–ResNet18 81.80 80.26 78.62
Ours–ResNet18 82.25 81.11 79.39
Ours+CP–ResNet18 82.68 79.81 76.19

* Methods are named by pooling method’s name-backbone’s name.
MbNetV2 indicates the MobileNetV2 backbone network. ’Ours’ indi-
cates the standard proposed pooling method.
** ’Ours+CP’ is the proposed method with 2× channel pruning in the
backbone network before the 1st pooling layer.

Table 3. Comparison of different pooling methods for
MobileNetV2-0.35X on VWW dataset.

Metrics Top 1 Acc. (%)

Methods∗
1st Pool Stride

s1 = 1 s1 = 2 s1 = 4

Strided Conv.–MobileNetV2-0.35x 91.72 83.52 78.83
LIP–MobileNetV2-0.35x 91.24 83.30 79.48
GaussianPool–MobileNetV2-0.35x 91.09 82.81 79.51
RNNPool–MobileNetV2-0.35x 90.85 83.41 79.20
Ours–MobileNetV2-0.35x 91.86 83.87 80.21
Ours+CP∗∗-MbNetV2-0.35x 91.60 82.46 76.11

of the memory-accuracy trade-off with channel pruning and
other s1 values is presented in Section 6.4.

The object detection experimental results for s1=1 are
listed in Table 4. When evaluated on SSD framework,
our proposed method outperforms the SOTA pooling ap-
proach by 0.5% ∼ 1% for mAP@0.5, 0.3% ∼ 0.5% for
mAP@0.75 and 0.5% ∼ 0.8% for mAP@[0.5,0.95], which
illustrates the superiority of our method on multi-object fea-
ture aggregation. When evaluated on Faster RCNN frame-
work, the proposed method also achieves the state-of-the-art
performance on mAP@0.5, mAP@0.75 and mAP@[0.5,
0.95] with approximately 0.1% ∼ 0.6% mAP gain.

All results, except those for ImageNet and COCO (due

to compute constraints), are reported as the mean from three
runs with distinct seeds, and the variance from these runs is
<0.1% which is well below our accuracy gains.

6.3. Qualitative Results & Visualization

To intuitively illustrate the superiority of the proposed
method, we visualize the heatmap corresponding to dif-
ferent attention mechanisms onto the images from STL10
dataset, as shown in Fig. 4.

Specifically, the heatmap is calculated by GradCam [38],
that computes the gradient of the ground-truth class for each
of the pooling layers. The heatmap value is directly propor-
tional to the pooling weights at a particular location, which
implies that the regions with high heatmap values contain
effective features that are retained during down-sampling.
Compared with LIP, the representative locality-based pool-
ing method, our proposed method is more concerned about
the details of an image and the long-range dependencies
between different local regions. As shown in the first and
the second columns, LIP focuses only on the main local re-
gions with large receptive fields. In contrast, our method
focuses on the features from different local regions, such
as the dog’s mouth, ear, legs in the first column and the
bird and branches in the second column. These non-local
features are related and might be established long-rang de-
pendencies for feature aggregation. As shown in the fifth
and sixth columns, our pooling method mainly focuses on
the texture of the cat’s fur, which might be a discrimina-
tive feature for classification/detection, while LIP focuses
on the general shape of a cat. This kind of general informa-
tion might fail to guide feature aggregation when required
to compress and retain effective detailed information.

6.4. Compute & Memory Efficiency

Assuming the same input and output dimensions for
down-sampling, and denoting the FLOPs count of our self-
attentive pooling and the SOTA LIP layer as FSA and FLIP
respectively, FSA ≈ 3

n2FLIP . Hence, adopting a patch size
n > 1 makes our pooling costs cheaper than that of LIP.
In particular, we use higher patch sizes (ranging from 2 to
8) for the initial pooling layers and a patch size of 1 for the
later layers (see Table 1). This still keeps our total FLOPs
count of the entire model lower than LIP, as shown in Table
6, because the FLOPs count of both the pooling methods is
significantly higher in the initial layers compared to the later
layers due to the large size of the activation maps. Note that,
in most standard backbones, the channel dimension only in-
creases by a factor of 2, when each of the spatial dimension
reduces by a factor of 2, which implies that the total size of
the activation map progressively reduces as we go deeper
into the network. Our method also consumes 11.66% lower
FLOPs, on average, compared to strided convolution based
pooling, as shown in Table 6.

The memory consumption of the whole CNN network is
similar for both self-attentive pooling and LIP with identi-



Table 4. Comparison on COCO dataset.

Framework Methods mAP
@0.5 @0.75 @[0.5,0.95] @large @medium @small

SSD

Strided Conv.–MobileNetV2 36.30 23.00 21.90 44.60 14.40 0.80
LIP–MobileNetV2 37.50 23.10 22.30 44.80 15.30 0.90

GaussianPool–MobileNetV2 37.00 24.00 22.80 46.50 16.00 0.70
Ours–MobileNetV2 38.00 24.50 23.30 47.00 16.50 0.80

Strided Conv.–ResNet18 38.80 24.70 23.40 47.00 15.70 1.10
LIP–ResNet18 40.60 25.10 24.20 47.80 18.00 1.70

GaussianPool–ResNet18 40.40 24.90 24.10 47.20 17.70 1.40
Ours–ResNet18 41.60 25.40 24.90 48.80 19.30 1.60

Faster RCNN
Strided Conv.–ResNet18 63.60 40.80 38.70 52.70 36.70 21.00

LIP–ResNet18 65.30 42.00 39.90 52.10 39.00 23.90
GaussianPool–ResNet18 55.30 33.10 31.80 44.40 29.10 16.00

Ours–ResNet18 65.50 42.60 40.00 51.50 39.90 22.80

Image

Ours

LIP

Figure 4. Visualization results for local importance based pooling and the proposed non-local self-attentive pooling. The images are from
the STL10 dataset and the heatmaps in each technique highlight the regions of interest, i.e., the regions with high heatmap value will be
regarded as effective information and retained while down-sampling.

Table 5. Comparison of different pooling methods for
MobileNetV2-0.35x on ImageNet dataset.

Metrics Top 1 Acc. (%)

Methods
1st Pool Stride

s1 = 1 s1 = 2

Strided Conv.–MobileNetV2 70.02 60.18
LIP–MobileNetV2 71.62 61.86
GaussianPool–MobileNetV2 72.02 61.24
RNNPool–MobileNetV2 70.97 59.24
Ours–MobileNetV2 72.88 62.89
Strided Conv.–MobileNetV2-0.35x 56.64 49.20
LIP–MobileNetV2-0.35x 58.24 49.95
GaussianPool–MobileNetV2-0.35x 59.26 49.91
RNNPool–MobileNetV2-0.35x 57.80 49.10
Ours–MobileNetV2-0.35x 60.92 51.16

cal backbone configurations and identical down-sampling
in the pooling layers. Though our self-attentive pooling
consists of significantly more trainable parameters for the

Table 6. Comparison of the total FLOPs count of the whole CNN
backbone with different pooling methods on the STL10 dataset.

Architecture Ours (G) LIP (G) GP (G) Sd. Conv. (G)
MbNetV2 0.272 0.264 0.295 0.303
MbNetV2-0.35x 0.06 0.061 0.059 0.065
ResNet18 1.82 1.93 1.77 2.07

query, key, and value computation compared to local train-
able pooling layers, they are fixed during inference, and can
be saved off-line in the on-chip memory. Also, the memory
consumed by these parameters is still significantly lower
compared to that by the initial activation maps, and hence, it
does not significantly increase the memory overhead. Note
that the reduction of s1 by a factor of 2 approximately
halves the total memory consumption, enabling the CNN
deployment in devices with tighter memory budgets. As il-
lustrated in Tables 2, 3, and 5, the accuracy gain of our pro-
posed pooling method compared to the SOTA grows as we



increase s1. A similar trend is also observed as we go from
MobileNetV2 to MobileNetV2-0.35x to reduce the mem-
ory consumption. For example, the accuracy gain further
increases from 0.25% to 4.97% when evaluated on STL10
which implies the non-local self-attention map can extract
more discriminative features from a memory-constrained
model. For ImageNet, with the aggressive down-sampling
of the activation maps in the initial layers (providing up to
22× reduction in memory consumption where 11× is due
to MobileNetV2-0.35x and 2× is due to aggressive strid-
ing), the test accuracy gap with the SOTA techniques at
iso-memory increases from 1.2% on average to 1.43%. All
these motivate the applicability of our approach in resource-
constrained devices. Channel pruning can further reduce
the memory consumption of our models without too much
reduction in the test accuracy. We consider 2× channel
pruning in the 1st stage of all the backbone networks, as
illustrated in Table 2 and 3. As we can see, addition of
channel pruning with s1=1 can retain (or sometimes even
outperform) the accuracy obtained by our proposed pooling
technique. However, channel pruning does not improve the
accuracy obtained for more aggressive down-sampling with
our pooling technique (s1=2, 4). Hence, the nominal down-
sampling schedule (s1=1) with channel pruning is the most
suitable configuration to reduce the memory footprint.

6.5. Ablation Study

We conduct ablation studies of our proposed pooling
method when evaluated with ResNet18 backbone on the
STL10 dataset. Our results are shown in Table 7. Note
that bn1 and bn2 denote the BN layers in the patch em-
bedding and multi-head self-attention modules respectively,
and pe denotes the positional encoding layer. SelfAttn di-
rectly uses the muti-head self-attention module before each
strided convolution layer without spatial-channel restora-
tion and weighted pooling. Removing either of the BN
layer results in a slight drop in test accuracy. We hypoth-
esize the batch norm (BN) layers normalize the input data
distribution, which helps the non-linear activation extract
better features and help speed up convergence. Note that
this argument is valid for BN layers in CNNs, not partic-
ular to self-attentive pooling. Our pooling method without
exponential function degenerates significantly. This might
be because each value in the attention map after the sig-
moid function is limited in 0 ∼ 1, without amplifying the
response of effective features. Removal of the positional
encoding also slightly reduces the accuracy which illus-
trates the importance of positional information. We hypoth-
esize the position encoding layer merges the positional in-
formation into patch tokens, thereby compensating the bro-
ken spatial relationship between different tokens. Also, our
pooling method without sigmoid yields only statistical test
accuracy. This is because, without the sigmoid rectifica-
tion, the output of the spatial-channel restoration module
goes to infinity after the amplification by exponential func-

Table 7. Ablation Study of our Proposed Pooling Technique.

Metrics Top 1 Acc. (%)

Methods
1st Pool Stride

s1 = 1 s1 = 2

w\o(bn1)–ResNet18 (Outer Stage) 80.34 78.45
w\o(bn2)–ResNet18 (Outer Stage) 82.01 80.36
w\o(exp)–ResNet18 (Outer Stage) 81.95 80.00
w\o(pe)–ResNet18 (Outer Stage) 82.01 79.73
w\o(sigmoid)–ResNet18 (Outer Stage) 10.00 10.00
SelfAttn-MobileNetV2 (Inner Stage) 13.44 -
SelfAttn-MobileNetV2 (Outer Stage) 13.23 -
SelfAttn-ResNet18 (Inner Stage) 26.17 -
SelfAttn-ResNet18 (Outer Stage) 58.71 -
Ours–ResNet18 (Outer Stage) 82.25 81.11
Ours–ResNet18 (Inner Stage) 81.45 79.17
Ours–MobileNetV2 (Outer Stage) 79.45 68.81
Ours–MobileNetV2 (Inner Stage) 81.75 75.39

tion, resulting in gradient explosion. Compared to using
only self-attention module (instead of our proposed pool-
ing technique) before the strided convolution, our proposed
method is more effective. As illustrated in Table 7, our ac-
curacy increase is due to the proposed methods, not only the
self-attention mechanism.1

7. Conclusion & Societal Implications
In this paper, we propose self-attentive pooling which

aggregates non-local features from the activation maps,
thereby enabling the extraction of more complex relation-
ships between the different features, compared to existing
local pooling layers. Our approach outperforms the ex-
isting pooling approaches with popular memory-efficient
CNN backbones on several object recognition and detec-
tion benchmarks. Hence, we hope that our approach can
enable the deployment of accurate CNN models on various
resource-constrained platforms such as smart home assis-
tants and wearable sensors. While our goal is to enable so-
cially responsible use-cases, our work can also unlock sev-
eral cheap and real-time vision use-cases that might be sus-
ceptible to adversarial attacks and racial biases. Preventing
the application of this technology from abusive usages is an
important area of future work.
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