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Abstract

So far, few researches have targeted the explainability of point cloud neural networks. Part of the explain-
ability methods are not directly applicable to those networks due to the structural specifics. In this work, we
show that Activation Maximization (AM) with traditional pixel-wise regularizations fails to generate human-
perceptible global explanations for point cloud networks. We propose generative model-based AM approaches
to clearly outline the global explanations and enhance their comprehensibility. Additionally, we propose a
composite evaluation metric that simultaneously takes into account activation value, diversity and percepti-
bility to address the limitations of existing evaluating methods. Extensive experiments demonstrate that our
generative-based AM approaches outperform regularization-based ones both qualitatively and quantitatively.
To the best of our knowledge, this is the first work investigating global explainability of point cloud networks.
Our code is available at: https://github.com/Explain3D/PointCloudAM.

1 Introduction

Point clouds are one of the most widely used data forms of 3D representation and have been extensively used
for various applications, such as autonomous driving and robotics. Due to their disordered property, traditional
CNNs are not directly applicable to point cloud data. Recently, several studies have proposed multifarious deep
learning approaches for point clouds [QSMG17, QYSG17, WSL™19] that achieved state-of-the-art accuracies
in existing benchmark datasets. So far, however, very little attention has been paid to the trustworthiness of
point cloud networks. Since such black-models are widely used - even in high-risk applications - while gener-
ally struggle for inspiring trust in users and remain almost impossible to debug, this research gap needs to be
addressed.

The research of explainability plays an important role in addressing the issue of trustworthy Al. Previous
studies proposed a considerable number of explainability approaches including gradient-based [SVZ14, BT 15,
SGK19, SDBR15, STK17, STY17] and local surrogate model-based [RSG16, LL17, RSG18], which generate
post-hoc local explanations to a specific input instance. Global explainability approaches are another series
that allow for an inclusive explanation of the entire black-box model, such as surrogate model simplification
[KI*10] and Activation Maximization (AM) [NYC19]. Although the aforementioned approaches facilitate the
faithfulness of models dealing with tabular and image data, there has been little discussion about the explainabil-
ity of point cloud networks. Due to the specific architecture, point cloud networks possess distinctive properties
from traditional multi-width convolutional neural networks (for instance, [GWY20] found the features learned
by point cloud networks are extremely sparse), suggesting that explainability studies on point cloud networks
may lead to novel discoveries.

On the other hand, it is difficult to quantitatively evaluate the accuracies of the generated explanations due
to the lack of ground truth. Human evaluations are highly subjective and therefore lack persuasiveness and
reproducibility. For AM, several previous studies have used quantitative metrics to evaluate the quality of the
synthesized images [NCB ™17, MSB*19, ZCR ™ 17]. However, we argue that the performance assessed by these
traditional metrics is neither comprehensive nor can be deceived by AM of point cloud networks.

This work strives to investigate the global explanations of the popular point cloud networks with AM. We
show that non-generative network-based AM approaches for images are not applicable to point clouds (see fig-
ure 1), and propose generative AM methods for the global explainability of point cloud networks. Additionally,
we propose a more persuasive and comprehensive evaluation metric for point cloud AM, and demonstrate that
our point cloud AM methods outperform all other methods both at the human cognitive level and in quantitative
assessment. Our contributions are primarily summarized as follows:


https://github.com/Explain3D/PointCloudAM

* As the first work investigating global explainability of point cloud networks, we exhibit that non-generative
AM methods are unable to generate human-comprehensible explanations. Addressing the challenge, we
propose generative model-based AM approaches that depict the global peculiarities of point cloud net-
works.

* We propose a convincing evaluation metric for point cloud AM: Point Cloud-Activation Maximization
Score (PC-AMS), which simultaneously captures the activation value, diversity, human perception-level
and physical-level authenticity of generated AM examples.

The rest of this paper is organized as follows: Section 2 introduces explainability methods for point clouds,
especially AM and corresponding evaluation methods. Section 3 provides the proposed generative AM ap-
proaches for point clouds as well as a more persuasive evaluation metric. Section 4 demonstrates our experi-
mental results and we summarize our work in section 5.

2 Related Work

In this section, we introduce the popular explainability methods, review the proposed AM approaches, and state
the current progress of explainability research on point cloud neural networks.

Explainability methods: In contrast to interpretability approaches that render the decision process under-
standable, explainability methods aim to elucidate the operating principles of black-box models with mecha-
nisms that are asynchronous with the decision-making periods. Explainability methods are categorized into two
groups according to their objects: local and global explainers.

Local explainers typically generate explanations corresponding to individual inputs by tracing gradients
[SVZ14,B*15,SGK19, SDBR15, STK ™17, STY17] or employing surrogate models and perturbations [RSG16,
LL17, RSG18]. Nonetheless, gradient-based explainability methods are considered noisy, and in recent sanity
studies, part of the methods were found to be model-independent [AGM™18]. Surrogate model-based ap-
proaches require extensive perturbation instances as training datasets and are therefore computationally inten-
sive. Another common drawback of local explainability methods is the lack of holistic views of the overall
datasets, compounding the cost of intrinsically understanding the decision process.

Global explainers provide explanations in regard to entire datasets rather than individual input instances by
demonstrating its inherent characteristics. The global explanation may not be precise for each classification
case, however, it provides a more intuitive representation of how the model works. Global explanations are
typically presented in the following forms: [KIT10] extracts decision rules from the original model that is
comprehensible for users, [CMB18, CLL20] rank the aggregated feature importance according to the whole
datasets. For computer vision tasks, listing the feature importance is challenging because of the extensive
number of unaligned features. As an alternative, AM is thus proposed to exhibit intuitive global explanations
by generating highly representative examples of specific classes.

Activation Maximization (AM): AM is a high-level feature visualization technique that was first pro-
posed by [EBCV09]. AM chooses a target activation unit and maximizes it by optimizing the input vector
while freezing all other neurons in the DNN. However, without incorporating any prior or constraints, AM
will synthesize mosaic images that are incomprehensible to humans and are not explainable [NYC15]. Opti-
mization constrains, such as L2-norm [SVZ13], Gaussian blur [YCN™15], Total Variation [MV16] or priors,
such as average image initialization [NYC16] and patch dataset [WZTF15, MOT15], successfully synthesize
object images with clear outlines, and therefore facilitate the explainability. Another solution for enhanc-
ing the comprehensibility of AM images is to learn the distribution of real objects with generative models.
[NDY 16, ZCR™17, MSB*T19, KTA™21] utilized auto-encoders and GANs to produce high quality AM im-
ages. [NCB™17] proposed Plug & Play embedding generative networks that simultaneously address the high-
resolution and diversity of synthesized AM images. Additionally, [XK19] proposed a black-box AM approach
based on evolutionary algorithms. Nevertheless, point clouds are structurally different from traditional image
deep neural networks (DNN)s so that the aforementioned AM methods are not directly applicable to point cloud
networks.

On the other hand, evaluating the quality of AM images is challenging and so far, most previous works
rely on subjective human intuition as the evaluation criterion. [NCB*17] accessed the definition and diversity
of AM images via Inception Score (IS) [SGZ116]. [MSB™T19] incorporated Fréchet inception distance (FID)
[HRU™17] to estimate the similarity between generated AM examples and real instances in latent spaces. AM
score, another evaluation metric proposed by [ZCR™17], is ameliorated from IS and addresses the uneven
distribution of data categories.
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Figure 1: AM for point clouds without generative priors. Due to the specific architecture of the point cloud
network, traditional regularization priors (for 2D images) are incapable of generating human-perceivable global
explanations.

Explainability research on point clouds: There are relatively few explainability studies in the area of point
clouds. [ZCY™19] traced the critical points to generate saliency maps of the point cloud network by dropping
points. [GWY20] was the first work to incorporate explainability methods, who started an observation of the
intrinsic feature of point cloud networks via Integrated Gradients (IG). A follow-on study was conducted by
[TK22], which proposed a local surrogate model-based approach for explaining point cloud networks. However,
one limitation of the approaches mentioned above is that local explainability methods are only concerned with
specific inputs that can hardly present the intrinsic properties of the whole point cloud network.

3 Methods

In this section, we demonstrate our AM approach for point clouds (section 3.1) as well as the proposed evalua-
tion metric for point cloud AM (section 3.2).

3.1 3D Activation maximization

To visualize a specific neuron in the DNN, [EBCV09] proposed the AM, which is formulated as:

z* = argmax (al (0, x)) (H

x

where 2 and 6 denote the input instance and the parameters in the DNN respectively, and a!(, z) denotes the
it" neuron at [*" layer. From an explainability perspective, setting a neuron in the highest layer of the network
as the target activation, AM can be considered as providing a global explanation of the entire network, i.e., an
ideal input for a particular class [SMVT19]. However, 2D AM without any prior suffers from generating
examples with high-frequency mosaics that are unrecognizable to humans [NYC15]. Several studies have
investigated regularizing AM examples with non-generative priors, such as L2 Norm, Gaussian blur and Total
variation [SVZ13, YCNT 15, MV16]. While the above mentioned enhancements have made progress in human
interpretability for 2D images, their effectiveness is severely compromised while processing point clouds (see
figure 1). We believe that on the one hand, the features of point cloud networks are comparatively sparse
and the global structure information of instances is seriously impaired [GWY?20], and on the other hand, the
adjacency-based regularizations fail due to the disorderliness of point clouds.

To address the scarcity of structural information, we propose generative model-based AM to interpret the
global properties of point cloud networks. The outputs O, to be searched are subject to two obligatory re-
strictions simultaneously: they highly activate a neuron at a high level of the networks (equation 1) and are
under the similar distribution as the dataset that is recognizable for humans O, ~ X. Currently AMs are only
accomplished via gradient-based optimizers, therefore, we first establish a function that generates point clouds
with realistic distributions, then we filter out those samples that highly activate neurons from the output of the
function by AM.

AE: The most intuitive approach is to learn the point distribution via AE ((a) in 2). [ADMG18] has demon-
strated that a symmetric pooling layer followed by point-wise convolutions is capable of encoding point clouds
into 1-dimensional latent representations, while a simple multi-layer, fully connected network is qualified as
the decoder. Following the structure, we first train the AE with Chamfer Distance (CD) loss L. Our AM
architecture based on AE is presented in (b) of figure 2. During optimization, we observe that the optimizer is



T l Zp~N(0,03) -
8 i I ey B
c T En1 Ei” EF11 En] E?1
o 2 & | ¢
= En En v v v 1 "L 1 L En2
= ‘ s v F F1 n
%.g Z~N(0,0%) S [; LAC Y 5 En2 LAC En2 Lc v
£ e e : ‘ Lr2
o / \ De i X d
v v Ke 5 e
PN Ok Lp v | D Y
Our .Q_LD_,« Opp —— |

(a) (b) () (d)

Figure 2: Generative AM architectures for point clouds. (a) General AM optimization structure. (b) AM based
on AE. (c) AM based on AED. (d) AM based on NAED. En, De, D and PN denote encoders, decoders,
discriminators and the PointNet structure respectively, and 4, Ir, O represent the averages of the test
dataset, real instances and the output of the AE respectively.

frequently trapped in local optimum and struggles to further activate the target neuron. We believe the reason
to be that the random initialized point distribution is excessively divergent from the reality and propose two
solutions. Inspired by [NYC16], we encode the average of the dataset as the initialization of the input latent
vector, and add Gaussian noise if the optimization process is stuck.

AED: One flaw of the pure AE is the diversity of the generated samples. Instead of forcing the AE into
multifarious AM outputs, adding random noise without any restriction is inclined to downgrade the quality of
the output. Addressing this problem, we introduce a discriminator, which acts similarly to GANs. AE tries
to fool the discriminator by generating fake instances that mislead the discriminator to classify them as true
objects, while the discriminator attempts to correctly identify both. Our discriminator shares the same structure
as the T-net in PointNet [QSMG17], except for replacing the fully connected layer at the highest level with
a Sigmoid function. Inspired by [NCB*17], in addition to the point-wise CD, we incorporate another latent
vector distance loss £, which measures the feature distinction between two instances after being encoded by
the 1 x 1 convolutional layer of PointNet. The final generative loss is formulated as:

Eg:£0+wpﬁp7wD£Df 2

where wp, wp are the corresponding weights and £p, denotes the loss of discriminator to distinguish fake
instances. The overview of the architecture is in (c) in 2. In the training process, we observe that since the
performance of the discriminator easily outperforms the AE (Lp < 0) [ACB17], the latter struggles to be
further optimized. We therefore train only one of them alternately for each batch: If L < 0, we train the AE
only and vice versa. Furthermore, if the discriminator is overperforming (£Lp < —0.75), we add Gaussian noise
to its parameters to disrupt the performance.

NAED: To further reinforce the diversity and robustness, we attempt to introduce Gaussian noise to the
parameters of the AE while training. For regularization, another latent feature distance is incorporated under the
second encoder. A primary component of the second encoder is max-pooling, which extracts the global features
of the instance. Besides the point-wise feature loss, another loss £ 5 is attached to measure the distance on the
global level. The remaining configurations are identical to those in AED. The final loss is formulated as:

Ly=(Lo+wrLr1 +wr2lra) —wpLp, (3)

3.2 Evaluation metrics for Point Clouds AM

For the evaluation of explainability methods, most previous research evaluates them by showing examples to
humans. However, subjective assessments are avoided whenever possible. A fair evaluation method should
not only quantitatively assess the generated results computationally, but also be consistent with human percep-
tion, thus promoting the explainability. The existing evaluation metrics, that are applicable to AMs, can be
categorized into three classes:

Non-perceptibility metrics, represented by IS [SGZ116] or AM Score [ZCR™17], aim to assess the qual-
ity and diversity of AM generations. However, this series of approaches evaluates the generation quality by
calculating the entropy of the logits, while the disparity in human perception levels is absent. For point clouds,
they fail to distinguish between AM methods without a prior and those based on generative models, although
the latter are apparently more comprehensible to humans see figure 3.



Pixel-wise metircs, represented by L, (2D), Chamfer and Hausdorff distances (3D), address forcing the
generated instances to be pixel-wisely approximated to the real objects. Nevertheless, instances that comply
with this metric may lose the ability to be ’global explainable” as it does not require the instances to be globally
representative. Suppose a generator that perfectly reconstructs the original instance, even though the distance
loss can be minimized to 0, but does not facilitate human understanding of the model peculiarities.

Latent feature metrics, represented by FID, measure the distinction on the feature level, which are theoret-
ically promising, and are widely applied in 2D generative models. We follow the FID from [SWL™20] which
compared the global feature from the PointNet architecture. Nonetheless, we observe that the metric is vulner-
able for AM (see table 1: randomly initialized instances achieve FID scores as high as those from generative
models, though they are not perceived by humans). We believe that the FID is affected to some extent by the
sparsity of the point clouds due to the scarcity of adjacent relations in the point cloud networks.

PC-AMS: Targeting the limitations of the aforementioned methods, we propose a composite AM evalua-
tion metric: PC-AMS. Our PC-AMS is formulated as:

(log(FIDpy) +log(CD))

PCAMS =185, — > )
1S,,, denotes the modified Inception Score (M-IS) [GKSVB17], which is formulated as:
IS, = B [Eay [(KL(p(ylzi)lp(ylz;))]] 5)

where z; and z; denotes different instances with the same label. In addition to the values of the corresponding
activations, M-IS concentrates more on the diversity of the generated examples within classes than the variety
of inter-class labels. Therefore we utilize the M-IS which employs the cross-entropy of the predictions within
intra-class examples.

FIDpy denotes the PointNet-based FID and is formulated as:

FIDpy = |ty — pig|* + Tr(or + 0y — 2(0,04)?) ©6)

where A, ~ N (g, 0,) and Ay ~ N(ug,04) are the activations from the reference network, which are ap-
proximately considered as Gaussian distributions. FID measures the distance between the two distributions,
lower FID scores imply closer proximity of the generated examples to the real instances, and therefore higher
perceptibility. Nevertheless, the standard reference network Inception-v3 is no longer applicable to F'IDpy
since the multi-width convolutional kernel for images fails to extract adjacent features from unordered point
clouds. Following [SWLT20], we substitute the backbone of PointNet for Inception-v3 and choose from the
layers above the max-pooling (global features) as the activation.
Due to the fragility of F'1Dpy, we introduce an additional perceptibility measure: CD, formulated as:
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Although CD estimates the similarity between examples more precisely, it lacks generality as a scoring criterion
for AM. To alleviate this deficiency, we randomly draw several instances from the dataset with the same labels
as the generated examples and calculate the average of the CDs. We finalize the aforementioned three metrics
by logarithmically scaling FID and CD to the same order of magnitude with M-IS, such that the final score
does not collapse due to the numerical explosion of any single term.

4 Experiments

In this section, we qualitatively demonstrate the generated examples of our proposed point cloud-applicable
AM (section 4.1), and show the quantitative evaluations of existing point cloud AM approaches (section 4.2).
Additionally, we also provide an example of application scenes of proposed methods for prediction examination
in section 4.3. In our experiments, we choose ModelNet40 [W+15] as our dataset, which contains 12311
CAD models in 40 common classes and is currently the most widely-used point cloud dataset. Besides, we
also test our approaches on the classification set of ShapeNet [CFG™15], which is composed of 45969 point
cloud instances (35708 for training and 10261 for testing) in 55 classes. We select PointNet as our primary
experimental model, which is the pioneer of deep learning for raw point clouds. We also validate our result
in the most popular point cloud models i.e., PointNet++ [QYSG17] and DGCNN [WSL*19]. During AM



generation, we heuristically set the latent dimensions of the AE as 128 and the learning rate as 5e — 6. The AM
optimization stops after 2 x 10* iterations. For quantitative evaluation, we generate 10 AM examples for each
class, and we randomly select 5 real instances from the dataset as the baseline for calculating FIDs and CDs
and average the corresponding results.

4.1 Point Cloud AM Visualization

Perceptibly: Figure 3 shows the point cloud AM examples of common classes generated by multifarious ap-
proaches on ModelNet40. Zero and random initialization, while highly activating the selected neurons, results
in only the expansion of individual points due to the lack of a prior and therefore fails to yield human under-
standable global explanations. Initialization with the average of the test data performs better in 2D images.
However in point clouds, explainability is not significantly enhanced compared to the no-prior methods since
the point cluster in the center struggles to render the distribution of common objects. Initialized from a specific
instance though outlines the objects best, nevertheless, the information of the ”global” is absent i.e., the general
distribution of the whole dataset. The contours of the objects are derived from the input instances themselves
rather than the global activation-optimization process. The former tends to expose more local information about
particular inputs and is therefore more generally utilized in adversarial attacks. Note that due to the properties
of point cloud networks, the aforementioned non-prior or point prior methods prefer to optimize individual
points rather than adjusting the global distribution, which leads to surface discontinuities in the output exam-
ples. In comparison, our generators with latent priors dominate in terms of both shape consistency and human
perceptibly.

Among the generative methods, AM examples provided by AE are intuitively more stable, especially com-
pared to those from AED. We believe this is due to the absence of noise mechanisms and the singularity of
the loss term. In AE, no noise is incorporated except for the neuron maximization module that prevents the
optimization process from sticking in local optimums, and the generator is trained via an one-fold CD loss
which forces the output to be point-wise approximated to real objects. These mechanisms regularize the profile
of the generated examples to be reconstructed precisely as the real instances from the dataset while the outputs
suffer from a scarcity of distinction. On the other hand, in AED and NAED, the multi-fold loss functions
balance the constraints of approximating the dataset in both point-wise and latent feature levels. Compared to
AE, this module causes a few collapses of the output geometries, but by introducing adversarial learning with
a discriminator, the generator is still able to reconstruct the contours of real objects and enrich their diversity
simultaneously. Moreover, we surprisingly find that incorporating cascaded Gaussian noise to the encoder dur-
ing training further enhances the quality and diversity of the AM outputs. We present the generation diversity
in the next subsection.

Diversity: Another key point of AM quality is the diversity. In figure 4, we visualize 5 examples for
each one of the generative AM methods which are randomly selected from the generation repository. We
also demonstrate the five examples in the dataset that most highly activate the neuron “’table”, as well as five
stochastically selected examples respectively for references. As can be seen from the figure, AE is more stable
than the others, while lacks diversity. In comparison, both AED and NAED depict the multiplicity of the
objects while AED is somewhat deficient in terms of stability.

Experiments on ShapeNet: We also present the AM results of the class "airplane” generated by the pro-
posed methods employing ShapeNet as the experimental dataset in figure 5. Similar to ModelNet40, the global
explanations presented by AE also exhibit only minimal spatial offsets, while AED and NAED outperform AE
in terms of the diversity of object outlines. Subjectively, the samples generated by NAED are more stable due
to the noise introduction in the training process.

4.2 Evaluation Metric of Point Cloud AM

Visually assessing the AM global explanation is highly subjective, and therefore we quantitatively evaluate the
results via the proposed methods in table 1. Since there is no existing AM study for point clouds, we consider
the no prior and point-wise prior approaches as our baseline. Note that in terms of FID, AMs with random
initialization also achieve a satisfactory loss while the examples are almost indistinguishable by humans, which
results in the inability to accurately capture the perceptual distance between samples. Therefore, we introduce
CD as another regularization. We also incorporate Earth Mover’s Distance (EMD) to validate the approximation
of the examples. According to the comparisons, our generative AM approaches (latent prior) dominate the
rest regarding the PC-AMS. Though AE possesses the minimum distance loss, it suffers from a significant
drawback of diversity, which leads to the M-IS being lower than the other approaches ( which is consistent with
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Figure 3: AM results of different approaches. From left to right: Zero initialization, random initialization,
initialized with the average of the test data per class, initialized from a specific instance, and our proposed AE,
AED and noisy NAED
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Figure 4: Diversity of AM generations. We choose 5 examples from instances that 1) most hightly activate the
neuron 2) are selected randomly 3) are from the generations of AE 4) of AED 5) of NAED.
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Figure 5: AM examples from AE, AED and NAED respectively of class "airplane” in ShapeNet.



m-IS  FID CD EMD PC-AMs
Zero 1.113  0.119 0.266 364.35 2.84
Random 1.081 0.016 0.245 413.52 3.85
Average 1.001 0.097 0.230 377.20 2.90
Instance 1.015 0.071 0.085 228.87 3.57
AE 1.085 0.016 0.044 143.13 4.71
Latent prior AED 1.124 0.018 0.086 241.35 4.37
NAED 1.461 0.014 0.074 207.65 4.89

No prior

Point-wise prior

Table 1: PC-AMS evaluation metric for point cloud AMs. EMD is also introduced for point-wise distance
validation.

mIS FID CD EMD PC-AMs
PN 1.085 0.016 0.044 143.13 4.71
AE PN++ 1.103 0.008 0.041 134.16 5.12
DGCNN 1.020 0.010 0.105 252.82 4.43
PN 1.124  0.018 0.086 241.35 4.37
AED PN++  1.107 0.020 0.122 255.46 4.12
DGCNN 1.358 0.013 0.109 343.15 4.63
PN 1.578 0.018 0.071 353.10 492
NAED PN++ 1.866 0.011 0.072 236.42 543
DGCNN 1.316 0.015 0.109 335.51 4.52

Table 2: PC-AMS evaluations for different point cloud models, where PN and PN++ denotes PointNet and
PointNet++.

the demonstrations in figure 4). In addition, Figure 3 reports the corresponding evaluations on ShapeNet, where
it can be seen that our proposed approaches consistently achieve similar performance on different datasets.

We also evaluate the performance of the proposed AM methods, applied to different point cloud networks
with PC-AMS, and present the results in table 2. As a reference, we show a sample of the corresponding
visualization in figure 6. Our AE-based AM approaches achieve almost stable performances regarding PC-
AMSs, while being acceptable on other metrics, such as EMD. We also show the quantitative results of the
experiments on ShapNet in the next section.

Another interesting observation we noticed is that the global feature-based FID proposed by [SWL'20], to
some extent, measures the “diffusion degree” rather than the “perceptibility” of the point clouds. For verifica-
tion, we synthesize instances that are randomly distributed and therefore completely non-perceptible. We yield
examples that are uniformly distributed X,, ~ U(—7,7), and normally distributed X,, ~ N(0,0?), where r
increase from 0 to 1 and o grows from 0 to 0.1 in 10 steps, in order to represent inputs with different “diffusion
degrees”. For comparison, we stochastically choose real objects from the dataset, and calculate their FID with
objects of the same class. Theoretically, FID performs consistently with human judgment that our randomly
distributed artificial examples should exhibit significantly large FID with real objects as they possess no rec-
ognizable geometric structures. However, as figure 7 demonstrates, FID (the lighter blue line) dramatically
decreases with the point expansion of the instances (r = 0.1 and ¢ = 0.02). After the diffusion reaches the
threshold (r ~ 0.2 and o ~ 0.05), FID fails to distinguish the meaningless point clouds from the real objects
(the darker blue line), though we can still observe the discrepancies between them through CD and EMD.
A better point cloud-applicable perceptibility metric for generating examples in terms of latent distance is a
promising research direction.

m-IS  FID CDh EMD PC-AMs
AE 1.012 0.017 0.047 147.87 4.57
AED 1.146 0.012 0.076 208.02 4.65
NAED 1.157 0.011 0.067 203.74 4.75

Table 3: Quantitative evaluations on ShapeNet.
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Figure 6: AM visualization for the most popular point cloud networks: PointNet, PointNet++ and DGCNN.
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Figure 7: CD, FID and EMD metrics of instances generated by various parameters (the first two plots and
the last two plots are uniform and Gaussian distributions respectively), where IC denotes intra-class, which is
the average of corresponding distances between real objects in the dataset.  denotes the interval parameter of
uniform distribution and o denotes the variance of Gaussian distribution. The mean of Gaussian distribution is
set to zero to ensure that the generated instances are symmetric about the zero point of the spatial coordinates.
The larger the difference between the non-IC and the IC curves of the corresponding metrics, the better the
method is capable of distinguishing random examples from real ones.



Figure 8: An example of reviewing the inaccuracies of the dataset. The first column shows the instances in the
dataset that are labeled as ”’plant” but are classified as vase”. The second and third columns demonstrate the AM
output for the categories plants” and “’vases” respectively. The last column exhibits an explanation generated
from 3D LIME, where brighter red points represent more positive attributions while conversely brighter blue
points represent more negative attributions, neutral attributed points are colored as black.

4.3 AM for data reviewing

Explanations can facilitate human understanding of the operating behavior of black-box neural networks. As a
global explainability method, AM depicts the ideal input learned by the model. When the performance of the
model is sufficiently promising, one considers that the result of AM should be a generalization of an outline of
the objects from the corresponding class. Therefore, we can review those misclassified input instances utilizing
this characteristic. An example is shown in figure 8. Several instances in the dataset with the “plant” label
are misclassified as “’vase”, whereas a comparison exhibits that a single “plant” label is ambiguous since the
composite instance also contains the “vase” fraction. Observing the second and third columns, AM correctly
describes the object outlines of the corresponding neurons in the model without any confusion. For validation,
we also generate explanations for these instances employing the point cloud-applicable LIME [TK22] (the last
column), the conclusions of the two explanations are approximately analogous, and the explanation given by
the model is consistent with its predicted label in human perception.

5 Conclusion

In this work, we aim to investigate the global explanations of point cloud networks with the AM algorithm. We
demonstrate that AMs based on point-wise regularizations struggle to illustrate the ideal outline of the objects,
and we propose three generative model-based AM approaches which significantly enhance the perceptibility of
the generated examples while also maintaining their diversity. In addition, to address the lack of AM evaluation
metrics and the limitations of existing methods on point clouds, we propose a composite evaluation metric,
balancing activation value, diversity and perceptibility. The results show that our generative AM methods
outperform the regularization-based ones in both qualitative and quantitative aspects. For future work, we look
forward to more efficient AM generation methods as well as visualizations of low-level neurons to further
explore the working mechanism of point cloud neural networks.
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