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Abstract—We propose a Cascaded Buffered IoU (C-BIoU)
tracker to track multiple objects that have irregular motions
and indistinguishable appearances. When appearance features
are unreliable and geometric features are confused by irregular
motions, applying conventional Multiple Object Tracking (MOT)
methods may generate unsatisfactory results. To address this
issue, our C-BIoU tracker adds buffers to expand the matching
space of detections and tracks, which mitigates the effect of irreg-
ular motions in two aspects: one is to directly match identical but
non-overlapping detections and tracks in adjacent frames, and
the other is to compensate for the motion estimation bias in the
matching space. In addition, to reduce the risk of overexpansion
of the matching space, cascaded matching is employed: first
matching alive tracks and detections with a small buffer, and then
matching unmatched tracks and detections with a large buffer.
Despite its simplicity, our C-BIoU tracker works surprisingly
well and achieves state-of-the-art results on MOT datasets that
focus on irregular motions and indistinguishable appearances.
Moreover, the C-BIoU tracker is the dominant component for our
2nd place solution in the CVPR’22 SoccerNet MOT and ECCV’22
MOTComplex DanceTrack challenges. Finally, we analyze the
limitation of our C-BIoU tracker in ablation studies and discuss
its application scope.

I. INTRODUCTION

Multiple Object Tracking (MOT) is widely applied to iden-
tify the trajectory of each object in sequential data (e.g.,
videos). It offers important information for real-world ap-
plications which include but are not limited to autonomous
driving [14], sports and dance analysis [27], [9], and animal
surveys [1], [17].

Although MOT studies have been greatly developed [5],
[32], [31], [36], [35], [18], a new challenge has recently
attracted attention: unlike conventional MOT tasks that contain
objects with distinct appearances and regular motions, MOT
tasks that cover animals, group dancers, and sports players,
may have indistinguishable appearances and irregular motions,
which could cause existing MOT methods to fail. In particular,
as shown in Fig. 1, several MOT methods [5], [32], [35],
[7] that perform well on MOT17 [21], may experience a
significant performance drop on the DanceTrack [27].

Why does the HOTA score drop significantly on the Dance-
Track? We presume that tracking failures are caused by
two reasons: (i) The detections and tracks of identical
objects do not overlap between adjacent frames (e.g., due
to the fast movement) and thus the tracking fails; (ii)
After track initialization, unmatched tracks (e.g., occluded

MOT17 Test Set:
• Different Box Scales
• Distinct Appearances
• Regular Motion After

Removing Camera Motion

DanceTrack Test Set:
• Similar Box Scales
• Similar Appearances
• Irregular Motion After

Removing Camera Motion
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Fig. 1: Tracking performance on the test sets of MOT17 [21]
and DanceTrack [27]. For a fair comparison, all methods are online
approaches and use detections generated by YOLOX-X [13]. On the
MOT17, our method has a similar HOTA score to other methods,
whereas on the DanceTrack, our method increases the HOTA score
by a remarkable margin compared to DeepSORT [32], SORT [5],
ByteTrack [35], and OC-SORT [7].

objects) continue to update their geometric features for
multiple frames, however, if their motion estimations are
inaccurate (e.g., due to a sudden acceleration or turning),
they miss the matching opportunity when corresponding
detections are available in subsequent frames. When the ap-
pearance of objects can be distinguished, appearance features
could be employed to alleviate issues (i) and (ii), by matching
cross-frame detections based on their appearance similarities.
Nonetheless, when irregular motions are accompanied by
indistinguishable appearances, most existing MOT solutions
may not be able to perform a dependable tracking, so a new
solution is desirable.

In this study, we propose a Cascaded-Buffered Intersection
over Union (C-BIoU) tracker to track multiple objects that
have irregular motions and indistinguishable appearances. Our
BIoU (Fig. 2) is applied to alleviate issues (i) and (ii). Unlike
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Fig. 2: Illustration of how Buffered IoU (BIoU) is calculated. Our
BIoU adds a buffer that is proportional to the original bounding box.
It does not change the location center, scale ratio, and shape of the
original bounding boxes but expands the original matching space.

previous 
frame

current
frame

IoU = 0
BIoU > 0

Fig. 3: An illustration of BIoU forms better cross-frame geometric
consistency than IoU. The bounding box of an identical object
shares the same color. The magenta object has no overlapping
detections between adjacent frames. Whether this is caused by the
fast movement or incorrect motion estimation, our BIoU expands the
matching space to reduce the miss matching.

the IoU, which only forms spatiotemporal similarities between
overlapping detections and tracks, our BIoU constructs spa-
tiotemporal similarities for originally non-overlapping detec-
tions and tracks if they are within the range of the buffers
(Fig. 3). Because the buffers are proportional to the original
detections and tracks, the BIoU does not change their location
centers, scale ratios, and shapes but expands their matching
space. With these properties, our BIoU mitigates the effect
of irregular motions in two aspects: one is to directly
match identical but non-overlapping detections and tracks

in adjacent frames, and the other is to compensate for the
motion estimation bias in the matching space. Additionally,
to reduce the risk of matching space overexpansion, we
incorporate the BIoU into a cascaded matching scheme: first,
alive tracks and detections are matched using a small buffer,
and then, unmatched tracks and detections are matched again
using a large buffer. To this end, our C-BIoU tracker could
relieve mismatching caused by irregular motions and improve
the tracking performance.

We report promising results on a variety of MOT
datasets [9], [10], [1], [27] that focus on irregular motions and
indistinguishable appearances. Compared with other strong
MOT methods (e.g., OC-SORT [7]), our C-BIoU tracker
greatly improves the tracking performance, ranging from 2.6
to 7.2 in terms of the HOTA score [19]. Moreover, the C-
BIoU tracker is the dominant component for our 2nd place
solution in the CVPR’22 SoccerNet MOT [26] and ECCV’22
MOTComplex DanceTrack challenges. Finally, we analyze
the limitation of our C-BIoU tracker in ablation studies and
discuss its application scopes.

II. RELATED WORKS

A. Appearance Consistency and Geometric Consistency in
MOT

In MOT studies, appearance consistency and geometric
consistency are two critical assumptions used for associating
cross-frame detections. In general, the previous appearance of
an identical object should be similar to its current appearance
(i.e., appearance consistency), and its previous location and
shape added to its estimated motion should be approximate to
its current location and shape (i.e., geometric consistency).

In recent works, leveraging the appearance feature for MOT
has achieved great success in conventional MOT datasets
(e.g., MOT17 [21]). In particular, after transformers [29]
have been introduced to MOT studies [28], [34], [20], the
appearance similarity between cross-frame detections can be
measured in a highly accurate manner, which leads to a
good tracking performance. Nevertheless, the DanceTrack [27]
study conducted experiments to demonstrate that appearance
is not always reliable when tracking targets share a similar
appearance. Other MOT datasets, such as SoccerNet [9],
[10] and GMOT-40 [1], also reveal the challenge of real-
world MOT tasks: tracking targets may look similar, which
could fail MOT methods (e.g., [35]) that achieved a state-
of-the-art performance on conventional MOT datasets (e.g.,
MOT17 [21]).

Geometric matching can reduce the ambiguity caused by in-
distinguishable appearances. In general, the IoU is commonly
used to measure geometric consistency [6], [5], [32], [31],
[36], [35], [7]. The IoU scores, between detections and track
predictions, are used to represent their cross-frame affinity.
To estimate motions, Neural Networks [22] and Bayesian
filters [2], [12] have been typically applied. While most MOT
methods [5], [32], [31], [36], [35] apply the Kalman filter [15]
due to its simplicity, OC-SORT [7] has enhanced the Kalman
filter to handle crowded and occluded scenes. In real practice,
however, motion modeling may not always be accurate. In
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some scenarios, for instance, soccer players and dancers may
make irregular motions, which cause the motion estimation
model to fail. Additionally, for a non-stationary camera, al-
though image registration [8] can be used to calibrate camera
movements, it is time-consuming, and the accuracy cannot be
guaranteed. To alleviate these problems, we introduce a new
geometric consistency measurement solution.

B. Geometric Consistency Measurement

When irregular motions are given, it is difficult to initialize
and estimate the motion correctly, which may result in identi-
cal objects with no overlapping geometric features in adjacent
frames. Because the IoU produces the same value of 0 for
all non-overlapping geometric features (i.e., bounding boxes),
using the IoU for geometric consistency measurement may fail
tracking initialization and ongoing tracking. Thus, we propose
a BIoU to expand the original matching space to measure
the geometric consistency, which is robust to fast motions
and motion estimation bias. Unlike the searching window of
a previous work [33], which applies the expanded bounding
box as a spatial constraint, our BIoU takes the expanded
bounding box as a matching feature. To some extent, using
the GIoU [24] and DIoU [37] mitigates the same issue as our
BIoU does, but we verified that our BIoU may generate better
results under the same conditions (Sec. IV-C).

C. Cascaded Matching

After obtaining the cross-frame consistency measurements,
matching (i.e., data association) is applied to correspond cross-
frame detections. In addition to the cross-frame consistency,
we can also employ other strategies to optimize the matching
process. Cascaded matching is a commonly used approach
in MOT studies: matching the confident and easy samples
first, followed by ambiguous and difficult samples. For exam-
ple, ByteTrack[35] matches confident detections earlier than
unconfident detections, while DeepSORT [32] applies data
association to recently matched tracks before earlier matched
tracks. Since our BIoU changes the matching space, using a
large buffer scale takes a higher risk of overexpansion than
using a small buffer scale. We therefore integrate the BIoU
and cascaded matching in our tracker (Fig. 4). We first match
alive tracks and detections with a small buffer, and then match
unmatched tracks and retained detections with a large buffer.

III. C-BIOU TRACKER

The architecture of our Cascaded-Buffered IoU (C-BIoU)
tracker is illustrated in Fig. 4. It is specifically designed to
track multiple objects that have indistinguishable appearances
and irregular motions. We inherit part of the track manage-
ment from SORT [5] and propose our C-BIoU for geometric
consistency measurement.

A. Tracking Pipeline

Our tracking pipeline follows the tracking-by-detection
paradigm—the object detector and MOT framework are sep-
arately designed. Given a video, we apply the off-the-shelf

object detector (e.g., YOLOX [13]) to generate bounding boxes
at each frame. Our C-BIoU tracker then takes those bounding
boxes as inputs to produce tracking results. Such a pipeline
provides great flexibility to apply our C-BIoU tracker on
arbitrary detections. In our experiments (Sec. IV-B), we also
show that the similar pipeline [5], [32], [35], [7] yielded strong
results on our target datasets.

B. Buffered IoU

The Buffered IoU (BIoU) is our main contribution in this
work. As shown in Fig. 2, the BIoU simply adds buffers
that are proportional to the original detections and tracks
for calculating the IoU. Our BIoU retains the same location
centers, scale ratios, and shapes of the original detections
and tracks, but it expands the matching space to measure
the geometric consistency. Let o = (x, y, w, h) denote an
original detection and (x, y, w, h) be the top-left coordinate,
width, and height of the detection, respectively. Suppose that
the buffer scale is b, we have the buffered detection as
ob = (x − bw, y − bh, w + 2bw, h + 2bh). To approach our
cascaded matching, we apply grid research [3] to find the best
combination of two buffer scales b1 and b2 on the training set,
and then apply them to the validation set and test set. Since
we have b1 < b2, when we search for the combination of b1
and b2 within a certain range, the number of combinations
is limited. Considering that the speed of our C-BIoU is fast
(Table II), the grid search takes an acceptable time.

C. Simple Motion Estimation

Unlike most MOT methods [5], [32], [31], [36], [35]
that apply the Kalman filter [15] for state estimation, we
simply average motions of recent frames to quickly respond
to unpredictable motion changes. At frame t, suppose that a
track has matched detections for more than n frames, after
∆ unmatched frames, its track state s can be represented
as st+∆ = st + ∆

n

∑t
i=t−n+1(o

i
s − oi−1

s ), where os =
(x, y, x + w, y + h). The matched detections between frame
t−n to t are used to calculate motions and the average motion
is applied to update the track state. We set 2 ≤ n ≤ 5 by
default in our experiments. The IoU score of buffered st+∆

b

and oi+∆
b is used for data association at the frame t+∆. Due

to the simplicity of our approach, the overall tracking speed
is increased for our C-BIoU tracker (Table II).

D. Track Management

In an MOT framework, the function of track management
is to decide how and when to initialize, update and terminate
a track. We design our track management based on the
mainstream solution introduced by SORT [5], which is also
widely applied in other well-known MOT methods [32], [36],
[31], [35], [7].

For the first frame, we initialize all detections as new tracks.
In each track, the corresponding detection is recorded in a
memory. Without using the appearance information, a track
may need at least two tracked frames to initialize its motion
estimation. For a new track, therefore, we do not predict its
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Unmatched 
Detections

BIoU Matching w/
Small Buffer
(e.g., b1= 0.3)

BIoU Matching w/
Large Buffer
(e.g., b2= 0.5)

Matched 
Tracks

Unmatched 
Tracks

Unmatched 
Detections

New Tracks

age ≤ max_age

age > max_age Delete

Update State by Using
i) Current State for New Tracks
ii) Current State + Averaging
Previous Motions for Others

Update Track Age by
i) age += 1 for
Unmatched Tracks
ii) Reset age = 0 for
Matched Tracks

Cascaded Matching
Fig. 4: Framework of Our C-BIoU Tracker. Which initializes tracks from unmatched detections, applies the alive tracks to match new
detections, and terminates a track when it has not been matched for a given amount of frames (i.e., max age). Two BIoUs, which respectively
equip small and large buffers, are grouped into a cascaded matching. First, we match alive tracks and detections with the BIoU that has a
small buffer (i.e., b1). Then, we continue to match unmatched tracks and detections with the BIoU that has a large buffer (i.e., b2). For the
motion estimation, we simply average the speeds of recent frames to quickly respond to unpredictable motion changes.

motion; instead, we directly assign its recorded bounding box
as its current track state. As new tracks have an age of 0, they
are all alive tracks and can be used to match detections. For
the next frame, we apply the BIoU with a small buffer scale
b1 to calculate the geometric affinity between detections and
alive tracks. Based on the geometric affinity, linear assignment
(e.g., Hungarian algorithm [16]) is applied to associate tracks
and detections.

After the first matching, some tracks and detections could
be unmatched. Besides the newly appeared and disappeared
objects, we assume that some objects may have an inconsis-
tency between their detections and states of the track. This
inconsistency could be caused by large irregular motions. To
alleviate this issue, we apply BIoU with a large buffer scale b2
for the second matching. The first and second BIoU matching
form a cascaded matching. After the second matching, we
create new tracks from the unmatched detections and terminate
a track when it has not been matched for a given amount of
frames (i.e., max age). We update the state of a track by
adding estimated motions to its current state. Meanwhile, we
also update the age of tracks. We increase the age for the
unmatched tracks and reset the age to 0 for matched tracks.
This age will be compared with the threshold max age to
determine whether a track should be terminated. We repeat
this progress until all frames are processed.

Note that, we only propose a simple prototype to show how
to use our C-BIoU in MOT. Depending on the needs, other
MOT modules can be integrated with our C-BIoU to build a
more powerful MOT framework.

IV. EXPERIMENTS

Our experiments consist of three parts. In Sec. IV-A, we
present the details of our experimental dataset and evaluation
metrics. Then, in Sec. IV-B, we demonstrate the effectiveness
of our C-BIoU tracker by comparing its performance to state-
of-the-art methods on four MOT datasets. Next, in Sec. IV-C,

we perform ablation studies to investigate (1) how our BIoU,
cascaded matching, and motion modeling contribute to our
final results; (2) how our dominant parameters, as the buffer
scales, affect the tracking performance; and (3) how detection
noise influences our C-BIoU tracker and the corresponding
limitation of our C-BIoU tracker.

A. Dataset and Evaluation Metrics

Datasets. Four public MOT datasets are used in our ex-
periments. MOT17 [21] covers conventional tracking scenes:
most tracking targets may have distinguishable appearances,
and their motions could be regular after removing camera
motions. DanceTrack [27], SoccerNet [9], [10], and GMOT-
40 [1] introduce another kind of realistic tracking scenario,
where tacking targets share a similar texture and have ir-
regular motions (even after removing the camera motion).
Besides, compared to MOT17, more frames are included in
DanceTrack, SoccerNet, and GMOT-40, which helps us make
a comprehensive analysis.
Evaluation Metrics. Although MOTA [4] used to be a dom-
inant metric for the MOT evaluation, it may favor detection
over association performance. To alleviate the limitation of
MOTA, the HOTA metric [19] was proposed to provide a better
trade-off between detection and association performance, and
thus, it is the dominant metric for recent MOT evaluations. In
our experiments, we select HOTA metrics (i.e., HOTA, DetA
and AssA) [19], CLEAR metrics (i.e., MOTA) [4] and Identity
metrics (i.e., IDF1) [25] to evaluate the tracking results from
various perspectives. Among them, the HOTA score is our
dominant metric.
Evaluation Approaches. To evaluate the test sets of MOT17
and DanceTrack, we submit the result to their official evalua-
tion servers to obtain the evaluation feedback. Meanwhile, we
utilize the ground truth of the DanceTrack validation set, Soc-
cerNet test set, and GMOT-40 test set to perform evaluations
with the TrackEval [19] evaluation script. In our experiments,
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TABLE I: Results on the test sets of MOT17 [21] and DanceTrack [27]. For a fair
comparison, methods in the bottom block use detections generated by YOLOX-X [13].
On MOT17, our method has a similar HOTA score to other methods, whereas, on the
DanceTrack, our method increases the HOTA score with a remarkable margin.

Tracker MOT17 Test Set DanceTrack Test Set

HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑ HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑
Using Other Detections
FairMOT [36] 59.3 60.9 58.0 73.7 72.3 39.7 66.7 23.8 82.2 40.8
QDTrack [23] 53.9 55.6 52.7 68.7 66.3 45.7 72.1 29.2 83.0 44.8
TransTrack [28] 54.1 61.6 47.9 75.2 63.5 45.5 75.9 27.5 88.4 45.2
MOTR [34] 57.2 58.9 55.8 71.9 68.4 54.2 73.5 40.2 79.7 51.5
GTR [38] 59.1 61.6 57.0 75.3 71.5 48.0 72.5 31.9 84.7 50.3
Using Detections Generated by YOLOX-x [13] with Input Size of [800, 1440]
DeepSORT [32] 61.2 63.1 59.7 78.0 74.5 45.6 71.0 29.7 87.8 47.9
SORT [5] 63.0 64.2 62.2 80.1 78.2 50.0 75.5 33.2 90.4 52.0
ByteTrack [35] 63.1 64.5 62.0 80.3 77.3 51.9 80.1 33.8 90.9 52.0
OC-SORT [7] 63.2 63.2 63.2 78.0 77.5 55.7 81.7 38.3 92.0 54.6
C-BIoU Tracker 64.1 64.8 63.7 81.1 79.7 60.6 81.3 45.4 91.6 61.6

TABLE II: Comparison of the tracking infer-
ence speed (w/o the detection part) using an
Intel Xeon Silver 4216 CPU. The unit is FPS
(Frames Per Second). Because our C-BIoU
utilizes the average speed of recent frames
other than the Kalman filter for its motion
estimation, it is faster than other trackers. Note
that, the speed of tracker is proportional to
the number of tracking objects, and when the
number of objects increases, the speed of the
tracker drops.

Tracker MOT17 DanceTrack

SORT [5] 144 271
ByteTrack [35] 118 207
OC-SORT [7] 185 341
C-BIoU Tracker 361 680

TABLE III: Comparisons on the DanceTrack validation set [27],
SoccerNet test set [9], [10], and GMOT-40 test set [1]. Where
“App.” and “Mo.” represent the appearance feature and motion
estimation, respectively.

Tracker HOTA↑DetA↑AssA↑MOTA↑ IDF1↑

DanceTrack Validation Set [27]. Using Oracle Detections.
DanceTrack (IoU) [27] 72.8 98.9 53.6 98.7 63.5
DanceTrack (IoU+Mo.) [27] 69.4 87.9 54.8 99.4 71.3
DanceTrack (App.) [27] 59.7 82.5 43.2 97.2 60.5
DanceTrack (IoU+Mo.+App.) [27] 68.0 97.7 47.4 97.9 58.7
DeepSORT [32] 66.8 86.1 51.8 97.4 68.3
SORT [5] 67.6 86.6 52.8 98.1 69.6
OC-SORT [7] 79.1 97.7 64.0 99.6 76.1
C-BIoU Tracker 81.7 97.6 68.4 99.3 80.5
SoccerNet Test Set [9], [10]. Using Oracle Detections.
ByteTrack [35] (reported by [9]) 71.5 84.3 60.7 94.6 -
DeepSORT [32] (reported by [9]) 69.6 82.6 58.7 94.8 -
SORT [5] 74.7 87.2 64.0 96.1 75.6
OC-SORT [7] 82.0 98.6 67.9 98.3 76.3
C-BIoU Tracker 89.2 99.4 80.0 99.4 86.1
GMOT-40 Test Set [1]. Using Oracle Detections.
DeepSORT [32] 86.4 87.9 84.9 94.2 88.6
SORT [5] 87.8 90.9 84.8 97.6 89.6
OC-SORT [7] 92.4 99.3 86.0 98.5 90.0
C-BIoU Tracker 96.4 99.7 93.2 99.6 95.6

we apply the default data splitting for DanceTrack, SoccerNet,
and GMOT-40.

B. Main Results

1) Comparisons Using Estimated Detections: Table I com-
pares our C-BIoU tracker to mainstream MOT methods on
the test sets of MOT17 [21] (private detections) and Dance-
Track [27]. Each score is either from previous studies (e.g.,
DanceTrack [27]) or obtained by submitting the corresponding
results to official evaluation servers. Note that, since the
detection quality can significantly affect the overall tracking
performance, for a fair comparison, methods in the bottom
block use the detections generated by YOLOX [13]. The
YOLOX weights for the MOT17 and DanceTrack datasets are
offered by ByteTrack [27] and OC-SORT [7], respectively. As
methods in the top block may utilize better or worse detections
than ours, we list them here for reference only.

On the MOT17 test set, our method has a similar HOTA
score as other methods. As analyzed in previous work [27],

the main bottleneck in MOT17 is detection other than tracking.
On the DanceTrack test set, our method increases the HOTA
score by a remarkable margin as compared to other methods.
Although DeepSORT [32], SORT [5], and ByteTrack [35]
can generate comparable results on the MOT17 test set, their
tracking performance largely drops on the DanceTrack test
set, where more complicated object movements and similar
bounding box scales are included. Compared to the second-
best method (i.e., OC-SORT [7]), which applies the IoU,
GIoU, or DIoU for its matching, our C-BIoU tracker has
increased the HOTA score by 4.9 to make the new state
of the art. Through the above comparisons, we prove the
effectiveness of our C-BIoU tracker on conventional MOT data
(i.e., MOT17) and our target MOT data (i.e., DanceTrack) that
covers complicated motions and indistinguishable appearance.

In addition to the HOTA gain, our C-BIoU tracker can
increase the inference speed of tracking (w/o the detection
part). Table II reports the inference speed on the test sets
of MOT17 [21] and DanceTrack [27]. Our C-BIoU tracker
leverages the average speed of recent frames other than
Kalman filters for its motion estimation. Therefore, we reduce
the computation cost for data format transformation and other
calculations used in Kalman filters. On the MOT17 and
DanceTrack datasets, our C-BIoU tracker almost doubles the
speed of OC-SORT [7] and is much faster than other trackers.
These results reveal that our C-BIoU tracker is a practical
solution for real-world applications.

2) Comparisons Using Oracle Detections: To focus only on
the tracking, we perform experiments using oracle detections
from the DanceTrack validation set [27], SoccerNet test set [9],
[10], and GMOT-40 test set [1]. The results in Table III
indicate that our C-BIoU tracker can significantly surpass the
other methods [5], [32], [35], [27], [7], improving the tracking
performance ranging from 2.6 to 7.2 in terms of the HOTA
score. To obtain a more comprehensive look at the tracking
performance, we plot the tracking results on multiple datasets
for SORT [5], OC-SORT [7], and our C-BIoU tracker in Fig. 5.

Although we achieve the best performance on the three
datasets, our tracking results are still imperfect even using
oracle detections. Therefore, in the current research, it is useful
to construct baselines using oracle detections and focus on
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Fig. 5: Example results on the DanceTrack validation set [27] and SoccerNet test set [9], [10]. Our C-BIoU tracker generates fewer
tracking errors than SORT [5] and OC-SORT [7].

improving the data association performance. We hope our
baselines can motivate related research.

C. Ablation Experiments

We perform ablation studies to investigate the effect of
individual modules and buffer scales in our C-BIoU tracker,
as well as the effect of noisy detections.

1) Effect of Each Module in the C-BIoU Tracker: Table IV
shows the influence of each module in our C-BIoU tracker. In
detail, we present the following analysis.
Effect of the BIoU. As a comparison, we apply the BIoU
matching only once and remove the motion estimation in Fig. 4
to construct the BIoU tracker. Using the same framework,
the tracker equipped with BIoU achieves a higher HOTA
score than other trackers equipped with IoU, GIoU [24], or
DIoU [37]. Although the GIoU and DIoU can incorporate non-
overlapping boxes for geometric consistency measurement,
they may not generate comparable results as our BIoU does.
Effect of Integrating Cascaded Matching and the BIoU. On
the DanceTrack and GMOT-40, integrating cascaded matching
and BIoU can slightly improve the performance as compared
to using BIoU alone, with a HOTA gain of 0.2 and 0.1, respec-
tively. While on SoccerNet, the improvement from integrating

cascaded matching and the BIoU is more significant, with a
HOTA gain of 1.2. In the SoccerNet dataset, since the non-
stationary camera can add extremely fast motion to objects,
the use of cascade matching is more robust in this case.

Effect of the Motion Estimation. According to the results,
motion estimation plays an important role in our C-BIoU
tracker. Since our BIoU can compensate the matching space
for incorrect motion estimation, using a simple motion esti-
mation (i.e., averaging previous motions) yields better HOTA
scores than that without using motion estimation.

2) Effect of Buffer Scales in the C-BIoU Tracker: In our
C-BIoU tracker, the buffer scales b1 and b2 are critical hyper-
parameters. Here, we perform ablation studies to investigate
how buffer scales affect the tracking performance. On the
DanceTrack validation set [27], we form the combination of
b1 and b2 ranging from 0.1 to 0.7 and evaluate their tracking
performance. Since we have b1 < b2, we only need to check
21 combinations. As shown in Fig. 6, the combination of
[0.3, 0.4] gives the maximum HOTA score. In real practice,
we perform a similar approach to select the best combination
on the training dataset and apply them to the test dataset.
Note that, although the variation of buffer scales affects the
tracking performance remarkably, using the IoU tracker can
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TABLE IV: Ablation experiments on the DanceTrack validation
set [27], SoccerNet test set [9], [10], and GMOT-40 test set [1].
Where “C.M.” and “Mo.” represent the cascaded matching and
motion estimation, respectively. We remove the cascaded matching
and motion estimation in Fig. 4 to construct a unified framework for
the IoU, GIoU [24], DIoU [37], and BIoU. The best results obtained
by tuning the parameters are reported. Our BIoU performs better
than the GIoU and DIoU. Using the C-BIoU setting is better than
that using the BIoU alone. The motion estimation contributes to better
HOTA scores.

Tracker C.M. Mo. HOTA↑DetA↑AssA↑MOTA↑ IDF1↑

DanceTrack Validation Set [27]. Using Oracle Detections.
IoU Tracker ✗ ✗ 76.6 97.5 60.2 99.2 73.6
GIoU Tracker ✗ ✗ 77.1 97.6 60.9 99.2 74.0
DIoU Tracker ✗ ✗ 75.1 97.0 58.2 99.2 72.9
BIoU Tracker ✗ ✗ 80.0 97.5 65.7 99.3 78.2
C-BIoU Tracker ✓ ✗ 80.2 97.5 65.9 99.3 79.3
C-BIoU Tracker ✓ ✓ 81.7 97.6 68.4 99.3 80.5
SoccerNet Test Set [9], [10]. Using Oracle Detections.
IoU Tracker ✗ ✗ 81.9 99.4 67.5 99.8 75.7
GIoU Tracker ✗ ✗ 79.8 99.7 63.8 97.8 73.4
DIoU Tracker ✗ ✗ 84.3 99.7 71.2 99.2 79.9
BIoU Tracker ✗ ✗ 87.7 97.7 77.1 99.4 83.0
C-BIoU Tracker ✓ ✗ 88.9 99.5 79.4 99.5 85.2
C-BIoU Tracker ✓ ✓ 89.2 99.4 80.0 99.4 86.1
GMOT-40 Test Set [1]. Using Oracle Detections.
IoU Tracker ✗ ✗ 93.0 99.6 86.8 98.1 90.1
GIoU Tracker ✗ ✗ 93.4 99.8 87.4 98.5 90.2
DIoU Tracker ✗ ✗ 93.6 99.7 87.8 99.2 91.7
BIoU Tracker ✗ ✗ 96.2 99.5 93.0 99.6 95.4
C-BIoU Tracker ✓ ✗ 96.3 99.7 93.1 99.6 95.5
C-BIoU Tracker ✓ ✓ 96.4 99.7 93.2 99.6 95.6

0.1 0.2 0.3 0.4 0.5 0.6
b1

0.2

0.3

0.4

0.5

0.6

0.7

b 2

79.8

79.8 81.0

79.6 80.9 81.7

79.7 80.8 81.6 80.2

79.6 80.8 81.5 80.1 78.6

79.6 80.7 81.4 80.0 78.8 78.2

HOTA
78.0

78.5

79.0

79.5

80.0

80.5

81.0

81.5

82.0

Fig. 6: Results of applying various buffer-scale combinations on
the DanceTrack validation set [27]. For buffer scales b1 and b2,
since we have b1 < b2, we only check the lower triangle of the
combination matrix.

only achieve a HOTA score of 76.6, which is lower than using
any of the above buffer combinations.

3) Effect of the Detection Noise: We have shown the
superiority of our C-BIoU tracker in the previous experiments,
however, we need to discuss about its limitations. Accordingly,
we conduct the following analysis.

In the previous experiments, our C-BIoU tracker signifi-
cantly outperforms other MOT methods when using either
high-quality detections generated by YOLOX [13] or oracle
detections. Nonetheless, assuming that we only have low-
quality detections, the robustness of our C-BIoU tracker needs
to be studied. We inject noise (i.e., False Negatives and False

TABLE V: The influence of the detection quality. We inject
different levels of noises to the oracle detections of the DanceTrack
validation set [27] to quantitatively investigate the influence of
detection quality. IoU tracker and OC-SORT [7] are used as baselines.
We apply IoU matching only once in Fig. 4 to construct the IoU
tracker.

Noise Ratio Tracker HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

0%
OC-SORT [7] 79.1 97.7 64.0 99.6 76.1
IoU Tracker 76.6 97.5 60.2 99.2 73.6
C-BIoU Tracker 81.7 97.6 68.4 99.3 80.5

20%
OC-SORT [7] 61.4 78.3 48.1 79.3 65.3
IoU Tracker 57.6 79.5 41.7 81.7 59.6
C-BIoU Tracker 62.3 78.3 49.5 79.2 66.0

40%
OC-SORT [7] 28.0 40.4 19.4 41.4 34.3
IoU Tracker 38.3 58.6 25.0 60.4 40.8
C-BIoU Tracker 29.2 58.0 14.7 57.7 29.1

Positives) to the oracle detections of the DanceTrack validation
set [27] and form noisy detections that have quantitatively
defined noise ratios. To inject detection noise, we first remove
detections to generate False Negatives, and then add detections
to non-target locations to form False Positives. Both of them
have the same ratios.

The results in Table V reveal the influence of noisy detec-
tions on the tracking performance by considering noise ratios
together. To date, such an ablation study had not been taken
into account in existing studies. When the noise ratio is not
higher than 20%, our C-BIoU tracker can maintain the best
performance. However, a higher noise ratio, such as 40%,
could lead to a worse performance of our C-BIoU tracker
than the normal IoU tracker. The result is attributed to low-
ratio noisy detections, which avoids the overlapping of the
track and detection of an object in a short interval of frames.
Therefore, using BIoU matching to expand the matching space
can result in more samples being correctly matched than IoU
matching. However, for high-ratio noisy detections, the track
and detection of an object do not overlap in a large interval
of frames. Consequently, both IoU matching and BIoU match-
ing may generate tracking errors. In addition, the expansion
of the matching space by BIoU leads to more aggressive
matching, which increases the risk of missed matches with
False Positives. For these reasons, the robustness of our C-
BIoU tracker decreases when extremely noisy detections are
given. Fortunately, as reported in previous works [27], [9], [1],
high-quality detections can be obtained in our target MOT
datasets, since the similar appearance may ease the object
detection. Thus, our C-BIoU tracker is applicable to real-world
applications despite its limitations.

V. CONCLUSION AND LIMITATION DISCUSSION

We present a novel Cascaded-Buffered IoU (C-BIoU)
tracker to track multiple objects that have indistinguishable
appearances and irregular motions. Experiments are conducted
on related MOT datasets, and our C-BIoU tracker outperforms
most existing methods by a notable margin. These results sug-
gest that our C-BIoU tracker is generalizable and promising for
tracking multiple objects with indistinguishable appearances
and irregular motions. The good performance of our C-BIoU
tracker can be attributed to its buffered matching space, which
mitigates the effect of irregular motions in two aspects: one is
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to directly match identical but non-overlapping detections and
tracks in adjacent frames, and the other is to compensate for
the motion estimation bias in the matching space.

As a limitation, our C-BIoU tracker may not be robust
to extremely noisy detections (Sec. IV-C3). However, with
advancements in object detection, existing studies hint that
good detections can be obtained in most MOT tasks. In
addition, for other applications such as semi-automatic MOT
annotations (e.g., [11], [30]), human factors are introduced to
correct detections before tracking. Hence, our C-BIoU tracker
remains a capable solution for real-world applications due to
its simplicity, fast speed, and good tracking performance.
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Global tracking transformers. arXiv preprint arXiv:2203.13250, 2022.


