
Bent & Broken Bicycles: Leveraging synthetic data for damaged object
re-identification

Luca Piano, Filippo Gabriele Pratticò, Alessandro Sebastian Russo, Lorenzo Lanari, Lia Morra,
Fabrizio Lamberti

Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
{luca.piano,filippogabriele.prattico,alessandrosebastian.russo}@polito.it,
lorenzo.lanari@studenti.polito.it,{lia.morra,fabrizio.lamberti}@polito.it

Abstract

Instance-level object re-identification is a fundamental
computer vision task, with applications from image re-
trieval to intelligent monitoring and fraud detection. In
this work, we propose the novel task of damaged object
re-identification, which aims at distinguishing changes in
visual appearance due to deformations or missing parts
from subtle intra-class variations. To explore this task,
we leverage the power of computer-generated imagery to
create, in a semi-automatic fashion, high-quality synthetic
images of the same bike before and after a damage oc-
curs. The resulting dataset, Bent & Broken Bicycles (BB-
Bicycles), contains 39,200 images and 2,800 unique bike
instances spanning 20 different bike models. As a base-
line for this task, we propose TransReI3D, a multi-task,
transformer-based deep network unifying damage detec-
tion (framed as a multi-label classification task) with ob-
ject re-identification. The BBBicycles dataset is available
at https://tinyurl.com/37tepf7m

keywords instance-level retrieval; re-identification; syn-
thetic data; damage detection; transformers

1. Introduction

Deep learning has fueled unprecedented advances in
tasks such as person re-identification (ReID) [14, 60, 29,
44, 9], vehicle ReID [24, 17] and instance-level object re-
trieval [64, 3, 7, 54, 49]. The availability of suitable datasets
for training and testing ReID systems is a key ingredient to
this success. Existing ReID benchmarks, typically focusing
on persons [56, 63, 28] and vehicles [30, 31], are limited in
size and variety. Even when they include a large number
of IDs [30, 56], they generally cover a limited geographi-
cal area (e.g., a town or campus circuit) and time window
(e.g., a few hours or days). For this reason, the commu-
nity has recognized the potential of synthetic data for tasks

such as person detection, tracking, and ReID [14, 3]. In
addition to the sheer volume of generated data, synthetic
generation can increase its variety in terms of background,
illumination, weather, pose, etc., so that deep neural net-
works (DNNs) can incorporate all the invariances needed to
generalize in real-world conditions.

In the spirit of pursuing even more robust object ReID,
we wish to investigate whether it is possible to make DNNs
invariant not only to changes in the environment, but also to
changes in the object visual appearance, such as those that
could occur due to aging, degradation, damages, or remov-
able/interchangeable parts. Long-term ReID requires the
ability to distinguish stable properties over time to account,
e.g., for changes in person clothing [47, 19] or seasonal
changes in places [32]. Here, we propose the novel task of
damaged object re-identification, which aims to identify
the same object in multiple images even in the presence of
breaks, deformations, and missing parts. Besides the theo-
retical interest, robust object ReID is motivated by practical
applications like, e.g., fraud detection and smart contracts
in the insurance domain [35].

As a benchmark for this task, we propose to focus on
the study of bicycles, which are characterized by challeng-
ing intra-class variations and at the same time allow for a
wide range of realistic deformations. Unlike landmarks that
have unique and distinctive features, bike instances must be
separated based on subtle cues (e.g., color, texture, or stick-
ers). Deformations are inherently different from occlusions,
since object parts are visible but with changes in shape (de-
formation) or texture (e.g., due to mud, dirt, or rust). There-
fore, the insights collected from BBBicycles could be use-
ful for other ReID tasks (e.g., vehicle, person), with similar
challenges for long-term ReID. Since acquiring real images
of the same bicycle before and after deformation would be
prohibitively challenging, we took advantage of computer
graphics to generate the Bent & Broken Bicycles (BBBicy-
cles) dataset, which we release as the first dataset for train-

ar
X

iv
:2

30
4.

07
88

3v
1

 [
cs

.C
V

]
 1

6
A

pr
 2

02
3

https://tinyurl.com/37tepf7m

ing and testing DNNs for damaged object ReID.
Our contributions can be summarized as follows:

• We design a semi-automatic computer graphics
pipeline to simulate different types of damage, breaks,
missing parts, and material deterioration. Extensive
domain randomization is further employed to train
deep networks robust to variations in bicycle pose,
background, etc. [51, 50].

• We release the BBBicycles dataset containing 39,000
annotated images. BBBicycles allows DNNs to (learn
to) differentiate subtle intra-class variations (including
different setups of the same bike model) from defor-
mations occurring due to incidents, or aging.

• We propose TransReI3D (Transformer-based object
Re-IDentification & Damage Detection), a novel
transformer-based multitask DNN for joint damage de-
tection (DD) and ReID.

2. Related work
2.1. Transformer-based re-identification

Object ReID is the task of identifying the same object
across multiple images, regardless of its pose, illumina-
tion, or context. It has many important applications such
as intelligent monitoring [24, 59], multi-object tracking and
robotics [35, 27], fraud detection [26], etc. The reader is
referred to many comprehensive surveys for an introduc-
tion to this vast body of literature [64, 24, 7]. In recent
years, the Vision Transformer (ViT) architecture [12] has
sparked a new wave of transformer-based architectures for
many computer vision tasks [23]. Transformer-based ReID
solutions can be broadly categorized in hybrid transformer-
CNN [18, 60, 29] and pure ViT-based architectures [17, 49].

Hybrid architectures combine CNNs as a feature extrac-
tor with a transformer-based module that tackles the match-
ing and metric learning problem [29, 49, 60, 18]. This
approach leverages, on the one hand, CNNs hard induc-
tive biases (e.g., translation equivariance) to work effec-
tively on small- to medium-scale datasets. On the other
hand, transformers enable cross-attention mechanisms be-
tween pairs of query and gallery images [29, 49]. For in-
stance, the Reranking Transformer [49] concatenates image
patches from both the query and gallery images in a single
sequence, which is then fed to a final classifier predicting
the probability of two images representing the same object.

More recently, a variety of pure transformer-based ap-
proaches have achieved state-of-the-art results in several
ReID tasks [45, 66, 44, 17]. Compared to CNNs, transform-
ers are better suited to handling long-range dependencies
and avoid the use of downsampling operators (e.g., pooling
and strided convolutions) that may obscure important visual

details [17]. The available architectures are typically based
on a ViT backbone, pre-trained on very large-scale datasets
such as ImageNet21K, and modified to extract both local
and global features [66, 17, 45].

2.2. Synthetic data in deep learning

The use of synthetic data is becoming increasingly pop-
ular for training machine and deep learning models. Al-
though it is being experimented in multiple domains like,
e.g., bioinformatics [43], natural language processing [54],
etc., this approach is indeed expected to bring the largest
benefits to the field of computer vision. Synthetic data gen-
eration is not only an effective approach to scale data gen-
eration and annotation, it can also be used to evaluate the
robustness of an algorithm under controlled conditions or
to alleviate data privacy issues [61, 9].

A recent survey categorized hundreds of synthetic
datasets and the use cases they have been devised for [37].
Initially used to address low-level computer vision tasks
such as optical flow [33], synthetic datasets are increasingly
used to generate training datasets for high-level tasks such
as, e.g., object recognition and detection [38], pose esti-
mation [52], segmentation [34], human action recognition
[10] and pedestrian tracking and ReID [55, 14]. Works in
this field typically build onto well-known repositories, in-
cluding millions of virtual models with known categories
or properties, which can be programmatically manipulated
to automate both data generation and its labelling [5, 25].

Popular approaches for collecting synthetic data also in-
clude the use of video games [42, 8, 48, 40, 36], or fusing
real and virtual data via compositing techniques and plac-
ing, e.g., virtual models onto real background images [13].

One of the main challenges associated with synthetic
data is the domain shift between real and synthetic images,
which can be tackled through transfer learning or domain
adaptation [21, 46, 62]. Domain randomization is a tech-
nique used to enhance the variability of synthetic data and
has been shown to substantially increase performance in
the real world [51]. With ever increasing CGI fidelity, the
synthetic-to-real domain gap is progressively reducing. Re-
cent exciting results showed that training DNNs on very
large and diverse synthetic datasets can outperform using
public real datasets on tasks such as pedestrian tracking and
ReID, even without fine-tuning on real data [14].

3. Dataset
This section describes the semiautomatic CGI pipeline

designed to generate the BBBicycles dataset, together with
its main properties and distribution.

3.1. CGI Pipeline

The CGI pipeline, depicted in Figure 1, consists of two
main phases. The first phase is model preparation, which

Polygonal
conversion

Rig

Adaptation

Apply Default
Materials

Apply
material

variations

After

Phase 1: Model Preparation

Phase 2: Image Rendering

Apply
pose

variations

Remove parts Apply damages

Generate scene

75%

25%

Before

Bike Model Retopology

Generate Rendering

Apply
dirt

Before
 After

Figure 1: Flowchart illustrating the CGI pipeline. The 3D model is manually prepared (Phase 1) so that it can be easily
manipulated by a semi-automatic image rendering script (Phase 2). The script first selects the material textures and colors,
thus obtaining a new bike instance (ID). For each ID, multiple images (“before” and “after” the damage) are generated,
simulating damages (missing parts, bent and broken frames, etc.) with varying probabilities. Finally, the scene is generated
by placing the bike onto a random background.

is mostly manual and performed once for each bike model.
In the second phase, a semi-automatic script generates a set
of rendered images, depicting multiple views and variations
of a given input bike, along with labeling and segmenta-
tion information. We sought to create a pipeline that could
be applied to generate new datasets with limited human ef-
fort and hardware resources. Following this philosophy, we
sacrificed some degree of photorealism in favor of reduced
rendering time and increased variability. Damages and de-
formations were implemented based on the classical CGI
technique of 3D polygonal meshes armature deformation.

This approach was preferred to, e.g., physics simula-
tions, since it drastically reduces the overall rendering time
while maintaining control over the output features desired
in terms of missing parts, type of damage, etc. The whole
pipeline was implemented in Blender v2.93 [1] and the au-
tomatic procedure was scripted in Python as a custom add-
on.

Model preparation. The input can be either a 3D para-
metric model (e.g., CAD file) or a polygonal mesh. In the
former case, a polygonal conversion is first required to gen-
erate a polygonal model. To ensure visually plausible de-
formations, a retopology operation has to be performed in
order to obtain quad-flow based topologies with proper ver-
tex density in the parts that will later be subject to deforma-
tion. Afterwards, the model is rigged and skinned (i.e., each
vertex is associated with a deformation tool of the rig). To
make the model easily controlled, we defined a template rig
that needs to be adapted to the given bike model. The tem-
plate rig is made up of an “armature”, “lattices”, and “rail

guides” (examples are shown in Appendix A).
More in detail, the template Armature includes three

groups/layers of “bones”. The red bones are linked to the
seat and handlebar meshes (rigid-body movement). The
green bones, placed in the salient parts/joints, are used as
inverse kinematic controls (targets and poles) by the blue
chains. The latter are the so-called deformation bones;
only this group was modified by adding/removing bones,
if required by the peculiarities of the bike model. These
deformation chains are the ones used for the bike frame
mesh skinning, whereas other parts (e.g., seat, handlebars,
and wheels) are parented (bone relatively) to the dedicated
bones of the other two groups. A set of predefined defor-
mations were devised in the form of a pose library to both
change the poses of the movable bike components and in-
troduce damages while rendering the images.

The Lattice is a three-dimensional non-renderable grid
of vertices, a.k.a. deformation cage. Lattices are a conve-
nient way of proportionally deforming a dense mesh with
fewer control points since, by deforming the cage, the de-
formation will be transferred to the associated mesh. The
lattices were used to damage the wheels. A set of deforma-
tions was devised also in this case in the form of a shape key
(a.k.a. blend shape) library. Additionally, Rail guides were
used to break the bike frame exploiting a boolean mesh op-
eration on a plane that takes the guides as reference.

Domain randomization and image rendering. After the
3D model is arranged as described, it is possible to auto-
matically render a variety of different pictures, as described
in the following. First, the 3D model is configured by ran-

domly selecting a set of materials (texture, color, and de-
cals) from the material library. A physically based render-
ing (PBR) material library was defined, from which to pick
a suitable material, among several possible choices, for each
bike part. A given combination of 3D model and materials
corresponds to a single bicycle instance and is therefore as-
signed a unique ID. Second, for each ID, multiple images
are generated, “before” or “after” a damage occurs, by ap-
plying the following transformations: i) changing the pose
of mobile parts (seat, handlebar, pedals and wheels); ii) (op-
tional) applying mud or rust; iii) (optional) damage simula-
tion; iv) point of view selection; and v) background and
lighting selection. All deformations are applied randomly
with predetermined probabilities and/or ranges. Possible
damages include removal of one or more parts of the bike
(seat, pedals, handlebar, and wheels), bent frame, broken
frame, and wheel deformation.

Finally, the rendered bike must be placed onto a suitable
background, adjusting for the specific lighting conditions.

The approach considered in the pipeline takes advantage
of the LilyScraper [2], a Blender add-on to use a High Dy-
namic Range Imaging (HDRI) map as background and light
source, in combination with a shadow-catcher plane. The
setup of the environment and the lighting was performed
once for all models.

3.2. BBBicycles characteristics

Dataset distribution. The final dataset contains a total of
39,200 images from 2,800 unique IDs (20 models, 140 IDs
each). 20 models retrieved from dedicated marketplaces
were prepared, including 6 MTBs, 1 Enduro, 6 Road bikes,
1 Circuit, 1 Gravel and 5 Cruiser (following the categoriza-
tion introduced in [41]). For the textures, we collected five
patterns of various styles. Both the base and pattern colors
were randomly chosen from a pool of 50 colors. Addition-
ally, 10 different decals containing logos from famous bike
brands such as Bianchi and Cannondale were randomly ap-
plied. The background was selected from a pool of 11 dif-
ferent 360° HDRIs, varying bike positioning and illumina-
tion by rotating the camera.

For each bike ID, up to 14 renderings were generated,
evenly divided in “before” and “after” images as shown in
the flowchart (Figure 1). For “before” images, only dirt or
rust was applied with 20% probability. For “after” images,
dirt/rust was applied with 50% probability, damages to the
frame were applied with 75% probability (25% were bent,
25% were broken and 25% were both bent and broken),
and finally each removable part (seat, pedals, handlebar, and
wheels) was removed (50% probability) or deformed (50%
probability). Thus, some of the “after” images are not dam-
aged. Labels for the ReID task were automatically gener-
ated based on the bike unique ID assigned by the pipeline.

Training, validation, and stress test set. The dataset was
split into a training, validation, and test set at the level of
bike ID and model to test DNNs’ ability to generalize both
across IDs and across models. The validation set includes
both models seen and unseen during training, whereas the
(stress) test set includes only models that were never seen
in either the training or validation set, to ensure that it is
sufficiently challenging and representative of real operat-
ing conditions. Specifically, the training set contains 25,676
images (1,834 IDs, 14 models), the validation set contains
1,128 images (564 IDs, 12 models), and the stress test con-
tains 840 images (420 IDs, 3 models).

Real dataset. A separate dataset of real photos of dam-
aged and undamaged bikes was also collected to test the
ability of TransReI3D to generalize to the real domain.
We combined a subset of the publicly available DelftBikes
dataset [22] with images collected by web scraping from
popular search engines and e-commerce sites. The images
were manually labeled following the same criteria as those
used for the synthetic dataset. A total of 6,292 images were
collected, of which 106 presented a Bent (64) or Broken
(52) frame. The dataset was split into train, validation and
test with a 7:1.5:1.5 split, stratified by damage type.

4. Methodology
Problem setting We assume that the training set D
consists of N sequences of synthetic images D =

{(x1
i , ..., x

M
i)}Ni=1, where all images xj

i in a sequence are
associated with the same ID i and represent the same bike
instance. We additionally assume that each image is as-
sociated with a set of binary attributes, each represent-
ing the presence of a specific kind of damage (aji ∈
A = {BD,BK,Pn}); Pn indicates whether the nth part
is present or missing. Given D, our aim is to learn an em-
bedding space xj

i ∈ Rh×w×ch 7→ eji ∈ Rm such that all
images associated with a given ID i are closer in the em-
bedding space than other IDs, regardless of the attributes
aji . We further define the DD task as predicting the values
of aji (multi-label binary classification). At inference time, a
query image is compared against the gallery, and the correct
ID must be retrieved on the basis of the embedding distance.
We assume that the damaged bikes are the queries, inspired
by applications in the insurance domain (fraud detection).

TransReI3D architecture The TransReI3D architecture
for joint DD and ReID, shown in Figure 2, builds on the
TransReID [17] architecture, which achieved state-of-the-
art performance among ViT-based models for vehicle ReID,
and enriches it with an additional multi-label DD branch.

The TransReID architecture [17] builds on the ViT ar-
chitecture [12], but includes additional components to cap-

Damage Branch Global Branch Jigsaw Branch

f
g

f
g f

l

1 f
l

2 f
l

3 f
l

4

Extra learnable
[cls] embedding*

l - 1
...

1 2

3 18

Camera View

L R

Side-Information Embedding

...

Jigsaw Patch Module

Transformer Layer

Transformer Layer

0 1 2 3 4 5 6 7 8

Transformer LayerTransformer Layer

*

* * * * *

L
ID

()+L
T
()L

ID
+L

T

Transformer Layer

*

L
D

Linear Projection of Flattened Patches

Position
Embedding

*

* * * *

. . L
ID

()+L
T
(). . L

ID
()+L

T
(). . L

ID
()+L

T
(). .

Figure 2: TransReI3D architecture. Embeddings are enriched with position and camera information (side information embed-
ding). A learnable [cls] token is prepended to the embeddings which are input to a shared backbone. Task-specific branches
(DD branch, Global ReID branch and Jigsaw Branch with JPM) include a separate transformer layer to adapt global features
to each task. The Jigsaw Module, LID, and LT are described in [17].

ture more robust and fine-grained features. Specifically, the
Side Information Embedding (SIE) module encodes non-
visual information such as camera or viewpoint, and is in-
put to a transformer encoder together with learnable patch
and position embeddings. The global ReID branch and the
Jigsaw branch then jointly learn the ReID task, encoding
global (fg) and local (fl) features, respectively. The Jigsaw
branch is based on the Jigsaw Patch Module (JPM), which
shuffles all patches and regroups them into several groups,
all of which are input to a shared transformer layer to learn
local features fl, as detailed in [17].

Damage branch and multi-task learning. Multi-task
learning is implemented using one shared transformer back-
bone and an additional separate transformer layer for each
task [39, 57]. The DD branch is a multi-label classifier
with seven output heads: two for Bent and Broken frame
labels, and five for missing parts (front wheel, rear wheel,
seat, handlebar or pedals). Each output head takes as input
the [cls] token and passes it through a batch normalization
(BN) layer followed by a fully connected (FC) layer.

TransReI3D combines two tasks, one executed on image
pairs (ReID) and one executed on individual images (DD).
In addition, the ReID task is not defined for real images.
For this reason, a multi-task diversion mechanism was im-
plemented which selects the tasks that need to be executed
upon the extracted features of each training batch. Hence,
synthetic images are forwarded to all branches, whereas real
images are directed to the DD branch only.

Loss computation. The loss combines the ReID loss, in-
cluding global and local features, with the DD loss:

L = αLID (fg) + βLT (fg) + γLD
(
fa
g , f

p
g , f

n
g

)
+
1

k

k∑
j=1

(
LID

(
f j
l

)
+ LT

(
f j
l

)) (1)

where LT and LID are the triplet loss and the ID cross-
entropy loss (which treats each ID as a separate class, as
defined in [17]),

LD is the DD loss, and k (= 4) is the number of classi-
fication heads of the JPM branch. All loss components are
calculated on the [cls] token (fg: global branch, fl: Jigsaw
branch). To compute LT , triplets are online sampled from
each batch with hard negative and positive mining. LD is a
weighted binary cross-entropy loss:

LD = λLBD (·) + µLBK (·) + ν
1

n

n∑
j=1

(LPn
(·)) (2)

where LBD and LBK refer to the Bent and Broken frame
labels losses, and LPn

to the n = 5 specific missing parts
losses. In the case of real images, for the sake of simplicity
we consider only LBD and LBK .

Domain adaptation. In the baseline, TransReI3D is
trained on BBBicycles and tested on the real data set, with-
out adaptation or fine-tuning. We further explored different

domain adaptation strategies. For supervised domain adap-
tation, we simply leveraged the multi-task training strat-
egy to train the model on real and synthetic data. For
unsupervised domain adaption, we experimented with the
well-known domain adversarial technique DANN [15] and
with partial domain adaptation PADA [4]. Experiments
with PADA were motivated by the observation that BBBi-
cycles includes a wider range of bike models and setups
compared to the real dataset, and therefore forcing the fea-
ture distributions to align could lead to negative transfer.
PADA assumes that the target domain contains different la-
bels than the source, whereas in our setting DD labels are
the same (additionally, all labels are binary given the multi-
label setting). Therefore, we introduced the auxiliary task
of bike model classification (model information is available
for synthetic images); PADA exploits these predictions to
enhance the contribution of (samples of) bike models that
are present both in the synthetic and real datasets. Further
details are available in Appendix B.

5. Experimental settings

TransReI3D Training and hyper-parameter settings.
All images were resized to 256× 256, and normalized with
the mean and standard deviation calculated on the synthetic
training set. Data augmentation was performed with ran-
dom color- and texture-preserving transformations (hori-
zontal flip, crop, blurring, and gaussian noise). Each im-
age was split into overlapping 16 × 16 patches, with patch
stride set to 12× 12. Batches containing either real or syn-
thetic images were alternated, and the real dataset was iter-
ated twice per epoch to counterbalance the smaller size.

For all experiments, the model backbone was pre-trained
on ImageNet [11], and the remaining weights were initial-
ized by Kaiming normal initialization [16]. All models were
trained for 20 epochs. The SGD optimizer was used with
batch size set to 32, momentum to 0.9 and weight decay to
1e-4. The cosine learning rate scheduler was used (initial
learning rate 0.01, linear warmup for 5 epochs).

Regarding the loss, we set α, β and γ to 1, whereas for
LD, we set λ, µ, ν to 0.25, 0.25 and 0.5, respectively.

Other baselines. TransReI3D was compared against the
Reranking Transformers (RRT) Global retrieval baseline
[49]. RRT was trained on BBBicyclesfor 50 epochs. The
training setting is the same as the default one used in the
original code, with learning rate of 1e-3, SGD optimizer
with 0.9 momentum, batch size 128, weight decay of 4e-4,
MultiStep learning rate scheduler with a 0.1 decay at epochs
30 and 40, contrastive loss and ResNet-50 backbone. How-
ever, since RRT does not perform damage detection, it was
evaluated only on the ReID task.

Evaluation protocol. Performance on the ReID task was
measured using common metrics for vehicle and object
ReID, i.e., mean Average Precision (mAP) and Cumula-
tive Matching Characteristics (CMC) [17]. CMC-K, with
K = {1, 5, 10}, represents the average probability of ob-
serving the correct identity within the top-K ranked results.
Since the gallery contains one instance per bike ID, it is
equivalent to Recall@K. For each pair of images in the val-
idation and stress test, we set the “after” image as Query
and the “before” image as Gallery. All images from other
IDs (including those derived from the same 3D bike model)
were used as distractors.

For the DD task, performance was measured using the
Area under the Receiver Operating Characteristic Curve
(AUROC), macro-averaged across all labels. For the sake
of conciseness, we report only results for Bent and Broken
labels, since damages to the frame are more challenging to
detect than missing parts. All performance metrics were av-
eraged over three runs.

6. Results
What is the DD and ReID performance of the baseline,
with and without real labeled images at training time?
The baseline was trained in two different settings: one as-
suming that only synthetic data is available at training time
(BL), and one assuming that a small sample of labeled im-
ages is available at training time (BL+Real). As shown in
Table 1, on the DD task BL achieves an average AUC of
92.1 ± 0.5 for synthetic images and of 93.4 ± 1.5 for real im-
ages. However, we postulate that there is still a domain shift
between the synthetic and the real data, since performance
on the DD task improved when the network was exposed to
the real domain during training (AUC=97.3 ± 2.2).

Delving deeper in the DD task, the performance varies
for different damage types on the synthetic dataset, with
higher AUC on Broken (100 ± 0.0) than Bent frames (81.5
± 2). Bent frames are more challenging to detect since some
frames (e.g., Cruiser) may include both straight and curved
lines, and BBBicycles includes a range of both subtle and
heavy damages. On the other hand, the visual features as-
sociated with broken frames are well defined and stable be-
tween different bike models.

On the ReID task, TransReI3D achieved a mAP of 85.3
± 0.2 (BL and BL+Real) and a CMC-1 of 79.8 ± 0.5 (BL)
and 79.4 ± 0.1 (BL+Real), with minor variations when ex-
posed to real data during training. Figure 3 shows how
TransReI3D is able to predict the correct ID and distin-
guish damage-induced variations from different setups of
the same (or similar) bike models.

We further investigated the effect of the background on
the ReID and DD performance. Specifically, we com-
pared three choices of background: (i) HDRI images, as
detailed in Section 3; (ii) random selection from Places365

Validation
Damage Detection Re-identification (Synthetic)

Real AUC Synthetic AUC mAP CMC-1 CMC-5 CMC-10
BL 93.4 ± 1.5 92.1 ± 0.5 85.3 ± 0.2 79.8 ± 0.5 91.9 ± 1.1 96.3 ± 0.5

BL + Real† 97.3 ± 2.2 91.4 ± 0.2 85.3 ± 0.2 79.4 ± 0.1 92.9 ± 0.4 96.6 ± 0.4
RRT (Global) - - 80.5 ± 1 74.1 ± 1.6 88.3 ± 1.1 93.4 ± 1.2

BG Places365 + Real † 96.3 ± 1.9 90.4 ± 0.2 85 ± 0.1 79.0 ± 0.4 92.8 ± 0.3 96.3 ± 0.2
BG Uniform + Real † 95.2 ± 3.4 87.4 ± 1.5 48.5 ± 3.4 39.2 ± 1.9 59.4 ± 5.6 66.0 ± 5.7
ReID (single task)† - - 83.3 ± 1.2 77.0 ± 1.2 91.2 ± 1.5 95.1 ± 1.4

Damage detection (single task)† 97.5 ± 1.5 94.5 ± 0.5 - - - -
BL + DANN‡ 93.9 ± 1.1 91.7 ± 0.9 85.2 ± 0.2 79.4 ± 0.4 92.3 ± 1.0 96.4 ± 0.5

BL + Real + DANN† 97.0 ± 1.8 91.0 ± 0.6 85.2 ± 0.5 78.9 ± 0.8 92.8 ± 0.4 96.4 ± 0.7
BL + PADA ‡ 94.4 ± 0.5 90.8 ± 1.2 84.8 ± 0.2 78.6 ± 0.4 92.6 ± 0.3 96.4 ± 0.5

BL + Real + Model labels† 96.9 ± 1.9 90.7 ± 1.0 84.6 ± 0.4 77.9 ± 0.7 93.0 ± 0.4 96.6 ± 0.1
BL + Real + PADA‡ 96.2 ± 3.1 90.9 ± 1.9 84.7 ± 0.1 78.4 ± 0.2 92.4 ± 0.3 96.9 ± 0.6

Stress test
Baseline - 94.1 ± 0.2 79.3 ± 0.2 72.5 ± 0.2 87.4 ± 0.3 92.2 ± 0.1

BL + Real† - 93.5 ± 0.23 79.2 ± 0.1 72.1 ± 0.4 88.0 ± 0.1 92.2 ± 0.1
RRT (Global) - - 76.1 ± 1.3 65.7 ± 2.3 85.4 ± 2.2 90.6 ± 0.9
BL + DANN‡ - 93.4 ± 1.1 78.7 ± 0.5 71.6 ± 0.5 87.9 ± 0.5 91.3 ± 0.7

BL + Real + DANN† - 93.5 ± 0.3 79.1 ± 0.2 71.7 ± 0.2 87.9 ± 0.2 92.1 ± 0.2
BL + PADA‡ - 94.2 ± 0.4 79.2 ± 0.4 72.3 ± 0.8 88.1 ± 0.1 92.2 ± 0.5

BL + Real + PADA† - 92.9 ± 1 78.9 ± 0.7 71.9 ± 0.7 87.8 ± 0.8 91.9 ± 0.1

Table 1: Performance on the validation and stress set. All networks trained on synthetic data except for † (labeled real images
available at training time) and ‡ (unlabelled real images available at training time). Best results are in bold.

[65], and (iii) a simple uniform background (see Appendix
C for examples). On the DD task, all transfer scenar-
ios (HDRI (BL) → Real, BG Places365 → Real and
BG Uniform → Real) achieved similar results (Table 1).
HDRI slightly outperforms Places365: the latter contains a
wider range of scenes, but the resulting blend is not as re-
alistic as the proposed HDRI technique. On the ReID task,
performance substantially drops when training on a uniform
background, as the network does not learn to separate the
bike from the background.

Is multi-tasking beneficial for damaged object re-
identification? We compared TransReI3D against single-
task ReID and DD networks – the former reduces to the
original TransReID architecture, whereas the latter becomes
a ViT-based multi-label classifier. As shown in Table 1,
TransReI3D outperforms the single-task ReID architecture
both in terms of mAP (85.3 ± 0.2 vs. 83.3 ± 1.2) and CMC
(CMC-1 79.9 ± 0.4 vs. 77.0 ± 1.2). This is further con-
firmed by the performance of RTT (mAP 80.5 ± 1 vs. 85.3
± 0.2). On the other hand, DD improves in the single-task
setting on both real (97.5 ± 1.5) and synthetic (94.5 ± 0.5)
images. A possible explanation is that the ReID task forces
the network to take into account the entire bicycle, whereas

for DD simpler, more localized visual cues are sufficient.
Conversely, the ReID task can leverage the DD labels to
learn visual properties invariant to the presence of damage.

Are feature-level domain adaptation strategies helpful
to reduce the synthetic-to-real gap? The BL results in-
dicate that, at least for the DD task, a certain domain shift
still exists. Besides low-level differences due to CGI, we
postulate that this domain shift may be attributed to differ-
ent reasons: on the one hand, few examples of damaged
bikes are available; on the other hand, the synthetic dataset
contains more bike models (for instance, most images in
the Delft Bikes dataset are minor variations of a typical city
bike). As detailed in Section 5, we have tested two tech-
niques, DANN and PADA, focusing on the DD task.

When labeled real images are available during training,
neither DANN (97.0 ± 1.8) nor PADA (96.2 ± 3.1) outper-
forms BL + Real (97.3 ± 2.2). On the other hand, if we
assume that labels are not available at training time, both
DANN (93.8 ± 1.1) and PADA (94.4±0.5) improved over
BL (93.4 ± 1.5), but did not match the supervised setting
(97.3 ± 2.2). On the ReID task, domain adaptation slightly
hurts the performance in terms of CMC-1, bearing however
in mind that this task is evaluated only on synthetic images.

ID: 1175, 0.57 ID: 1892, 0.54 ID: 88, 0.54

ID: 2386, 0.60 ID: 724, 0.59 ID: 1871, 0.57 ID: 88, 0.54

Becane

Btwin

Becane

Btwin

Becane Becane Becane Becane

BecaneBtwin BtwinCroad

Query Gallery

ID: 15

ID: 21 ID: 21, 0.61

ID: 15, 0.72 ID: 1994, 0.54

Figure 3: Retrieval results (Top-5 images) for the BL network (ID and similarity scores). The correct ID is retrieved despite
the presence of missing parts (ID 15), bent (ID 15) or broken (ID 21) frame, deformed wheels (ID 21), and rust (ID 21).

t-SNE plots of the [cls] token extracted from the backbone
(Appendix C) show only partial overlap between the real
and synthetic domains. Saliency (attention) maps generated
following the approach in [6] highlight how the network
correctly focused its attention on the bike frame (and occa-
sionally the wheels) (Figure 22). Different training regimes
consistently yield similar visual keys (Appendix C).

How does the network generalize to previously unseen
bike models? Overall, the DD task generalizes well to
previously unseen models, while performance is more de-
pendent on the specific type of damage. When training on
synthetic data alone (BL), we observed an increase in per-
formance for the DD task from 92.1 ± 0.2 to 94.1 ± 0.2
(Table 1). Again, forcing the network to improve on real
images lowers the performance on synthetic images for all
strategies but BL + PADA (94.2 ± 0.4). However, the lat-
ter incorporates an additional bike model classification task,
which may help TransReI3D to better generalize to previ-
ously unseen models. On the other hand, in the ReID task
both TransReI3D and RRT struggle to generalize to com-
pletely novel bike models, with a moderate decrease in per-
formance both in terms of mAP (79.3±0.1 vs. 85.3±0.2) and
CMC-1 (72.5±0.2 vs. 79.8±0.5).

7. Conclusions
In this work, we introduced the novel task of damaged

object re-identification. As a benchmark for this task, we
introduced the synthetic BBBicycles dataset which contains
paired images of the same bike with and without dam-
ages. As a baseline, we proposed TransReI3D, a multi-task
tranformer-based architecture for joint DD and ReID. Ex-
perimental results showed how the DD task improves per-

Figure 4: Attention maps of TransReI3D for BL + REAL +
DANN, with Bent frame labels (y) and predictions (ŷ).

formance on the ReID task, but not viceversa. The main
limitation of the present work is the lack of real paired im-
ages of bikes, before and after damage; for this reason, only
the DD task was analyzed for real images. As collecting
such a dataset would be prohibitively expensive, an option
to be explored is simulation, e.g., through data augmenta-
tion or generative models. Given the novelty of the task,
there is ample room for future expansion in several direc-
tions. First, concerning the ReID task, the ability to gen-
eralize to previously unseen models should be improved.
Experiments should also be extended to include more tra-
ditional convolutional architectures. Second, techniques for
bridging the synthetic-to-real gap could be further investi-
gated, e.g. by looking at the few-shot and partial/universal
domain adaptation literature. Third, segmentation could
be leveraged to improve foreground/background differen-

tiation. Finally, other tasks could be explored using the
proposed pipeline and the collected 3D models in combina-
tion with rendered images, e.g., cross-modal image retrieval
[20, 53], segmentation, and 3D part recognition [58].

Acknowledgements
The authors gratefully acknowledge the financial support

of Reale Mutua Assicurazioni.

References
[1] Blender. hhttps://www.blender.org/. Accessed:

2022-08-29.
[2] Lily surface scraper. https://github.com/

eliemichel/LilySurfaceScraper. Accessed:
2022-08-29.

[3] Giuseppe Amato, Fabio Carrara, Fabrizio Falchi, Claudio
Gennaro, and Lucia Vadicamo. Large-scale instance-level
image retrieval. Information Processing & Management,
57(6):102100, 2020.

[4] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin
Wang. Partial adversarial domain adaptation. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 135–150, 2018.

[5] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan,
Q. X. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3D
model repository. arXiv preprint: 1512.03012, 2015.

[6] Hila Chefer, Shir Gur, and Lior Wolf. Generic attention-
model explainability for interpreting bi-modal and encoder-
decoder transformers. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 397–406,
2021.

[7] Wei Chen, Yu Liu, Weiping Wang, Erwin Bakker, Theodoros
Georgiou, Paul Fieguth, Li Liu, and Michael S Lew. Deep
image retrieval: A survey. arXiv preprint arXiv:2101.11282,
2021.

[8] J. Courbon, Y. Mezouar, N. Guenard, and P. Martinet.
Vision-based navigation of unmanned aerial vehicles. Con-
trol Engineering Practice, 18:7:789–799, 2010.

[9] Rita Cucchiara and Matteo Fabbri. Fine-grained human anal-
ysis under occlusions and perspective constraints in multime-
dia surveillance. ACM Transactions on Multimedia Comput-
ing, Communications, and Applications (TOMM), 18(1s):1–
23, 2022.

[10] C. R. d. Souza, A. Gaidon, Y. Cabon, , and A. M. Lopez.
Procedural generation of videos to train deep action recogni-
tion networks. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 2594–2604, 2017.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image

is worth 16x16 words: Transformers for image recognition
at scale. In Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

[13] N. Dvornik, J. Mairal, and C. Schmid. Modeling visual con-
text is key to augmenting object detection datasets. In Euro-
pean Conference on Computer Vision, pages 375–391, 2018.

[14] Matteo Fabbri, Guillem Brasó, Gianluca Maugeri, Orcun
Cetintas, Riccardo Gasparini, Aljoša Ošep, Simone Calder-
ara, Laura Leal-Taixé, and Rita Cucchiara. MOTSynth: How
can synthetic data help pedestrian detection and tracking? In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10849–10859, 2021.

[15] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial train-
ing of neural networks. The journal of machine learning
research, 17(1):2096–2030, 2016.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015.

[17] Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li,
and Wei Jiang. Transreid: Transformer-based object re-
identification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 15013–15022, 2021.

[18] Christof Henkel. Efficient large-scale image retrieval with
deep feature orthogonality and hybrid-swin-transformers.
arXiv preprint arXiv:2110.03786, 2021.

[19] Yan Huang, Qiang Wu, JingSong Xu, Yi Zhong, and ZhaoX-
iang Zhang. Clothing status awareness for long-term person
re-identification. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 11895–11904,
2021.

[20] Longlong Jing, Elahe Vahdani, Jiaxing Tan, and Yingli Tian.
Cross-modal center loss for 3d cross-modal retrieval. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3142–3151, 2021.

[21] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,
Justin Yuan, Matt Rusiniak, David Acuna, A. Torralba, and
S. Fidler. Meta-Sim: Learning to generate synthetic datasets.
2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 4550–4559, 2019.

[22] Osman Semih Kayhan, Bart Vredebregt, and Jan C van
Gemert. Hallucination in object detection—a study in visual
part verification. In 2021 IEEE International Conference on
Image Processing (ICIP), pages 2234–2238. IEEE, 2021.

[23] Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM Computing
Surveys (CSUR), 2021.

[24] Sultan Daud Khan and Habib Ullah. A survey of advances in
vision-based vehicle re-identification. Computer Vision and
Image Understanding, 182:50–63, 2019.

[25] M. Khodabandeh, H. R. V. Joze, I. Zharkov, and V. Pradeep.
DIY human action dataset generation. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, page 1529–152910, 2018.

hhttps://www.blender.org/
https://github.com/eliemichel/LilySurfaceScraper
https://github.com/eliemichel/LilySurfaceScraper

[26] Jun Li, Bo Yang, Wankou Yang, Changyin Sun, and Hong
Zhang. When deep meets shallow: subspace-based multi-
view fusion for instance-level image retrieval. In 2018 IEEE
International Conference on Robotics and Biomimetics (RO-
BIO), pages 486–492. IEEE, 2018.

[27] Pei Li, Bingyu Shen, and Weishan Dong. An anti-fraud sys-
tem for car insurance claim based on visual evidence. arXiv
preprint arXiv:1804.11207, 2018.

[28] Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. Deep-
reid: Deep filter pairing neural network for person re-
identification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (CVPR), 2014.

[29] Shengcai Liao and Ling Shao. Transmatcher: Deep image
matching through transformers for generalizable person re-
identification. In Annual Conference on Neural Information
Processing Systems (NeurIPS), 2021.

[30] Hongye Liu, Yonghong Tian, Yaowei Wang, Lu Pang, and
Tiejun Huang. Deep relative distance learning: Tell the dif-
ference between similar vehicles. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2167–2175, 2016.

[31] Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. Provid:
Progressive and multimodal vehicle reidentification for
large-scale urban surveillance. IEEE Transactions on Multi-
media, 20(3):645–658, 2017.

[32] Carlo Masone and Barbara Caputo. A survey on deep visual
place recognition. IEEE Access, 9:19516–19547, 2021.

[33] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A.
Dosovitskiy, and T. Brox. A large dataset to train convo-
lutional networks for disparity, optical flow, and scene flow
estimation. In IEEE Conference on Computer Vision and
Pattern Recognition, 2015.

[34] J. McCormac, A. Handa, S. Leutenegger, , and A. J. Davison.
Scenenet RGB-D: Can 5m synthetic images beat generic im-
agenet pre-training on indoor segmentation? In IEEE Inter-
national Conference on Computer Vision, pages 2697–2706,
2017.

[35] Lia Morra and Fabrizio Lamberti. Benchmarking unsuper-
vised near-duplicate image detection. Expert Systems with
Applications, 135:313–326, 2019.

[36] L. Morra, F. Manigrasso, and F. Lamberti. SoccER: Com-
puter graphics meets sports analytics for soccer event recog-
nition. SoftwareX, 12:100612, 2020.

[37] S. I. Nikolenko. Synthetic Data for Deep Learning. Springer,
2021.

[38] X. Peng, B. Sun, K. Ali, and K. Saenko. Learning deep ob-
ject detectors from 3D models. In IEEE International Con-
ference on Computer Vision, pages 1278–1286, 2015.

[39] Yifan Peng, Qingyu Chen, and Zhiyong Lu. An empirical
study of multi-task learning on bert for biomedical text min-
ing. In Proceedings of the 19th SIGBioMed Workshop on
Biomedical Language Processing, pages 205–214, 2020.

[40] E. Perot, M. Jaritz, M. Toromanoff, and R. d. Charette. End-
to-end driving in a realistic racing game with deep reinforce-
ment learning. In IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 474–475, 2017.

[41] Lyle Regenwetter, Brent Curry, and Faez Ahmed. BIKED: A
dataset for computational bicycle design with machine learn-
ing benchmarks. Journal of Mechanical Design, 144(3),
2022.

[42] V. Vineet S. R. Richter, Stefan Roth, and Vladlen Koltun.
Playing for data: Ground truth from computer games. In
European Conference on Computer Vision, 2016.

[43] P. Schneider and G. Schneider. De novo design at the edge
of chaos. Journal of Medicinal Chemistry, 59:9:4077–4086,
2016.

[44] Charu Sharma, Siddhant R Kapil, and David Chapman. Per-
son re-identification with a locally aware transformer. arXiv
preprint arXiv:2106.03720, 2021.

[45] Fei Shen, Yi Xie, Jianqing Zhu, Xiaobin Zhu, and Huan-
qiang Zeng. Git: Graph interactive transformer for vehicle
re-identification. arXiv preprint arXiv:2107.05475, 2021.

[46] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, J. Susskind,
Wenda Wang, and Russ Webb. Learning from simulated
and unsupervised images through adversarial training. 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2242–2251, 2017.

[47] Xiujun Shu, Ge Li, Xiao Wang, Weijian Ruan, and Qi Tian.
Semantic-guided pixel sampling for cloth-changing person
re-identification. IEEE Signal Processing Letters, 28:1365–
1369, 2021.

[48] P. Solovev, V. Aliev, P. Ostyakov, G. Sterkin, E. Logacheva,
S. Troeshestov, R. Suvorov, A. Mashikhin, O. Khomenko,
and S. I. Nikolenko. Learning state representations in
complex systems with multimodal data. arXiv preprint:
1811.11067, 2018.

[49] Fuwen Tan, Jiangbo Yuan, and Vicente Ordonez. Instance-
level image retrieval using reranking transformers. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 12105–12115, 2021.

[50] Zheng Tang, Milind Naphade, Stan Birchfield, Jonathan
Tremblay, William Hodge, Ratnesh Kumar, Shuo Wang, and
Xiaodong Yang. Pamtri: Pose-aware multi-task learning for
vehicle re-identification using highly randomized synthetic
data. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 211–220, 2019.

[51] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-
ciech Zaremba, and Pieter Abbeel. Domain randomization
for transferring deep neural networks from simulation to the
real world. In 2017 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pages 23–30. IEEE,
2017.

[52] J. Tremblay, B. Sundaralingam T. To, Y. Xiang, D. Fox, and
S. T. Birchfield. Deep object pose estimation for semantic
robotic grasping of household objects. In Conference on
Robot Learning, 2018.

[53] Mikaela Angelina Uy, Jingwei Huang, Minhyuk Sung, Tolga
Birdal, and Leonidas Guibas. Deformation-aware 3d model
embedding and retrieval. In European Conference on Com-
puter Vision, pages 397–413. Springer, 2020.

[54] W. Y. Wan and D. Yang. That’s so annoying!!!: A lexical
and frame-semantic embedding based data augmentation ap-
proach to automatic categorization of annoying behaviors us-

ing petpeeve tweets. In Empirical Methods in Natural Lan-
guage Processing, pages 2557–2563, 2015.

[55] Q. Wang, J. Gao, W. Lin, and Y. Yuan. Learning from syn-
thetic data for crowd counting in the wild. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8190–8199, 2019.

[56] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian.
Person transfer gan to bridge domain gap for person re-
identification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 79–88, 2018.

[57] Cameron R Wolfe and Keld T Lundgaard. Exceeding the
limits of visual-linguistic multi-task learning. arXiv preprint
arXiv:2107.13054, 2021.

[58] Chun-Han Yao, Wei-Chih Hung, Varun Jampani, and Ming-
Hsuan Yang. Discovering 3d parts from image collections.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 12981–12990, 2021.

[59] Dominik Zapletal and Adam Herout. Vehicle re-
identification for automatic video traffic surveillance. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 25–31, 2016.

[60] Guowen Zhang, Pingping Zhang, Jinqing Qi, and Huchuan
Lu. HAT: Hierarchical aggregation transformers for person
re-identification. In Proceedings of the 29th ACM Interna-
tional Conference on Multimedia, pages 516–525, 2021.

[61] Y. Zhang, W. Qiu, Q. Chen, X. C. Hu, and A. L. Yuille. Un-
realstereo: A synthetic dataset for analyzing stereo vision.
arXiv preprint: 1612.04647, 2016.

[62] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. T2net:
Synthetic-to-realistic translation for solving single-image
depth estimation tasks. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 767–783, 2018.

[63] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jing-
dong Wang, and Qi Tian. Scalable person re-identification:
A benchmark. In Proceedings of the IEEE international con-
ference on computer vision (ICCV), pages 1116–1124, 2015.

[64] Liang Zheng, Yi Yang, and Qi Tian. SIFT meets CNN: A
decade survey of instance retrieval. IEEE transactions on
pattern analysis and machine intelligence, 40(5):1224–1244,
2017.

[65] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE transactions on pattern analysis
and machine intelligence, 40(6):1452–1464, 2017.

[66] Kuan Zhu, Haiyun Guo, Shiliang Zhang, Yaowei Wang,
Gaopan Huang, Honglin Qiao, Jing Liu, Jinqiao Wang, and
Ming Tang. AAformer: Auto-aligned transformer for person
re-identification. arXiv preprint arXiv:2104.00921, 2021.

A. Dataset
A.1. CGI Pipeline implementation details

In this section we provide additional details on the CGI pipeline used to implement the BBBicycles dataset, and in partic-
ular on the transformations that are randomly applied to generate “before” and “after” images.

A.1.1 Template rig.

A bike contains many movable elements which need to be positioned (to randomly change the bike pose) or deformed (to
simulate damages). In order to randomly apply these transformations, we defined a template rig that needs to be adapted to
match the given bike model. The template rig is composed of an “armature” (Figure 5a), “lattices” (Figure 5b), and “rail
guides”, placed as depicted in Figure 5c.

(a) (b) (c)

Figure 5: Template rig adaptation and skinning: (a) armature with bone groups and layers, (b) fitting lattice to wheel meshes,
and (c) rail guides positioning.

A.1.2 Image rendering.

For each ID, multiple images are generated by applying the following transformations:

1. Mobile parts composition. This is accomplished by randomly performing one or more actions among: translating the
seat and handlebar; rotating the seat, handlebar, pedals, and wheels. The allowed range of movement for each model is
set during the rig adaptation.

2. Dirt. A custom shader is used to randomly apply dirt in the form of mud or rust, with a predetermined probability.

3. (Optional) Removing parts. The seat, pedals, handlebar and wheels can be removed with a predetermined probability.

4. (Optional) Damaging parts (frame excluded). Parts of the bikes can be damaged, by selecting a deformation either from
the wheels’ library or from the pose library.

5. (Optional) Damaging the frame. The frame can be damaged either by picking a deformation from the pose library
(Bent Frame) and/or by breaking it using the rail guides-boolean system (Broken frame). Hence, four possible damage
categories are possible: normal frame, bent frame, broken frame, or bent & broken frame.

6. Point of View selection. The virtual camera position is chosen randomly within a given boundary, by randomly switching
the visible side of the bike, as well as randomly adjusting the camera focal length within a parametrized range.

7. Environment and Lighting. A combination of background and lighting setup is picked.

8. Segmentation. The bike is segmented in the following classes: “Front Wheel”, “Rear Wheel”, “Seat”, “Crankset”, and
“Frame”. Segmentation was implemented using the bpycv 1 library. An example of segmentation is shown in Figure 6

1https://github.com/DIYer22/bpycv

https://github.com/DIYer22/bpycv

(a) Intact frame

(b) Broken frame

Figure 6: Examples of the CGI pipeline auxiliary outputs. From right to left: segmentation, rendered image, and depth map.

A.2. The BBBicycles dataset

In this section we provide additional details on the generated dataset to better illustrate the variety of models and dam-
ages/deformations included in the BBBicycles dataset.

A.2.1 3D Bike models

BBBicycles contains images generated from 20 3D bike models retrieved from dedicated marketplaces. It includes several
variants of popular bikes such as Road, Cruiser and MTB. In particular, it contains 6 MTB, 1 Enduro, 6 Road, 1 Circuit, 1
Gravel, and 5 Cruiser. The list of bike models per category is illustrated in Table 2: each bike model was assigned to either
the training, validation, or (stress) test set. Examples of renderings from each model are shown in Figure 7.

Table 2: Bike model distribution across BBBicycles in the training, validation and test set. Models marked with (*) are shared
between Train and Validation.

Category Train Validation Test
MTB mfactory becane -

ghost btwin
freeride*
scalpel*

Road rondo croad -
verdona

ghost
domane*

g1*
kuota*

Cruiser oldbike -
holland*
huffy*

vintage*
wbike*

Enduro - enduro
Circuit - mirage
Gravel - gbike

(a) becane (b) btwin (c) croad (d) domane

(e) enduro (f) freeride (g) g1 (h) gbike

(i) ghost (j) holland (k) huffy (l) kuota

(m) mfactory (n) mirage (o) oldbike (p) rondo

(q) scalpel (r) verdona (s) vintage (t) wbike

Figure 7: Examples of each model used to generate the dataset.

Bent

Tot Damaged

Num images

25%

25%

37%

100%

Broken

Distribu�on of damaged images across dataset

0 10000 20000 30000 40000

Seat

Rear Wheel

Missing Parts Tot

Num images

25%

100%

Distribu�on of missing parts across dataset

0 10000 20000 30000 40000

Front Wheel

Handlebar

Pedals

47%

25%

25%

16%

16%

Figure 8: Distribution of damages and missing parts across the synthethic dataset.

A.2.2 Damage distribution and examples

As illustrated in Section 3, in BBBicycles 50% of the images are generated “before” and 50% “after” a damage occurs.
“Before” bikes have a 25% probability of being dirty, while “after” bikes have a 50% chance. “After” bikes are further
divided into 25% undamaged and 75% bent, broken or both. As a result, 37% of the total images are damaged (see Figure 8).
Examples of damaged and undamaged synthetic bike renderings are shown in Figure 9, Figure 10, Figure 11 and Figure 12.

Figure 9: Examples of bike renderings without damages (to the frame).

Figure 10: Examples of bike renderings with bent frames.

Figure 11: Examples of bike renderings with broken frames.

Figure 12: Examples of bike renderings with bent and broken frames.

Moreover, we set additional labels for each image according to the missing parts of the bike, namely: Front Wheel, Rear
Wheel, Seat, Handlebar, Pedals. In the annotations, missing parts are represented by a One-hot vector encoding, where each
vector value indicates if the corresponding part is present (0) or not (1), as exemplified in Fig. 15.

Figure 13: One-hot encoding example: the illustrated image only misses the “Rear Wheel”, “Seat” and “Handlebar” parts,
hence it has been labeled as “01110”.

A.3. Real dataset acquisition: additional details.

In this section, we provide additional details on how the real dataset was assembled and annotated.

A.3.1 Delft Bikes.

The DelftBikes dataset2 was originally designed to study whether deep neural networks could hallucinate missing parts in
objects. It contains 10,000 bike images with 22 densely annotated parts for each bike. All part locations and part states (i.e.,
missing, intact, damaged, occluded) are explicitly annotated.

Specifically, we retained only the images from the DelftBikes training set with complete annotations (for some images
missing parts annotations were not available), for a total of 8,000 images. Then, we translated the Delftbikes annotations to
be compatible with the synthetic dataset annotations, as follows:

• For Front Wheel, Rear Wheel and Seat, we labeled the part as missing if the corresponding part was labeled in the same
way (i.e., object state class = missing) in the Delftbikes dataset.

• For Handlebar, we labeled the part as missing if all parts belonging to the group {back handle, front handle, back hand
break, front hand break, steer} were also labeled in the same way (i.e., object state class = missing) in the Delftbikes
dataset.

2https://data.4tu.nl/articles/dataset/DelftBikes data underlying the publication Hallucination In Object DetectionA Study In Visual Part Verification/14866116.

https://data.4tu.nl/articles/dataset/DelftBikes_data_underlying_the_publication_Hallucination_In_Object_Detection-A_Study_In_Visual_Part_Verification/14866116

• For Pedals, we labeled the part as missing if both parts in the group {front pedal, back pedal} were also labeled in the
same way (i.e, object state class = 2) in the Delftbikes dataset.

None of the bike instances in the DelftBikes dataset presented damages to the frame.

A.3.2 Web scraping details

We collected samples of real damaged bikes by querying popular search engines (i.e., Google, Bing) and online forums (i.e.,
Reddit and other dedicated forums). We used different keywords (i.e., “damaged bike”, “bici danneggiata”, etc.) in different
languages (i.e., English, Italian, Spanish, French, etc.) in order to increase the number of matches. In particular, we selected
countries with higher bike usage like the Netherlands and Denmark. Synonyms of damage were searched to amplify the
number of returned images (for instance, “broken bike” and “damaged bike” produce different search results). Additional
images of normal bikes were retrieved from second-hand e-commerce sites.

For each scraped image, the origin URL has been serialized as a source reference. The results have then been pruned from
unrelated (e.g., excluding images about bike helmets, cycling suits, etc.) and duplicated images by hand and by means of
automatic de-duplication techniques, respectively. In particular, we chose a de-duplication technique based on pre-trained
CNNs, which marks as duplicated images those with a pairwise similarity score above a given threshold value (experimentally
set to 85%).

A.3.3 Labelling.

All images were manually labeled indicating the damage type and missing parts. Labels were assigned as uniformly as
possible to the synthetic dataset. Concerning damage labeling, we set four different labels based on the type of damage
present on the bike frame:

• normal: the bike frame is intact, regardless of the condition of the other parts of the bike (e.g., missing parts, damaged
wheels, damaged seat).

• bent: the bike frame is bent or presents damage, but it is broken in multiple pieces.

• broken: the bike frame is broken and clearly divided in pieces, and each piece does not present any bending.

• bent & broken: the bike frame is broken and the frame pieces show signs of bending.

For missing parts, we follow the same convention of the synthetic dataset and set additional labels for the following parts:
Front Wheel, Rear Wheel, Seat, Handlebar, Pedals. Missing parts are represented by a One-hot vector encoding, where each
vector value indicates if the corresponding part is present (0) or not (1), as exemplified in Fig. 15.

B. Experimental settings
classification [cls] embedding, which encodes image global features, is prepended to the sequence of N patch tokens.

Each token is encoded by the combination (sum) of the corresponding patch embedding, learnable positional embedding, and
SIE embeddings. The N + 1 input tokens, inclusive of the [cls] token for a total size of [1, N + 1, 768], are then input into
the transformer backbone.

• Shared ViT Network: a ViT-like structure including L− 1 layers (L = 12) is used as a shared backbone, whose output
is then passed to each task-dedicated branch, each including an additional separate Lth transformer layer; each layer
attention module has 12 attention heads.

• ReID global branch: the ReID task is performed based on the [cls] token alone (which is a global representation of the
image features). The token is first passed through a Batch Normalization (BN) layer, whose output is first used for the
triplet loss calculation and then passed to a FC layer for performing the ID cross-entropy loss computation.

• Jigsaw Branch and Jigsaw Patch Module: in the Jigsaw branch, the Jigsaw Patch Module (JPM) module is applied
on the output of the L−1 shared transformer layers: first the [cls] token is separated from the output of the L−1 layers,
while the remaining part of the output, consisting only of the patch tokens, is randomly rearranged into four equally
N/4 sized groups. Then, the previously extracted [cls] token is added to each group so obtained, and each group is

(a) Normal (b) Bent

(c) Broken (d) Bent & broken

Figure 14: Examples of real images with normal (a), bent (b), broken (c) and bent & broken (d) frames.

Figure 15: Example of real image with missing parts: the illustrated image only misses the “Front wheel” and “Seat” parts,
hence it has been labeled with “10100”.

finally passed to Lth transformer layer of the JPM branch; the output of the JPM branch is a set of classification tokens,
one for each group. In the same way as in the global branch, each output [cls] token is passed through a corresponding
BN layer, whose output is used for the triplet loss calculation and then passed to the corresponding FC layer for the ID
cross-entropy loss. These loss components are added to the combined loss of the global branch to be minimized. In this
way, the ReID model learns more discriminative parts and becomes more robust with respect to perturbations.

• Damage branch: like for the ReID task, the damage classification is performed on the [cls] token alone. The token is
first passed through 7 different BN layers (one per head), and each output is passed to a corresponding FC layer, one for

Bend frame classification, one for Broken frame classification, and one for each missing part classification. The scores
and cross-entropy losses produced by each of these heads are then combined by weighted averaging for the final damage
loss.

B.1. Domain adaptation

The resulting architecture configurations after the addition of DANN and PADA are depicted in Fig.16 and Fig.17, respec-
tively.

Parameters used for domain adaptation are:

• θ = 1.0 as weight for the domain discriminator loss mathcalLdmn (Equation 3).

• δ = 1.0 as weight for the model classification loss Lmdl, when PADA is active, otherwise 0 (Equation 3).

• Gradient Reversal Layer weight ι = 1.0 in all DANN and PADA experiments except for the Base + Real + DANN
experiment, in which ι = 10.0 (Equation 3).

LD tot = LD + θLdmn + δLmdl − ι
∂LDMN

∂fg
(3)

Damage Branch Global ReID Branch Jigsaw Branch

Side-Information Embedding

Jigsaw Patch Module

Domain Classifier

LDMN

GRL

*

Backbone
 ∂LDMN- ∂fg

−ι

 ∂LDMN-
 ∂fg

Figure 16: TransReI3D architecture with the addition of DANN components.

C. Additional results
C.1. Retrieval examples

Figure 18 depicts some example predictions of TransReI3D on the ReID task.

Damage Branch Global ReID Branch Jigsaw Branch

Side-Information Embedding

Model Prediction

*

Jigsaw Patch Module

Domain Classifier

PADALDMN LMDL

 ∂LDMN- ∂fg

−ι

 ∂LDMN-
 ∂fg GRL

*

Backbone

Figure 17: TransReI3D architecture with the addition of the PADA module.

ID: 1953, 0.53 ID: 1551, 0.52 ID: 1224, 0.52

ID: 2544, 0.57 ID: 19, 0.56 ID: 1836, 0.54

ID: 327, 0.62 ID: 1859, 0.59 ID: 2319, 0.58 ID: 735, 0.57

Becane

Btwin

Becane

Btwin

G1 Croad Kuota Btwin

BecaneBtwin BecaneBtwin

ID: 27

ID: 29 ID: 29, 0.70

ID: 27, 0.68 ID: 1752, 0.52

ID: 994, 0.67 ID: 1573, 0.53 ID: 259, 0.53

ID: 1996, 0.59 ID: 2403, 0.59 ID: 2058, 0.56 ID: 1989, 0.54

Huffy

Btwin

Huffy

Btwin

Btwin Btwin Btwin Btwin

CroadCroad CroadBecane

ID: 31

ID: 38 ID: 38, 0.66

ID: 31, 0.85 ID: 1341, 0.53

ID: 1742, 0.65 ID: 804, 0.59 ID: 2098, 0.59
Croad Croad Btwin Btwin Croad Btwin
ID: 39 ID: 39, 0.89 ID: 1125, 0.58

ID: 1039, 0.60 ID: 2731, 0.60 ID: 25, 0.58 ID: 167, 0.55

Croad

Becane

Croad

Croad

Becane Becane Croad Croad

FreerideBecane BecaneCroad

Query Gallery

ID: 22

ID: 25 ID: 2392, 0.63

ID: 22, 0.75 ID: 425, 0.52

Figure 18: Retrieval results (Top-5 images) for the Baseline configuration, and corresponding model, bike ID, similarity
scores. In most cases, the correct result (shown with a green border) is within the Top-5 predictions.

C.2. Effect of the background on ReID and DD tasks

In this section, we report additional experiments with different backgrounds to understand its effect on the ReID and DD
tasks. Specifically, we compared three techniques: (i) the use of HDRI images, with random camera position, to generate
the background, as detailed in Section 3; (ii) randomly picking an image from Places365 as background, and (iii) the use
of a simple uniform background. To generate samples with Places365 images as backgrounds, we leveraged the original
pipeline to render an auxiliary image with a transparent background and overlay it over the photo taken from the dataset.
Examples are shown in Figure 19. It should be noticed that the proposed pipeline leverages a limited number of 360° HDRI
maps, and even if the proposed pipeline can generate a virtually infinite number of backgrounds by varying the bike position,
camera and illumination, the backgrounds will be visually correlated. On the other hand, Places365 contains a much wider
range of scenes, but since the bike is randomly positioned, the resulting blend is not always realistic, and the foreground and
background are not as consistent as with HDRI maps.

In Table 3, we evaluate the ability of TransReI3D to generalize to the real domain in the following transfer scenarios:
HDRI → Real, Places365 → Real and Uniform → Real. We found moderately better results when employing the HDRI
results, although when real images are available at training time, with HDRI yielding a marginal improvement over Places365.

We further assess the ability to transfer across synthetic domains, specifically we evaluate the following scenarios:
Places 365 → HDRI and Uniform → HDRI. We found that the network generalizes quite well across different strate-
gies to insert the background, as long as it is not uniform. In the latter case, the performance significantly drops as the
network is no longer able to separate the bike from the background.

Based on these results, we conclude that the proposed pipeline contains sufficiently varied backgrounds, and the higher
consistency improves the generalization capabilities.

Table 3: TransReI3D performance on the validation set with different strategies to generate the background. The network was
trained on synthetic data except for † (labeled real images available at training time) and ‡ (unlabelled real images available
at training time).

Validation
Damage Detection Re-identification (Synthetic)

Real AUC Synthetic AUC mAP CMC-1 CMC-5 CMC-10
BG HDRI + Real† 97.3 ± 2.2 91.4 ± 0.2 85.3 ± 0.2 79.4 ± 0.1 92.9 ± 0.4 96.6 ± 0.4

BG Places365 + Real † 96.3 ± 1.9 90.4 ± 0.2 85 ± 0 79.0 ± 0.4 92.8 ± 0.3 96.3 ± 0.2
BG Uniform + Real † 95.2 ± 3.4 87.4 ± 1.5 48.5 ± 3.4 39.2 ± 1.9 59.4 ± 5.6 66.0 ± 5.7

Figure 19: Examples of synthetic bike rendering placed against a 360 HDR background, a uniform background, and random
scene from the Places365 dataset.

C.3. Additional explainability and t-SNE plot

The t-SNE plots of the [cls] token extracted from the backbone (Figure 20) show partial overlap between the real and
synthetic domains, and highlight how real images from various sources yield very different distributions.

(a) Baseline (b) BL + Real (c) BL + R + DANN (d) BL + R + PADA

Figure 20: t-SNE plot of the [cls] token extracted from the DD branch under different training regimes. • DelftBikes (real) •
Web scraping (real) • BBBicycles (synth)

The t-SNE plots in Figure 21 illustrate the distribution of the [cls] tokens from the DD branch and the backbone. By
comparing synthetic damaged (red) and undamaged (cyan) examples, it can be seen how the backbone captures features
related to the bike model and invariant to the presence of damage, whereas the DD branch clearly distinguishes damaged vs.
non-damaged bikes.

(a) Damage branch (b) Backbone

Figure 21: t-SNE plot of the [cls] token extracted from DD branch (a) and backbone (b) for damaged and non-damaged bike
instances (BL + Real setting). • Synthetic no damage • Synthetic damaged • Real no damage • Real damaged

(a) BL + Real (b) BL + Real + DANN (c) BL + Real + PADA

Figure 22: Attention maps of TransReI3D under different training regimes. Values for Bent frame labels (y) and predictions
(ŷ) are superimposed on the image.

