
Expansion of Visual Hints for Improved Generalization in Stereo Matching

Andrea Pilzer1* Yuxin Hou2,3 Niki Loppi1 Arno Solin2 Juho Kannala2

1NVIDIA 2Aalto University 3Niantic

{apilzer,nloppi}@nvidia.com, {yuxin.hou, arno.solin, juho.kannala}@aalto.fi

Abstract

We introduce visual hints expansion for guiding stereo
matching to improve generalization. Our work is moti-
vated by the robustness of Visual Inertial Odometry (VIO) in
computer vision and robotics, where a sparse and unevenly
distributed set of feature points characterizes a scene. To
improve stereo matching, we propose to elevate 2D hints
to 3D points. These sparse and unevenly distributed 3D
visual hints are expanded using a 3D random geometric
graph, which enhances the learning and inference pro-
cess. We evaluate our proposal on multiple widely adopted
benchmarks and show improved performance without ac-
cess to additional sensors other than the image sequence.
To highlight practical applicability and symbiosis with vi-
sual odometry, we demonstrate how our methods run on
embedded hardware.

1. Introduction

Accurate depth estimation is an important task for many
3D applications such as AR/VR and robotics navigation.
Technological advances have made active depth sensors
(e.g., LiDaR) affordable. Yet, they have the drawback of
providing only sparse depth maps. Algorithmic techniques
are still more common for dense depth predictions, where
deep learning approaches [11, 12, 19, 6, 14, 10, 17, 13, 18]
have overtaken traditional matching techniques [5, 20, 29,
15, 4, 42], as their accuracy has kept improving with big-
ger annotated data sets available [22, 23, 21]. Nevertheless,
techniques based on geometric computer vision are still vi-
able options for scarce data or for ensuring good out-of-
domain performance.

Purely image-based dense 3D reconstructions can be
computed using state-of-the-art photogrammetry software
(e.g., Metashape, ReCap Pro). However, many of these
photogrammetry tools do not perform robustly if the scene
has numerous textureless surfaces, such as in typical indoor

*Work done while at Aalto University

H
in

te
xp

an
si

on

fθ 15.42%

fθdensify

6.24%

Disparity without expansion

Disparity with expansion

Expanded hints

Input: stereo images and hints

Figure 1: Visual hints expansion for deep stereo matching.
(top) Inference with a model θ trained with sparse visual
hints, and (bottom) with a model θdensify trained on ex-
panded visual hints. 3D expanded hints lead to more accu-
rate predictions: the overlay labels show the error rate >3.

office spaces. They also require high-resolution images to
match fine surfaces resulting in high computational costs. In
practice, visual-inertial odometry (VIO) and simultaneous
localization and mapping (SLAM) techniques [24, 34] are
typically employed for real-time camera motion estimation
(e.g., ARKit, ARCore, etc.) as well as in classical computer
vision pipelines, which reconstruct sparse point cloud mod-
els based on matching of local features between multiple
registered images (e.g., COLMAP [31, 30]).

In this work, we propose VIO guidance for improved
robustness and more accurate predictions of stereo match-
ing pipelines on data with domain shift (see Fig. 1). We
argue that by exploiting synthetic data sets, stereo match-
ing algorithms have increased their performance but may
need costly fine tuning—typically on real data. Our work
hinges on the realization, that visual localization methods
(e.g., SLAM) can provide a valuable source of sparse 3D
world information to guide our algorithm towards accurate

ar
X

iv
:2

21
1.

00
39

2v
1

 [
cs

.C
V

]
 1

 N
ov

 2
02

2

fθ
15.42% fθdensify

6.24%

Disparity without expansion Disparity with expansionModel input: stereo images & hints Model input: stereo images & expanded hints

Figure 2: Guided Stereo Matching Pipeline. Left vanilla guided stereo matching, model inputs are stereo images and hints
(from VIO or LiDaR). Right expanded hints for guided stereo matching, model inputs are stereo images and expanded hints.

dense predictions. Seminal work in this direction was pre-
sented by Poggi et al. [26], who considered sparse uni-
formly distributed guidance (e.g., from a LiDaR), to guide
feature matching at lower scale (i.e. to build the cost vol-
ume) Fig. 2-left. However, our work has two key differ-
ences. First, visual guidance is sparse and non-uniformly
distributed, ranging from tens to a few hundred points. Sec-
ond, visual guidance may be imprecise at some locations,
which requires filtering to improve robustness. Sparse and
uneven VIO hints at lower scale could be discarded due to
downsampling. Therefore, an expansion is used to improve
guidance and our quantitative and qualitative experiments
prove its effectiveness.

To address the previously mentioned challenges, we pro-
pose a 3D graph based hints expansion Fig. 2-right. Ex-
pansion of sparse hints has been considered before by, e.g.,
Huang et al. [16] who proposed a constant expansion for
close points. We argue this is a too strict condition, and a
slanted linear expansion as in [2] is more suitable. There-
fore, we consider the guidance points not in 2D but in 3D.
Intuitively, close points on the 2D image plane may be very
far in their 3D position. With this in mind, we turn hints into
nodes and connect them with edges only if they are close in
the 3D world. After obtaining the graph, we linearly ap-
proximate the disparity with a 3D slanted line following the
edges. In our case, slanted 3D lines do not add any addi-
tional computational overhead other than assigning the cor-
responding disparity value to the pixels on the graph edges.
Furthermore, we devise a 3D linear approximation of our
graph expansion. By building upon a heuristic that searches
for pixels only along vertical and horizontal lines and divid-
ing the images in non-overlapping patches, our approach
becomes efficient in connecting hints with 3D slanted lines.

We leverage our expanded hints for deep stereo match-
ing with DeepPruner [10], where their role is to guide the
differentiable patch match in a narrow range instead of the
full disparity range. We demonstrate that sparse visual guid-
ance is accurate enough to lead the model towards correct
predictions. Extensive experimental results show that ex-
panded guidance improves the performance of deep stereo
matching on unseen data sets at training time. Following
[26], we also demonstrate the proposed contributions on
PSMNet [6]. However, expanded visual hints may contain
errors, and to this end, we propose a confidence-based guid-
ance filtering. In PSMNet, feature activation maps of both

stereo images are extracted to build the 3D cost volume.
We filter hints if the feature of the depth hint in the refer-
ence frame (i.e. left stereo view) is not similar-enough to
the corresponding feature in the right stereo view.

We summarize our contributions as follows: (i) We pro-
pose a novel 3D graph based hints expansion which circum-
vents pitfalls in previous expansion methods by considering
the 3D neighbourhood of the guidance. (ii) We devise a 3D
linear approximation of our graph guidance, and show that
this is an efficient heuristic. (iii) We leverage our expanded
hints on DeepPruner [10], where their role is to guide the
differentiable patch match in a narrow range instead of the
full disparity range. (iv) Expanded visual hints may still be
error prone, and we propose a confidence based guidance
filtering method for improved robustness.

2. Related Work
Stereo Matching has a long history in computer vision

and has well established benchmarks [28, 33]. Traditional
methods are based on local [15, 4, 42] or global match-
ing [5, 20, 29]. Local algorithms are faster and work well
in textured regions, while global matching algorithms are
computationally more expensive and work well also in tex-
tureless regions. Recently, deep learning based methods
[19, 6, 14, 10, 17, 25] have shown superior performance
over traditional methods. Deep architectures typically use
convolutional neural networks (CNN) as feature extractors,
U-Net style architectures [12, 11, 13], and cost volumes
aggregation [17, 18, 6]. In order to improve cost volume
construction, Guo et al. [14] proposed a feature correlation
method. At the same time, Duggal et al. [10] revisited patch
matching in a differentiable way allowing end-to-end learn-
ing of CNNs. HITNet [37] showed that slanted surfaces
allow for smooth and accurate disparity prediction. We take
inspiration from their work in devising a hint expansion al-
gorithm that exploits the local slanted nature of disparity.

Guided Stereo Matching. CNNs offer accurate dense
predictions but suffer of overconfidence and domain-shift
with out-of-distribution (OOD) data. Poggi et al. [26] pro-
posed a first attempt to address these issues through a fea-
ture enhancement method that exploits sparse LiDaR guid-
ance. Later, [16] further extended [26] by expanding sparse
guidance and learning where to confidently use it. Unlike
them, we employ visual hints as a sparse and unevenly dis-
tributed guidance. This poses a greater challenge as we

cannot assume neighbouring pixels to have a similar dis-
parity. On the other hand, long term tracking of sparse fea-
ture points in VIO can provide accurate triangulation and
help solving ambiguous regions in two-view stereo. VIO
algorithms find strong features to match on edges or cor-
ners, where also disparity quickly transitions. Quick transi-
tions are harder to model. Bleyer et al. [2] proposed slanted
planes as a locally linear approximation.

Beyond stereo matching, Sinha et al. [35] proposed a
learning-based triangulation method for dense multi-view
stereo depth. Wong et al. [40] use scaffolding, based on
convex hulls, as part of monocular depth completion. How-
ever, we do not use convex hulls but propose our own 3D
graph approximation. For 3D object detection, [41] devel-
oped a LiDaR to pseudo-LiDaR depth refinement based on
graph neural networks. Nonetheless, our algorithm is or-
thogonal to theirs as 3D hint expansion are not learned.

We leverage existing VIO algorithms. We focus on
how to effectively exploit sparse visual hint guidance for
deep stereo matching. VIO [3, 34, 36, 27] and SLAM
[1, 27, 38, 32] are core for navigation. The CV community
has pushed to make these methods fast, robust, and general.
Thus, the sparse hints are agnostic to use case and generally
their errors are uncorrelated to learned depth methods.

3. Methods
Expanding hints is not trivial since VIO algorithms re-

turn hints at image keypoints, e.g. edges or corner points.
These areas are difficult to expand, because of the geometry
around the feature point. While a wrong value could be fil-
tered (as in [16]), it is important to note that it will also not
have positive impact. Hints expansion is further motivated
by the structure of deep CNNs for stereo matching. Fea-
ture representations of the input images have smaller spa-
tial size compared to the image itself, leading to a difficult,
and in some case impossible, alignment of the sparse hints
with the downsampled image grid. This can be avoided by
expanding the hints over a larger area.

In our case, in addition to the stereo image pair, sparse
unevenly distributed hints are available as guidance for our
model. They are encoded in sparse matrices Hn, each cor-
responding to a stereo image pair (IRn , I

L
n). We aim at

thoroughly exploiting the rich information regarding the 3D
world encoded in the hints by lifting them to 3D points and
not simply modelling them as disparity values on a 2D ma-
trix. The 3D hypothesis prompts us to more clearly discrim-
inate hints that are close to each other.

Notation Consider a data set D = {(ILn , IRn , Hn)}Nn=1,
where N is the number of data samples, ILn , I

R
n are stereo

image pairs, and Hn are sparse disparity hints. We learn
a model with parameters θ to infer a dense disparity map
disp such that dispn = fθ(I

L
n , I

R
n , Hn). We assume

Hn to be a sparse matrix of visual hints, and that an ex-

Figure 3: Hints i and j are shown as blue dots in the center
of their corresponding pixels, their distance in 3D space and
2D are d3D−ij (gray line) and d2D−ij (gray dashed line), re-
spectively. The red arrow represents the direction ∆ij used
to travel between the hints. Z represents the depth.

pansion function densify(H) exists such that the num-
ber of hints increases. The function densify should also
lead to more accurate estimation of the disparity dispn =
fθdensify

(ILn , I
R
n ,densify(Hn)).

3.1. 3D Linear Hints Expansion (Lin 3D)

We propose a linear densification based on two core
steps. (i) The first, is to connect two hints if they are found
on the same horizontal or vertical axis. Hints are connected
with a slanted linear interpolation as in [2]. (ii) Secondly,
the image is split into non-overlapping square patches of
fixed size. In this way, the expansion process transforms
into a patch-wise line-by-line (first horizontal and then ver-
tical) search of hints that can be connected. Detailed algo-
rithm and implementation is available in the supplementary.

3.2. 3D Graph Hints Expansion (3D G)

To improve over 3D linear hints expansion, we propose
to build a 3-dimensional Random Geometric Graph (RGG,
[9, 8]), where the hints are nodes and edges connect hints
that are close in 3D. Connections are further constrained
by color similarity between nodes (each node has a corre-
sponding RGB value in ILn , ILn and Hn are aligned). For-
mally, an edge will be created if

Eij : (d3D−ij < R) ∧ (RGBi �RGBj > τ), (1)

where Eij is the edge connecting hints i and j, d3D−ij is
their (Euclidean) distance, and R is the maximum distance.
RGBi,j are the RGB values in the left image at the location
of the hints,� is the cosine similarity between the two color
vectors and τ is a threshold of similarity (τ = 0.9). Note
that d3D−ij is calculated in 3D coordinates, and we will re-
fer to it also as volumetric distance to help distinguish it
from 2D spatial distance in the 2D image plane, denoted as

d2D−ij . The process is visualized in Fig. 3, where disparity
is shown along the Z-axis. Once the edges are created, they
are (i) sorted by volumetric 3D distance and (ii) the adja-
cent ones are discarded. While (ii) is trivial, between two
spatially (2D) adjacent pixels there are no further pixels to
possibly assign an expanded disparity value. The first step
(i) is grounded on a locally linear approximation of the real
disparity, a similar hypotheses to [2], [40]. Therefore, the
shorter edges are expanded first as they are more likely to
accurately model the real disparity.

The expansion for each edge is performed by travelling
one spatial unit distances d1−2D at a time between the two
hints in the 2D image plane, where their 2D Euclidean dis-
tance is denoted d2D−ij . We defineEij be the edge between
hints i and j, with distances (d3D−ij , d2D−ij) and coordi-
nates {xi, yi, zi}, {xj , yj , zj}, respectively. They are con-
nected by a slanted 3D line with a slope ∆ij (red arrow in
Fig. 3)

∆ij =


δx = cos(arctan((yi − yj)/(xi − xj))),
δy = sin(arctan((yi − yj)/(xi − xj))),
δz = (zi − zj)/((yi − yj)/(xi − xj)).

(2)

Moving by m steps of unit distances d1−2D until
d1−2Dm < d2D−ij , the corresponding z disparity value
is assigned to the closest hint pixel h = H[δxm, δym] by
rounding the computed coordinates to the closest integer.
Formally, the loop writes

{H[r(δxm), r(δym)] = δzm |m < d2D−ij ,m ∈ N}, (3)

where r is the rounding to the closest integer operation, and
m is the set of unit distances. Note that a value is assigned
only if the corresponding pixel h is empty, in order to pre-
serve original hints and values already assigned in Eq. (3).
We present the graph expansion algorithm and the imple-
mentation in the supplementary material for more clarity.

3.3. DeepPruner

Our aim is to show that expanded VIO hints are effec-
tive in enhancing model performance on unseen sequences.
Given expanded sparse hints, a model can consider fewer
candidate disparities around the suggested values and re-
turn more accurate predictions. To demonstrate this, we im-
plemented a novel framework based on DeepPruner [10].
DeepPruner proposed pipeline consists of four parts: (i) a
PatchMatch-based module first compute matching scores
from a small subset of disparities. (ii) Then given the
estimation from PatchMatch, there is a confidence range
prediction network to adjust search range for each pixel.
(iii) A sparse cost volume will be constructed and aggre-
gated within the predicted range. (iv) Finally, an image
guided refinement module uses low-level details to further
improve the prediction.

Since we have sparse hints H as extra inputs, we can
modify the first step and skip the iterative PatchMatch; in-
stead, we use a simpler sampling strategy to compute the
sparse matching scores. For a sparse hints matrix Hn

rangen:

{
dlow=(1− Vn) dmin + VnHn (1− α)

dhigh=(1− Vn) dmax + VnHn (1 + α)
(4)

where dlow, dhigh are the lower bound and the upper bound
of the search range rangen, respectively. V = (H > 0)
indicates if the pixels have hints and α is a hyper-parameter
to control the relative range. We set α = 0.2 to accom-
modate a small margin of error for our densified visual
hints, and (dmin, dmax) are the minimum and maximum dis-
parities allowed for the range during training and testing.
(dmin, dmax) are used in case no hints is available at a given
location. Then we sample disparity candidates uniformly
from [dlow, dhigh] for each pixel to compute the matching
scores. Even if it falls out of the scope of this paper, we be-
lieve such guidance approach is straight-forward to apply to
several traditional stereo matching methods based on patch
matching.

3.4. 3D Expansion for Guided Stereo Matching

Guided Stereo Matching for PSMNet Guided stereo
matching (GSM) [26] proposed to guide learning with
sparse supervision points, which we refer to as hints in this
work. Their method is based on a scaling factor that pro-
motes learning for the pixels of the image where the ground
truth is present. Namely, in a model with cost volume, this
is formulated as

Gn =

(
1− Vn + Vn k exp

(
− d−Hn

2c

))
Fn, (5)

where Fn are the original cost volume features, Gn are
the enhanced output features, Hn are the known hints, and
Vn = (Hn > 0) is a binary mask specifying which pixel
will be enhanced. The Gaussian modulation is parameter-
ized by magnitude k = 10 and variance c = 1.
Confidence-guided Stereo Matching for PSMNet Al-
though guided stereo matching proved to be effective on an
uniformly sampled ground-truth, in our setting VIO would
be the source of the guiding points. This leads to relevant
differences to the previous setting. First, our hints will be
localized in areas with keypoint presence, effectively inval-
idating the assumption of uniformly sampled hints. Second,
VIO hints and the expanded hints generated by the proposed
expansions may be imprecise. Third, the density is lower
than with sparse supervision.

To address the noisy hints, we devise a confidence-based
hints filtering for 3D cost volume based architectures as
PSMNet [6]. In our scarce supervision scenario, it is par-
ticularly important to ensure that hints are positively con-
tributing in the pipeline. The confidence is implemented as

RGB PSMNet 3D G exp

Figure 4: PSMNet qualitative results on ETH3D. Our expansion sharpens details.

DATA SET IMG SIZE VGD [DENSITY] MAE 3D G EXP [DENSITY] MAE Param R LIN 3D EXP [DENSITY] MAE Param W

SCENEFLOW (256,512)◦ 440 [0.33%] 1.59 8690 [6.6%] 1.89 R = 8 8840 [6%] 2.08 W = (8, 16)
TARTAN (480,640) 13 [0.004%] 1.43 849 [0.27%] 1.57 R = 25 113 [0.03%] 1.63 W = (8, 16)
ETH3D (544,960) 263 [0.05%] 2.06 3703 [0.7%] 2.16 R = 8 4627 [0.88%] 2.34 W = (8, 16)
KITTI15 (368,1232) 562 [0.1%] 7.02 40494 [8.9%] 7.47 R = 20 5271 [1.1%] 7.77 W = (8, 16)

Table 1: Sparsity of the visual guidance hints for each data set. Average hints per image over all the data sets, [density in
brackets], MAE hints error, and expansion parameters. ‘Img size’ is the image size in pixels, ‘◦’ refers to training data. The
proposed expansions do not introduce noticeable additional error while greatly improving model prediction performance.

an Euclidean distance between feature vectors. Given the
normalized feature maps of the left stereo view fL and the
feature maps of the right stereo view fR, we compare the
left feature at hint position (xH , yH) with the correspond-
ing right feature as suggested by the hint,

confH[xH ,yH] = 1− tanh(‖fL(xH , yH)−
fR(xH +H[xH , yH], yH)‖2), (6)

where H[xH , yH] is one of our hints. This process is triv-
ially repeated for all hints. Subsequently, the final mask is
obtained as follows

V =

{
1, where confH > τ ∧H > 0,
0, where confH < τ ∨H > 0,

(7)

and it is directly applied to the hints for filtering noisy ones
(τ = 0.9). A further minor modification to PSMNet is an
additional loss term. To mitigate the over-smoothing prob-
lem [7], we add a classification loss on the disparity. It is
implemented as negative log-likelihood (NLL) loss between
the ground truth disparity and the model prediction. Both of
them are rounded to the closest integer in order to satisfy the
classification objective constraints.

4. Experiments
We evaluate the proposed expansion methods in Sec. 4.1

and employ it as guidance for DeepPruner in Sec. 4.2 and
PSMNet in Sec. 4.2. We also deploy it on embedded devices
in Sec. 4.4 and compare against guided methods in Sec. 4.3.

Data sets We use SCENEFLOW [21], ETH3D [33], [32],
TARTAN [39], KITTI [22], [23] data sets for our experi-
ments. Detailed information about each data set is available

in the supplementary material. As in [6], [26], [16] models
are evaluated with MAE and threshold error rate. They are
computed for every pixel where ground-truth is available,
with thresholds t ∈ {2, 3, 4, 5}.

Implementation We implement our method with Py-
Torch. Training is performed on a single NVIDIA A100
GPU. With SCENEFLOW [21] training takes about 25 hours
for PSMNet [6] and 125 hours for DeepPruner [10]. We
follow training guidelines from the respective papers. We
did not notice any training time difference with sparse hints
or expanded hints. Testing is performed on the same de-
vice and on a NVIDIA Jetson AGX Xavier device. The
capability of the method to run on embedded devices is of
particular interest for future practical uses.

Model Details PSMNet [6] and DeepPruner [10] are the
baseline models. Vgd-test and Lgd-test refer to visual guid-
ance and LiDaR guidance at test time applied to the original
model. Vgd refers to visual hints guided training and test-
ing as introduced in [26]. Note that a crucial difference lies
in the hints used, we have sparse visual hints and not the
LiDaR hints of [26]. 3D G exp and Lin 3D exp are the two
expansion algorithms proposed in our work. PSMNet mod-
els that use expansion also use our confidence filtering.

4.1. Expansion Details

Before looking into actual model performance, we ana-
lyze the impact of the proposed expansions. VIO does not
provide a uniformly spaced grid of sparse hints as a LiDaR
would. Nevertheless, thanks to our densification we are able
to achieve a much higher hints density. In Table 1 (upper
half) we denote the original VIO hints as Vgd, our proposed
3D Graph expansion as 3D G exp and linear expansion as
Lin 3D exp. Generally a 10× increase in hints can be ob-
served when our proposed densification algorithms are ap-

RGB DP 3D G exp RGB DP 3D G exp

Figure 5: DeepPruner (DP) qualitative results on the TARTAN data set. Above, 3D G exp sharpens some building edges,
below, removes domain-shift artifacts.

plied. Particularly interesting is the case of the TARTAN
data set, where the average hints over all the images is only
13 hints, but after expansion it grows to 113 and 849 hints,
for Lin 3D exp and 3D G exp, respectively. In square brack-
ets we report the density of hints over the total number of
pixels in the images. Density better conveys the sparsity or
to some extent ‘rare’ nature of visual hints that our method
expands. For example, even after expansion both TARTAN
and ETH3D do not pass the 1 % threshold, while SCENE-
FLOW and KITTI do. In Table 1 (bottom half), we detail
expansion parameters. Both 3D G exp and Lin 3D exp algo-
rithms are implemented as functions that take in input hints
of one image and output expanded hints. 3D G exp has one
parameter, the maximum 3D radius R, which specifies the
search range for nodes to connect. Lin 3D exp has one pa-
rameter, which specifies the size of the patchesW to use for
potential hints expansion. We assign these two parameters
to obtain a good trade-off between final density, proximity
of the hints and the chance of even finding a hint due to the
low guidance density. 3D G exp is applied once, whereas
Lin 3D exp is applied in two iterations the first withW1 = 8
and the second with W2 = 16.

In Table 1 we report the proposed expansions MAE er-
rors, it is interesting to note that the expansions introduce
a minor increase in MAE errors but not significantly higher
than the initial VIO hints noise. KITTI15 is the only data
sets that stands out with a higher MAE error. This is due to
the short sequences that compose the data sets where VIO
hits are more challenging to extract and align compared to
the longer sequences of the other data sets.

4.2. Ablation Studies

DeepPruner Table 2 demonstrates that expanded guid-
ance is beneficial for DeepPruner [10]. The Vanilla
model uses a checkpoint and code from the authors offi-
cial repository. Visual guidance Vgd improves on KITTI15
only, meaning our guided PatchMatch needs denser hints
(KITTI15 has higher density among the three data sets). In
fact, expanded guidance improves over all the test data sets,
proving that our intuition is correct. On KITTI15 all er-
ror rate thresholds improve by roughly a factor of 4, while
MAE decreases from 3.47 to 1.46 and 1.44 for Lin 3D exp
and 3D G exp, respectively. On ETH3D, 3D G exp lowers
MAE from 0.87 to 0.54 (38% decrease). Also error rates
are all improved marginally relative to Lin 3D exp. Boost on

EXPANSION MAE >2 >3 >4 >5

ETH3D

Vanilla / 0.87 5.11 3.63 2.9 2.39
Vgd 1.01 5.41 3.82 3.01 2.52

Lin 3D exp 0.56 3.88 2.54 1.93 1.54
3D G exp 0.54 3.76 2.43 1.85 1.47

TARTAN

Vanilla / 5.63 20.63 16.70 14.50 12.98
Vgd 8.65 20.58 17.33 15.46 14.15

Lin 3D exp 2.18 14.78 11.36 9.47 8.15
3D G exp 2.17 14.77 11.34 9.45 8.13

KITTI15

Vanilla / 3.47 34.76 23.59 17.76 14.10
Vgd 1.94 10.98 6.37 4.68 3.79

Lin 3D exp 1.46 9.46 5.27 3.78 3.00
3D G exp 1.44 9.30 5.01 3.51 2.75

Table 2: Ablation study of our guidance on DeepPruner.
Expanded VIO guidance improves accuracy on unseen data.
Vgd is a sparse visual hints guided model, 3D G exp is the
3D graph expansion (Sec. 3.2) and Lin 3D exp the linear 3D
expansion (Sec. 3.1). / Original DeepPruner-best SCENE-
FLOW model.

TARTAN is also competitive with a 60% lower MAE error.
We could not observe a significant difference between Lin
3D exp and 3D G exp densification, possibly due to the very
sparse visual hints for this data set (see Table 1). Qualitative
results are shown in Fig. 5, which highlights that expanded
hints are able to produce sharper predictions and remove
inference artifacts (more examples in the supplement).

PSMNet We test on TARTAN, ETH3D and KITTI.
Results are illustrated in Table 3. Initial results confirm
the findings of [26], there is a minor improvement on both
ETH3D and TARTAN when using guidance Vgd-test at test
time, and a clear improvement across all metrics with Vgd
at training time as well. This is a clue that our sparse vi-
sual hints can positively contribute to improve generaliza-
tion performance. For ETH3D, Vgd MAE is 1.54, with Vgd
+ Lin 3D exp MAE lowers to 1.19 (23% lower), even better
with Vgd + 3D G exp down to 1.04 (30% lower). Quali-
tative results on challenging ETH3D scenes in Fig. 4 con-
firm the benefits of using the proposed guidance for sharper
and more accurate disparity predictions. More examples are
available in the supplementary. TARTAN is peculiar to have
very sparse visual hints, which makes it a very challenging
test-bed for our method. This is highlighted by the minor
metric changes for Vgd-test. Vgd obtains a major improve-
ment of 38% in MAE, increasing to 50% and 54% for Vgd
+ Lin 3D exp and Vgd + 3D G exp, respectively.

MODEL
ETH3D TARTANAIR

MAE >2 >3 >4 >5 MAE >2 >3 >4 >5

PSMNet [6] 5.25 16.99 7.62 5.82 5.10 5.51 21.30 14.09 11.34 9.81
PSMNet [6] Vgd-test 5.25 16.78 7.65 5.80 5.10 5.51 21.29 14.09 11.30 9.80
Vgd 1.54 8.59 5.47 4.17 3.41 5.53 21.03 16.62 14.14 12.45
Vgd + Lin 3D exp 1.19 8.8 5.16 3.63 2.77 2.74 17.86 13.29 10.81 9.24
Vgd + 3D G exp 1.04 7.91 4.41 3.01 2.27 2.54 17.00 12.72 10.48 9.04

Table 3: Ablation study of our proposed methods on PSMNet [6]. Vgd is a sparse visual hints guided model, 3D G exp is the
3D graph expansion (Sec. 3.2) and Lin 3D exp the linear 3D expansion (Sec. 3.1).

KITTI We test on the 2011 09 26 0011 KITTI VELO-
DYNE sequence. Table 4 presents on the upper half refer-
ence results of PSMNet and finetuned PSMNet. The bottom
half is split in LiDaR guided (LGD) and VIO guided (VGD)
stereo matching. LiDaR expansion improves over [26] for
MAE error while paying a minor loss in <2%. This is a no-
table achievement as the performance of [26] are strong and
shows expansion can benefit LiDaR guided stereo match-
ing. Notably, VIO expansion as well achieves a slight im-
provement in MAE error. To summarize, hints guide cost
volume construction, leading to better overall performace
(MAE) but expansion in this experiment is not yet able to
improve accuracy (<2%) likely due to expansion noise.

In addition to KITTI VELODYNE, we evaluate the per-
formance on a model pre-trained on SCENEFLOW without
any guidance, and test it on KITTI15. We report numbers
in Table 5. Starting from the publicly available SCENE-
FLOW pre-trained model from PSMNet authors, we obtain
MAE 4.24. With PSMNet Vgd-test guidance, the perfor-
mance does not change except for a minor improvement on
the error rates. Hints expansion is more effective, Lin 3D
exp leads to a MAE improvement of 0.5% and a decrease
on the >2 error rate, meaning that the model is more pre-
cise in some areas with small errors. 3D G exp is even more
effective with a 2.5% MAE decrease but shows mixed re-
sults on the errors rates. A possible reason, as happened in
KITTI VELODYNE, is that guided areas improve accuracy
(thus lower MAE) but unguided areas do not. We specu-
late the reason is the feature modulation in the guided cost
volume. Finally, we include GSM [26] as a sensor-based
reference which gives more competitive results. Again our
expansions improve the LGD baseline by around 3% MAE
and similarly all the error rates. Yet, we emphasize that our
starting hint density is much lower (0.1% vs. their 5%). To
summarize, in Table 5 performance gain is limited because
the model was not trained to exploit guidance. However,
guidance positively contributes out-of-the-box to improve
accuracy.

<2% MAE <2% MAE
All NoG All NoG All NoG All NoG

PSMNet [6] 38.60 38.86 2.36 2.37 – – – –
PSMNet-ft 1.71 1.73 0.72 0.73 – – – –

LiDaR guidance (LGD) VIO guidance (VGD)

GD 0.67 0.67 0.47 0.47 1.71 1.73 0.72 0.73
Lin 3D exp 0.79 0.77 0.44 0.45 2.08 2.08 0.72 0.72
3D G exp 0.73 0.82 0.41 0.44 1.90 1.91 0.70 0.71

Table 4: Ablation study of our expansions on KITTI
VELODYNE. Top half, reference PSMNet results. Bottom
half, expanded LiDaR and VIO guidance reduce MAE error
for guided stereo matching, proving expansion is effective
not only on VIO but also on LiDaR.

GUIDANCE VGD LGD MAE >2 >3 >4 >5

PSMNet[6]/,⊕ 4.24 46.54 29.61 21.26 16.41

GSM Lgd-test[26] X 3.90 33.38 23.12 17.59 14.01
GSM Lgd-test Lin 3D exp/ X 3.82 32.83 22.45 17.09 13.19
GSM Lgd-test 3D G exp/ X 3.79 32.34 22.08 17.01 13.03

PSMNet Vgd-test/ X 4.24 46.45 29.57 21.24 16.40
Lin 3D exp/ X 4.21 46.28 29.62 21.29 16.44
3D G exp/ X 4.13 47.13 30.65 22.04 16.98

Table 5: Pre-trained PSMNet agnostic to guidance, tested
on KITTI15 with hints guidance. The model was not
trained to exploit guidance. However, results confirm ex-
pansion is effective on both LiDaR (Lgd) and VIO (Vgd)
hints guidance out-of-the-box. / authors original check-
point and ⊕ code.

4.3. Comparison with Guided Stereo Methods

We compare with state-of-the-art guided stereo match-
ing methods [26, 16]. In the upper half of Table 6, mod-
els are trained on SCENEFLOW and tested on KITTI15
(as in Table 5). Our improvement over PSMNet is partic-
ularly evident in average error and for pixels with small er-
ror rate (threshold >2). The Lin 3D exp model suffers a
minor accuracy drop on the higher error rates (thresholds
>4, >5) while improving 18% on MAE. 3D G exp gains

MODEL LGD MAE >2 >3 >4 >5

PSMNet[6] 4.24 46.54 29.61 21.26 16.41
GSM[26] X 1.39 12.31 3.89 2.23 1.60
Lin 3D exp 3.44 41.63 29.23 22.19 17.66
3D G exp 3.21 38.27 26.78 20.35 16.23

GSM-ft[26] X 0.763 2.73 1.82 1.51 1.33
S3-ft[16] X 0.443 1.65 0.96 0.71 0.57
Lin 3D exp-ft 0.95 6.27 3.29 2.35 1.87
3D G exp-ft 0.98 6.28 3.25 2.35 1.89

Table 6: Comparison with guided stereo methods. Train-
ing on Sceneflow and testing on KITTI15 (upper half), and
finetuned on KITTI12 (lower half).

Figure 6: Jetson board results on KITTI running at ∼1 fps,
8× faster than the standard model, with further engineering
it could work real-time. RGB (top left), LiDaR GT (top
right), predicted disparity (bottom left) and 3D G exp visual
hints (bottom right).

on all the metrics, and GSM [26] obtains the best absolute
performance. It is worth noting they exploit LiDaR guid-
ance, which as already discussed is evenly distributed and
accurate, leading to a clear performance advantage. If addi-
tional sensors are available, a LiDaR can be effective. Mod-
els finetuned (suffix ‘-ft’) on KITTI12 are in the bottom
half of Table 6. All models obtain clear gains thanks to
reduced domain-shift. However, in this case S3-ft[16] im-
proved upon GSM-ft [26] to obtain state-of-the-art results.
Finetuning reduces the gap of our methods with GSM-ft.
Before finetuning the average error of GSM is 57% lower
and after it is 23% lower.

4.4. Embedded Devices

To demonstrate our method on an embedded device, we
perform inference on an NVIDIA Jetson AGX Xavier de-
vice with KITTI VELODYNE sequence
2011 09 26 0011 at high resolution (384×1280 pixels) us-
ing PSMNet1. Our 3D G exp has an inference time of 8.607
seconds per sample, while the MAE error on the full se-
quence is 0.70. Furthermore, we optimized the model to
use half-precision (fp16) and target the aarch64 platform
using NVIDIA TensorRT inference optimizer via TRTorch
compiler. This resulted in an inference time of 1.062 sec-
onds per sample (a speed-up factor of 8× relative to the
unoptimized model), while maintaining the original accu-

1We were unable to deploy DeepPruner on the device yet, as some of
the operations in the model could not be optimized/converted by TRTorch

GUIDANCE TIME (SEC/SAMPLE) MAE DL+VIO EXP CNN

Lin 3D exp 0.9708 0.72 13% 1.5% 88.5%
3D G exp 1.062 0.70 12% 10% 85.5%

Table 7: Inference on an NVIDIA Jetson AGX Xavier
and KITTI VELODYNE (384×1280 pixels). Breakdown of
time (in %) employed for Data Loading and VIO extraction
(DL+VIO), expansion (EXP) and inference in CNN (CNN).

racy MAE = 0.70. Fig. 6 illustrates a qualitative example
of inference. An interesting observation is that the densifi-
cation of visual hints on vertical structures like trees works
particularly well. The predicted disparity is accurate except
a typical stereo artifact on the right.

We profiled our code (after applying NVIDIA TensorRT
optimization Table 7) and the execution time is divided as
follows: data loading and VIO hints extraction 12%, 3D G
expansion 10%, and deep CNN inference 78%. Most of the
cost comes from the deep CNN employed. Expansion on
Jetson comes at a time cost similar to data loading, but im-
proves MAE from 2.36 to 0.70 as reported in Table 4. In
the case of Lin 3D expansion, the execution time is slightly
faster because the expansion is more lightweight. Result-
ing in an inference time of 0.9708 seconds per sample and
MAE = 0.72. The detailed execution time breakdown
is 13% for data loading, 1.5% for Lin 3D expansion, and
85.5% for deep CNN inference. To summarize, Lin 3D is
8.5% faster, while 3D G is 4% more accurate.

5. Conclusion

This work tackled a challenging scenario for stereo-
matching methods. Without any additional sensors, im-
proving their performance on unseen sequences (i.e. from
different data distributions). To this end, we demonstrated
the utility of VIO hints guidance for deep stereo matching.
In particular, 3D visual hints expansion seamlessly works
for existing pre-trained models and guidance-aware mod-
els, and across different architectures. Our technique does
not need additional sensors and exploits well studied and ro-
bust odometry techniques. Nevertheless, we show that also
LiDaR benefits from our expansion. Extensive experiments
on distinct and challenging data sets support our findings,
and practical use was also investigated by successfully de-
ploying our algorithm on embedded devices.

Acknowledgements. We acknowledge funding from
Academy of Finland (No. 339730, 324345), and the Finnish
Center for Artificial Intelligence (FCAI). We acknowledge
the computational resources by the Aalto Science-IT project
and CSC – IT Center for Science, Finland.

References
[1] Jinqiang Bai, Junqiang Gao, Yimin Lin, Zhaoxiang Liu,

Shiguo Lian, and Dijun Liu. A novel feedback mechanism-
based stereo visual-inertial slam. IEEE Access, 7:147721–
147731, 2019.

[2] Michael Bleyer, Christoph Rhemann, and Carsten Rother.
Patchmatch stereo-stereo matching with slanted support win-
dows. In Proceedings of the British Machine Vision Confer-
ence (BMVC), volume 11, pages 1–11, 2011.

[3] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland
Siegwart. Robust visual inertial odometry using a direct ekf-
based approach. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 298–304. IEEE, 2015.

[4] Robert Bolles, Harlyn Baker, and M Hannah. The jisct stereo
evaluation. In DARPA Image Understanding Worshop, 1993.

[5] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approx-
imate energy minimization via graph cuts. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (T-
PAMI), 23(11):1222–1239, 2001.

[6] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo
matching network. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 5410–5418, 2018.

[7] Chuangrong Chen, Xiaozhi Chen, and Hui Cheng. On the
over-smoothing problem of cnn based disparity estimation.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019.

[8] Brent N Clark, Charles J Colbourn, and David S Johnson.
Unit disk graphs. Discrete Mathematics, 86(1-3):165–177,
1990.

[9] Jesper Dall and Michael Christensen. Random geometric
graphs. Physical Review E, 66(1):016121, 2002.

[10] Shivam Duggal, Shenlong Wang, Wei-Chiu Ma, Rui Hu,
and Raquel Urtasun. Deeppruner: Learning efficient stereo
matching via differentiable patchmatch. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 4384–4393, 2019.

[11] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale convo-
lutional architecture. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
2650–2658, 2015.

[12] Ravi Garg, Vijay Kumar Bg, Gustavo Carneiro, and Ian Reid.
Unsupervised cnn for single view depth estimation: Geom-
etry to the rescue. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 740–756. Springer,
2016.

[13] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 270–279, 2017.

[14] Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang,
and Hongsheng Li. Group-wise correlation stereo network.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3273–3282,
2019.

[15] Marsha Jo Hannah. Computer matching of areas in stereo
images. In PhD Thesis, Stanford University, 1974.

[16] Yu-Kai Huang, Yueh-Cheng Liu, Tsung-Han Wu, Hung-
Ting Su, Yu-Cheng Chang, Tsung-Lin Tsou, Yu-An Wang,
and Winston H Hsu. S3: Learnable sparse signal super-
density for guided depth estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16706–16716, 2021.

[17] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 66–75, 2017.

[18] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh
Kowdle, Julien Valentin, and Shahram Izadi. Stereonet:
Guided hierarchical refinement for real-time edge-aware
depth prediction. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 573–590, 2018.

[19] Zhengfa Liang, Yiliu Feng, Yulan Guo, Hengzhu Liu, Wei
Chen, Linbo Qiao, Li Zhou, and Jianfeng Zhang. Learning
for disparity estimation through feature constancy. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2811–2820, 2018.

[20] Jose Marroquin, Sanjoy Mitter, and Tomaso Poggio. Prob-
abilistic solution of ill-posed problems in computational
vision. Journal of the American Statistical Association,
82(397):76–89, 1987.

[21] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4040–4048, 2016.

[22] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint
3d estimation of vehicles and scene flow. ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences, 2:427, 2015.

[23] Moritz Menze, Christian Heipke, and Andreas Geiger. Ob-
ject scene flow. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 140:60–76, 2018.

[24] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-
source slam system for monocular, stereo, and rgb-d cam-
eras. IEEE Transactions on Robotics, 33(5):1255–1262,
2017.

[25] Andrea Pilzer, Stéphane Lathuilière, Dan Xu, Mihai Marian
Puscas, Elisa Ricci, and Nicu Sebe. Progressive fusion for
unsupervised binocular depth estimation using cycled net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence (T-PAMI), 42(10):2380–2395, 2019.

[26] Matteo Poggi, Davide Pallotti, Fabio Tosi, and Stefano
Mattoccia. Guided stereo matching. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 979–988, 2019.

[27] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Car-
lone. Kimera: an open-source library for real-time metric-

semantic localization and mapping. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 1689–1696. IEEE, 2020.

[28] Daniel Scharstein, Heiko Hirschmüller, York Kitajima,
Greg Krathwohl, Nera Nešić, Xi Wang, and Porter West-
ling. High-resolution stereo datasets with subpixel-accurate
ground truth. In Proceedings of the German Conference on
Pattern Recognition (GCPR), pages 31–42. Springer, 2014.

[29] Daniel Scharstein and Richard Szeliski. Stereo matching
with nonlinear diffusion. International Journal of Computer
Vision (IJCV), 28(2):155–174, 1998.

[30] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4104–4113, 2016.

[31] Johannes L Schönberger, Enliang Zheng, Jan-Michael
Frahm, and Marc Pollefeys. Pixelwise view selection for
unstructured multi-view stereo. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 501–
518. Springer, 2016.

[32] Thomas Schops, Torsten Sattler, and Marc Pollefeys. Bad
slam: Bundle adjusted direct rgb-d slam. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 134–144, 2019.

[33] Thomas Schops, Johannes L Schonberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3260–3269, 2017.

[34] Otto Seiskari, Pekka Rantalankila, Juho Kannala, Jerry Ylil-
ammi, Esa Rahtu, and Arno Solin. Hybvio: Pushing the
limits of real-time visual-inertial odometry. ArXiv Preprint,
2021.

[35] Ayan Sinha, Zak Murez, James Bartolozzi, Vijay Badri-
narayanan, and Andrew Rabinovich. Deltas: Depth esti-
mation by learning triangulation and densification of sparse
points. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 104–121. Springer, 2020.

[36] Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watter-
son, Sikang Liu, Yash Mulgaonkar, Camillo J Taylor, and
Vijay Kumar. Robust stereo visual inertial odometry for fast
autonomous flight. IEEE Robotics and Automation Letters
(RAL), 3(2):965–972, 2018.

[37] Vladimir Tankovich, Christian Hane, Yinda Zhang, Adarsh
Kowdle, Sean Fanello, and Sofien Bouaziz. Hitnet: Hierar-
chical iterative tile refinement network for real-time stereo
matching. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
14362–14372, 2021.

[38] Vladyslav Usenko, Nikolaus Demmel, David Schubert, Jörg
Stückler, and Daniel Cremers. Visual-inertial mapping with
non-linear factor recovery. IEEE Robotics and Automation
Letters (RAL), 5(2):422–429, 2019.

[39] Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu,
Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, and Se-
bastian Scherer. Tartanair: A dataset to push the limits of

visual slam. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
4909–4916. IEEE, 2020.

[40] Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano
Soatto. Unsupervised depth completion from visual inertial
odometry. IEEE Robotics and Automation Letters (RAL),
5(2):1899–1906, 2020.

[41] Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Ge-
off Pleiss, Bharath Hariharan, Mark Campbell, and Kilian Q
Weinberger. Pseudo-lidar++: Accurate depth for 3d object
detection in autonomous driving. In Proceedings of the In-
ternational Conference on Learning Representations (ICLR),
2020.

[42] Ramin Zabih and John Woodfill. Non-parametric local trans-
forms for computing visual correspondence. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 151–158. Springer, 1994.

Supplementary Material for
Expansion of Visual Hints for Improved Generalization in Stereo Matching

A. Limitations
We proposed visual hints as a mean to improve deep

stereo matching performance on novel unseen data. VIO
keypoint triangulation works best when there is sufficient
camera motion that allows to extend the baseline for accu-
rate triangulation, and, hence, in the initial 5 to 10 frames
of a sequence a warm-up time may be beneficial to reach a
higher number of accurate hints. Nowadays, real-time VIO
algorithms are very effective and run up to 30fps. Thus,
our method is widely applicable on a wide variety of appli-
cations. So for practical use cases one should choose the
VIO algorithm according to the application requirements.
This is due to the fact that a generic VIO algorithm pro-
duces keypoints at a lower rate than the video frame rate.

There is scope for further improvement of the current 3D
densification by leveraging the power of convex hulls and
possibly integrating stereo and odometry pipelines. Finally,
further steps towards real-time execution, extension to tra-
ditional stereo methods, extension to multi-view stereo and
monocular depth estimation could be undertaken.

B. Data Set Details
We use SceneFlow [21], ETH3D [33], [32], TartanAir

[39], KITTI Stereo 2012/2015 [22], [23] data sets for our
experiments.

SceneFlow is a large synthetic stereo data set with
ground truth used for model pretraining. It contains diverse
scenes with a total of 35454 training images. For training
we follow the guidelines in PSMNet and DeepPruner (e.g.
the image is randomly cropped to the size of 256× 512 and
data augmentation is applied).

ETH3D is a real-world stereo and SLAM benchmark-
ing data set recorded in varied indoor and outdoor environ-
ments. We adopt the Low-res many-view training split for
testing our method. In total we have 1199 test images. For
testing we use the largest possible center crop such that it
works with PSMNet (size 480× 912) and DeepPruner (size
480× 896).

TartanAir is a real-world stereo data set for SLAM
benchmarking, recorded with a flying drone in dif-
ferent environments. We evaluate our method on 18

stereo image sequences, one for each environment,
totalling 3224 images. The sequences we used are
abandonedfactory-easy-P010, endofworld-easy-P000,
neighborhood-easy-P000, oldtown-easy-P000, soulcity-
easy-P006, abandonedfactory-night-easy-P013, gascola-
easy-P004, ocean-easy-P000, seasidetown-easy-P006,
westerndesert-easy-P004, amusement-easy-P006, hospital-
easy-P018, office2-easy-P009, seasonsforest-easy-P003,
carwelding-easy-P002, japanesealley-easy-P001, office-
easy-P003, and seasonsforest-winter-easy-P000. For this
dataset, center cropping is not required as the original
image size (480 × 640) fits in both deep stereo matching
architectures used in this study.

KITTI15, 12 are two real-world stereo benchmarking
data sets acquired from a car driving in German streets.
KITTI15 is used only for testing and we finetune some of
our models on KITTI12 to compare with state-of-the-art.
For training with KITTI12 we follow author’s guidelines
with standard data augmentation. For testing, only center
cropping to 368×1232 and 320×1216 is applied for PSM-
Net and DeepPruner, respectively.

Sparse Hints We used visual reconstruction based on
COLMAP [31], [30] to get the sparse hints for our data sets.
All data sets we used are composed of sequences, thus we
only had to provide the sequence as an input to the algo-
rithm.

C. 3D Linear Graph Expansion
In this section we report the algorithm and a Python

implementation Listing 1 of our Lin 3D exp presented in
Sec. 3.1. To densify the hints, first the patch iterator
(patch iter) function is called to split the image in patches.
This is followed by a call to dense patch, which performs
the densification of the patches.

1 import numpy as np
2

3 def dense_patch(patch):
4 """
5 Function to expand sparse patches of hints with 3

D Linear Interpolation.
6 Input:
7 patch: sparse patch of hints, hints are

disparity values > 0, otherwise matrix values

Algorithm 1: 3D Linear Hints Expansion
Data: Hint matrix H data set, patch size W
for h in H do

Init expanded hints hexp = h
Create patches of size W : p← hexp

for pi in patches p do
for x = {1, . . . ,W} do search horizontally

if two hints not zero then on x axis
pi[x]← linearly interpolate hints

end
end
for y = {1, . . . ,W} do search vertically

if two hints not zero then on y axis
pi[y]← linearly interpolate hints

end
end
hexp ← pi

end
h← hexp

end

are 0
8 Ourput:
9 new_patch: densified input hints

10 """
11 patch_size = patch.shape[0]
12 new_patch = patch.copy()
13

14 if np.count_nonzero(patch) >=3 :
15 for u in range(patch_size):
16 line = patch[u]
17 if np.count_nonzero(line) >= 2:
18 xp = [i for i in range(patch_size

) if patch[u, i] > 0]
19 fp = [patch[u, i] for i in xp]
20 tmp = np.interp(range(patch_size)

, xp, fp)
21 new_patch[u] = tmp
22

23

24 for v in range(patch_size):
25 line = new_patch[:, v]
26 if np.count_nonzero(line) >= 2:
27 xp = [i for i in range(patch_size

) if new_patch[i, v] > 0]
28 fp = [new_patch[i, v] for i in xp

]
29 tmp = np.interp(range(patch_size)

, xp, fp)
30 new_patch[:, v] = tmp
31 return new_patch
32

33 def patch_iter(hints, win):
34 """
35 Function to expand sparse matrix of hints with 3D

Linear Expansion. Creates patches and calls
dense_patch to expand hints.

36 Input:
37 hints: sparse matrix of hints, hints are

disparity values > 0, otherwise matrix values
are 0

38 win: window size W to create patches.
39 Ourput:
40 new: densified input hints
41 """
42 h, w = hints.shape
43 new = hints.copy()
44 for i in range(0, h//win):
45 for j in range(0, w//win):
46 window = hints[win*i:win*(i+1), win*j

:win*(j+1)]
47 new[win*i:win*(i+1), win*j:win*(j+1)]

= dense_patch(dense_patch(window))
48 return new

Listing 1: Code for Lin 3D exp.

D. 3D Graph Expansion
In this section, we report the algorithm and a Python

implementation Listing 2 of our 3D G exp presented in
Sec. 3.4. Hints densification is performed in one pass by
calling the function expand with graph over the sparse hints
matrix.

Algorithm 2: 3D Graph Hints Expansion
Data: Hints Matrices H data set, Radius R
for h in H do

Init. 3D graph G
Init. expanded Hints hexp = h
Init. nodesNG ← h, where h not empty
Create edges: EG = RGG(NG ,R ∧ τ)
Sort edges: EG = sort(EG , key : d3D−ij)
for edge Eij in edges EG do

if d2D−ij >
√

2 then if not adjacent
Compute ∆ij

M = {1 . . .m . . .M |M < d2D−ij}
for m ∈M do

if hexp[r(δxm), r(δym)] is empty then
hexp[r(δxm), r(δym)] = δzm

end
end

end
end
h← hexp

end

1 import numpy as np
2 import networkx as nx
3

4 def expand_with_graph(hints, imgL, radius=8, tau
=0.9):

5 """
6 Function to expand sparse matrix of hints with

Random Geometric Graph.
7 Input:
8 hints: sparse matrix of hints, hints are

disparity values > 0, otherwise matrix values
are 0.

9 imgL: left stereo image, to which disp is
aligned.

10 radius: maximum R used to search neighbouring
hints.

11 tau: similarity between pixel color.
12 Ourput:
13 exp_hints: densified input hints
14 """
15

16 x_hints, y_hints = hints.shape
17 G = nx.Graph()
18 exp_hints = hints.copy()
19 positions = np.transpose(np.nonzero(hints))
20 if len(positions) < 1:
21 return exp_hints
22 for i in range(len(positions)):
23 G.add_node(i)
24 G.nodes[i][’pos’]=[positions[i][0],

positions[i][1], hints[positions[i][0],
positions[i][1]]]

25 G.nodes[i][’d_pos’]=[positions[i][0],
positions[i][1]]

26 G.nodes[i][’disp’]=hints[positions[i][0],
positions[i][1]]

27

28 nodes = G.nodes()
29 pos = nx.get_node_attributes(G, ’pos’)
30 d_pos = nx.get_node_attributes(G, ’d_pos’)
31

32 RGG = nx.random_geometric_graph(nodes, dim=3,
radius=radius, pos=pos)

33 if RGG.number_of_edges() > 0:
34 edges = sorted(RGG.edges(), key=lambda t:

np.sqrt((pos[t[0]][0] - pos[t[1]][0]) ** 2 +
(pos[t[0]][1] - pos[t[1]][1]) ** 2))

35 nodes = list(RGG.nodes(data=True))
36

37 for node_1, node_2 in edges:
38 dist = np.sqrt((pos[node_1][0] - pos[

node_2][0]) ** 2 + (pos[node_1][1] - pos[
node_2][1]) ** 2)

39 color_dist = np.dot(imgL[:,pos[node_1
][0],pos[node_1][1]], imgL[:,pos[node_2][0],
pos[node_2][1]])/(np.linalg.norm((imgL[:,pos[
node_1][0],pos[node_1][1])*np.linalg.norm()(
imgL[:,pos[node_2][0],pos[node_2][1])

40 ceil_dist = np.ceil(dist).astype(’int
’)

41 if dist <= 1.42 or color_dist <
threshold: # approximate sqrt(2)

42 continue
43 else:
44 space = np.linspace(0, ceil_dist,

ceil_dist+1)
45 values = np.interp(space, [0,

dist], [pos[node_1][2], pos[node_2][2]])
46

47 slope = (pos[node_1][1] - pos[
node_2][1]) / (pos[node_1][0] - pos[node_2
][0] + 1e-8) #1e-8 added for numerical
stability (in case of vertical line).

48 rad_slope = np.arctan(slope)
49 dx = np.cos(rad_slope)
50 dy = np.sin(rad_slope)
51 for interval, val in zip(space,

values):
52 x = (pos[node_1][0] + np.rint

(interval * dx)).astype(’int’)

53 y = (pos[node_1][1] + np.rint
(interval * dy)).astype(’int’)

54 if x < x_hints and y <
y_hints and exp_hints[x][y] == 0:

55 exp_hints[x][y] = val
56 return exp_hints

Listing 2: Code for 3D G exp.

E. Lin 3D exp & 3D G exp Comparison
The Lin 3D exp expansion is performed in two steps, un-

like 3D G exp. The linear expansion is devised to connect
with a slanted line points only on vertical or horizontal di-
rections. Moreover, the points must be on the same vertical
or horizontal line inside a small patch of the image. The
chance of densifying sparse points with this method is lower
compared to 3D G exp. One could imagine that in 3D G exp
hints are connected with slanted lines if they are close in
the 3D space, thus densification is a one-pass process. On
the other hand, Lin 3D exp, simply connects close points in
based on their 2D location, for this reason two passes are
performed (one vertical and one horizontal) to densify the
hints.

F. Comparison with Scaffolding
In addition to the results presented in the PSMNet abla-

tion study Table 3 we compare with Scaffolding [40] in Ta-
ble A1. In [40] they proposed an expansion based on convex
hulls interpolation. Although, in our case it did not produce
any improvement. A possible explanation is that our VIO
guidance is too sparse and the expanded hints harm perfor-
mance.

G. Qualitative Results
Additional qualitative results are presented in Fig. A2 for

ETH3D data set and in Fig. A3 for TARTAN data set. From
the sparse hints H visualizations, it is easy to grasp how
sparse the hints are, in particular for TARTAN. This is even
more evident from the densified hints H3DGexp where some
areas of ETH3D become dense, while it is never the case
for TARTAN. Overall, the hints remove areas with large er-
rors, that we believe may be caused by domain-shift, and
also sharpen the details of some predictions. We provide
a 3D point cloud visualization of Fig. 1 in image Fig. A1,
note how the artifacts are greatly reduced with our proposed
guidance and the prediction range does not explode remain-
ing similar to GT.

MODEL
ETH3D TARTANAIR

MAE >2 >3 >4 >5 MAE >2 >3 >4 >5

PSMNet [6] 5.25 16.99 7.62 5.82 5.10 5.51 21.30 14.09 11.34 9.81
PSMNet [6] Vgd-test 5.25 16.78 7.65 5.80 5.10 5.51 21.29 14.09 11.30 9.80
Vgd 1.54 8.59 5.47 4.17 3.41 5.53 21.03 16.62 14.14 12.45
Vgd + Scaffolding [40] 1.10 9.44 5.50 3.85 2.94 2.98 18.23 13.68 11.23 9.64
Vgd + Lin 3D exp 1.19 8.8 5.16 3.63 2.77 2.74 17.86 13.29 10.81 9.24
Vgd + 3D G exp 1.04 7.91 4.41 3.01 2.27 2.54 17.00 12.72 10.48 9.04

Table A1: Ablation study of our proposed methods on PSMNet [6]. Vgd is a sparse visual hints guided model, 3D G exp is
the 3D graph expansion (Sec. 3.2) and Lin 3D exp the linear 3D expansion (Sec. 3.1)

GT

Vanilla

3DGexp

Figure A1: 3D point cloud visualization of Fig. 1, our method greatly reduces artifacts due to out-of-domain data. The
numbers represent disparity values, in the case of vanilla model the disparity range is 3× higher than with guidance 3DGexp
or GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

Figure A2: Qualitative results of PSMNet on ETH3D data set. From left to right: RGB image, H sparse hints, disp
predicted disparity guided with sparse hints, H3DGexp hints expanded with our 3D graph, disp3DGexp predicted disparity
guided with expanded hints, GT disparity ground truth

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

RGB H disp H3DGexp disp3DGexp GT

Figure A3: Qualitative results of DeepPruner on TARTAN data set. From left to right: RGB image, H sparse hints, disp
predicted disparity guided with sparse hints, H3DGexp hints expanded with our 3D graph, disp3DGexp predicted disparity
guided with expanded hints, GT disparity ground truth

