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Abstract

In recent years, many automobiles have been equipped
with cameras, which have accumulated an enormous
amount of video footage of driving scenes. Autonomous
driving demands the highest level of safety, for which even
unimaginably rare driving scenes have to be collected in
training data to improve the recognition accuracy for spe-
cific scenes. However, it is prohibitively costly to find very
few specific scenes from an enormous amount of videos. In
this article, we show that proper video-to-video distances
can be defined by focusing on ego-vehicle actions. It is well
known that existing methods based on supervised learn-
ing cannot handle videos that do not fall into predefined
classes, though they work well in defining video-to-video
distances in the embedding space between labeled videos.
To tackle this problem, we propose a method based on
semi-supervised contrastive learning. We consider two re-
lated but distinct contrastive learning: standard graph con-
trastive learning and our proposed SOIA-based contrastive
learning. We observe that the latter approach can provide
more sensible video-to-video distances between unlabeled
videos. Next, the effectiveness of our method is quanti-
fied by evaluating the classification performance of the ego-
vehicle action recognition using HDD dataset, which shows
that our method including unlabeled data in training signif-
icantly outperforms the existing methods using only labeled
data in training.

1. Introduction
Autonomous driving technology has received an enor-

mous amount of attention in recent years. For autonomous
driving to be realized, various challenging problems in com-
puter vision have to be solved [2]. Many of the recent stud-
ies are based on deep learning models, which require a huge
number of human annotated data for training. Since au-
tonomous driving requires the highest level of safety, it is
necessary to collect a sufficient number of labeled data even
for situations in very rare occasions. To collect video data
for such rare scenes out of an enormous number of ordinary
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Figure 1. The goal of the proposed method is to set sensible dis-
tances in the embedding space between input driving videos. La-
beled videos with the same label are embedded closer together
while those with different labels are embedded farther apart. On
the other hand, how to optimize the distances between unlabeled
videos is not trivial. To address this problem, we use semi-
supervised contrastive learning techniques in this article. As il-
lustrated above, the proposed method can set sensible distances
between all of both labeled and unlabeled videos.

scenes can be another challenging problem to be solved.
In this article, we focus on ego-vehicle action recognition
which is a task to predict a scene-level label with respect
to an action of the ego-vehicle from a video taken by the
front camera of the ego-vehicle as a single input. To extract
relevant scenes that occur in rare occasions, human annota-
tors are required to go through a large number of irrelevant
scenes, which can be a prohibitive cost. If we are able to de-
fine a sufficiently meaningful distance between all obtained
scenes including unlabeled ones, it would enable us to find
relevant rare scenes systematically and even automatically
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(Fig. 1).
To set proper distances between unlabeled videos, we

adapt a methodology of contrastive learning (CL) [13, 9].
The CL is widely used for representation learning in vari-
ous areas and enables us to obtain meaningful representa-
tions from unlabeled data. In the current setting, we can
readily obtain a large number of videos with scene-level
labels that can be occurred frequently in ordinary driving
scenes, such as left turns, U-turns, lane changes, and so on.
Therefore, it is more desirable to extend the standard CL
defined in an unsupervised setting to in a semi-supervised
setting in order to set distances between all of both types
of videos. Recently, Khosla et al. [17] proposed supervised
CL, which extends the standard CL to in a fully-supervised
setting. In this article, we further extend this framework of
CL to the current semi-supervised context. Hence the semi-
supervised CL (SSCL).

A simple approach to extract relevant features from
video data is to feed them into a convolutional neural net-
work (CNN) to learn scene-level labels. This approach
is called the object-agnostic method [43]. However, de-
spite that this approach takes advantage of all the informa-
tion contained in the original videos, it does not use the
ground-truth annotations for object instances. As a result,
according to [43], the object-centric method, which uses
both object instances and end-to-end learning, outperforms
the object-agnostic method in the same settings. Based on
this understanding, we take the object-centric approach in
the method proposed in this article. More specifically, in-
put video data are transformed into graph structures by con-
structing spatio-temporal graphs (ST-graphs) [45]. Nodes in
the ST-graph represent objects such as cars and pedestrians,
and edges represent spatial and temporal relationships be-
tween the objects. Then the ST-graphs are fed into a graph
convolutional network (GCN) [19, 35, 44] to obtain feature
vectors of videos.

CL can also be applied to data with graph structures,
which is called graph CL (GCL) [54, 47]. In the GCL, a
positive sample is generated from data augmentation such
as node dropping, edge perturbation and attribute masking
[54]. From the framework of GCL, it might be expected
that unlabeled ST-graphs with similar structures are mapped
close to each other in the embedded space. In practice, how-
ever, we observed that such naı̈ve distances between un-
labeled videos in the embedded space often deviate from
the ones that are understandable in an ordinary sense. To
address this problem, we propose a Simple algorithm for
Object Instance Association (SOIA), which is inspired by
Simple Online and Realtime Tracking (SORT), proposed in
[5]. It provides distances between videos by associating the
detected object instances between different driving videos
and calculating IoU-based distances. The distances deter-
mined by SOIA (SOIA distances) can be applied to the CL,

where a positive sample is determined as the closest sample
to an anchor sample in a batch, while negative samples are
the remainder. We observed that the SSCL with the SOIA
distances can provide more sensible distances. We call this
approach SOIA-based CL.

It is difficult to quantitatively evaluate the quality of
the obtained distances between all of videos including la-
beled and unlabeled videos. On the other hand, only la-
beled videos can be evaluated quantitatively. Therefore,
we consider two kinds of evaluation methods. For unla-
beled videos, the quality of the distances is evaluated by
showing many examples of video pairs of the query and its
closest videos in the embedding space. For labeled videos,
we evaluate the classification performance in terms of the
ego-vehicle action recognition. In the evaluation on the la-
beled videos, the proposed method in this article achieves
the state-of-the-art performance compared to existing meth-
ods trained in a fully-supervised setting. Our experiments
show that the performance of the proposed method is sig-
nificantly improved by using the unlabeled videos as well
for training.

Our contribution is summarised as follows. (1) We pro-
pose a framework to provide sensible distances between
driving videos even when they are unlabeled. To this end,
we propose SOIA to determine distances between unlabeled
videos and use the distances following the SSCL manner.
(2) Our method proposed in this article achieves the state-
of-the-art performance in the ego-vehicle action recogni-
tion. The performance is significantly improved by using
unlabeled as well as labeled videos combined with SSCL
techniques.

2. Related Works

2.1. Ego-Vehicle Action Recognition

A number of methods have been proposed for recogniz-
ing ego-vehicle actions, including those that use sensor sig-
nals or video images, and both of them. The Hidden Markov
model (HMM) is a common approach that uses sensor sig-
nals [32, 20, 27, 15]. A hidden state corresponds to a scene-
level label, and they predict the transition of the hidden
states using the input signals. Another common approach is
to use recurrent neural networks [51, 36, 52]. They extract
image features by using convolutional layers, and temporal
relationships with neighboring frames are embedded in the
features by using long short-time memory. Promising meth-
ods that are recently proposed include spatio-temporal (ST)
graph construction from input videos. ST-graph construc-
tion is used for a variety of recognition tasks, such as human
actions [53] and group activities [46], not limited to ego-
vehicle actions. After constructing ST-graphs, their spectral
features are used to train classifiers [7, 8]. Graph neural net-
works are also widely used in extracting the deeper features



[14, 24, 28].

2.2. Semi-Supervised Contrastive Learning (SSCL)

The objective of semi-supervised learning (SSL) is to
utilize readily available unlabeled data for helping classi-
fiers improve performance and reducing reliance on labeled
data. It has achieved remarkable results in computer vi-
sion by introducing various techniques, including entropy
minimization [11, 23], Mean Teacher [41, 50], MixMatch
[4, 3, 40], consistency regularization [1, 38, 22, 49], and
label propagation [16]. However, these methods basically
assume that each of unlabeled data has an unobserved la-
bel that belongs to predefined classes. Therefore, their per-
formance is significantly degraded when the unlabeled data
contains Out-of-Distribution (OoD) data [30]. To tackle this
problem, recent studies introduce OoD filters that classify
OoD and in-distribution data, using predictive uncertainty
[31], empirical risk minimization [12], and distance from
class-wise prototypes [34]. The proposed method in this ar-
ticle takes the setting in which unlabeled data contains only
OoD data.

Contrastive learning (CL) [13, 9] has attracted much at-
tention due to its outstanding abilities for representation
learning in computer vision. The success of CL stems
from an instance discrimination pretext task [48], where
each instance is attracted to its augmentation and other in-
stances are drawn away from it in the embedding space. Re-
cently, Khosla et al. [17] proposed supervised CL, which
is a framework to apply CL to a fully-supervised setting.
The supervised CL considers two types of positive sam-
ples for an anchor sample: an augmented view of the an-
chor sample and samples with the same label as that of
the anchor sample in a batch. Cui et al. [10] solved its
difficulty of imbalance learning by introducing class-wise
learnable prototypes. Recently, CL has also been applied to
semi-supervised setting [25, 34, 56]. They generate pseudo-
labels for unlabeled data so that they can be handled by the
usual CL. Contrasting to this line of works, the proposed
method here is applied to the semi-supervised setting by ex-
tending the ordinary supervised CL [10].

3. Method
The overview of our approach is illustrated in Fig. 2.

First, input driving videos are transformed into ST-graphs
by using bounding boxes and semantic labels of detected
objects, which is described in Sec. 3.1. Second, the ST-
graphs are fed into a GCN. This architecture is described in
Appendix A. Third, the GCN is trained through SSCL. This
process is described in Sec. 3.2.

3.1. Spatio-Temporal (ST) graph construction

In this subsection, we describe how to construct an ST-
graph Gn = (Vn, En) from a video n, where Vn denotes a

set of nodes corresponding to objects detected in each frame
of the video n, and En denotes a set of edges corresponding
to spatial or temporal weights between the objects. The ob-
jects in Vn can be acquired from the video n by using any
object tracking methods. Note that we use two terms, “ob-
ject” and “object instance”, differently. An “object” stands
for an individual object in each image, while an “object in-
stance” corresponds to a set of objects with the same ID in a
series of frames of a video. We denote In as a set of object
instances in the video n.
Node Attributes. To feed the initial graph to a GCN sys-
tem, we have to assign a suitable set of node attributes. We
set three types of node attributes: (1) semantic labels, (2)
geometric features of bounding boxes, and (3) interaction
with lane lines. A semantic label si ∈ R8 is a one-hot
vector for each bounding box i. According to [55], we
include eight object classes: pedestrian, rider, car, truck,
bus, train, motorcycle and bicycle. A geometric feature
gi is defined as gi =

(
ai

W , bi
H , wi

W , hi

H , wihi√
WH

)
,∀i ∈ Vn,

where (ai, bi), wi and hi denotes the centroid coordinate,
the width and height of bounding box i, respectively. W
and H denote the overall width and height of the input
video clip. Finally, information of lane lines on the road
is also essential to recognize ego-vehicle actions. To incor-
porate it into the model, we introduce the interaction be-
tween objects and lane lines. More specifically, we con-
sider the interaction with the five points of bounding box
i, ai1, a

i
2, a

i
3, a

i
4, a

i
5 (the four corners and the center), and

all pixels corresponding to lane lines in an image. In the
following, superscript i is omitted for readability. The in-
teraction between ak, ∀k ∈ {1, . . . , 5} and lane line pix-
els is defined as fak

=
∑

p∈M
w

ak
p v

ak
p

∥vak
p ∥2

,∀k ∈ {1, . . . , 5},

where wak
p = e−

(dak
p )

2

2σ2 . M denotes a set of pixels corre-
sponding to lane lines in an image. vak

p ∈ R2 is 2D-vector
from ak to p, and dak

p indicates the Euclidean distance be-
tween the two points ak and p. Introducing weight wak

p

induces that pixels closer to the bounding box are more
strongly affected. As a result, for bounding box i, lane
line features f i ∈ R10 are obtained by concatenating as
f i = [fa1

,fa2
,fa3

,fa4
,fa5

].
Edge Weights. En contains two types of edges: spatial
and temporal edges. The spatial edges represent spatial sim-
ilarity between bounding boxes within a frame, and the tem-
poral edges represent temporal relationships between adja-
cent frames. Edge weight eij , ∀(i, j) ∈ En is defined as
follows:

eij =

 e−
d2ij

2σ2 (if eij is a spatial edge)
1 (if eij is a temporal edge)
0 (otherwise)

(1)

where dij denotes the Euclidean distance between the cen-
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Figure 2. Overview of the proposed method. First, object instances in input videos are detected by any object detection and tracking
methods. Then ST-graphs are constructed from the detected object instances. These ST-graphs are input to a GCN, and feature vectors for
each ST-graph are obtained. Finally, the GCN is optimized using the loss function of SSCL. This figure illustrates SOIA-based CL. The
sample closest to an anchor sample in a batch in terms of the SOIA distance is regarded as a positive sample, while samples, which are
neither anchor nor positive, are negative. In addition, only for labeled samples, anchor sample is optimized to be close to the corresponding
learnable prototype vector and be far away from the other prototype vectors (see Sec. 3.2 for more details).

troids of bounding box i, j, and σ =
√
H2 +W 2/4. eij

denotes a spatial edge if two bounding boxes i and j are in
the same frame. A temporal edge exists only if i and j cor-
respond to the same object instance between two adjacent
frames. As a result, the nodes are densely connected within
a frame, while the entire ST-graph is a sparse graph.

3.2. GCN Training

GCN training in the semi-supervised setting uses both
labeled ST-graphs Dl = {Gn, yn}Nl

n=1 and unlabeled ST-
graphs Du = {Gn}Nl+Nu

n=Nl+1, where yn denotes a scene-
level label of video n, and Nl and Nu denote the num-
ber of labeled and unlabeled ST-graphs, respectively (N =
Nl + Nu). ST-graph n is obtained from video n, as ex-
plained in Sec. 3.1.

For the GCN training, we consider two types of ap-
proaches: standard graph contrastive learning (GCL) and
SOIA-based CL (SCL). The difference between the two ap-
proaches lies in how the positive and negative samples are
generated. The following Sec. 3.2.1 and 3.2.2 describe how
to generate the positive and negative samples in the two ap-
proaches, respectively. And then, Sec. 3.2.3 describes the
detail of SSCL and defines the loss function.

3.2.1 Graph Contrastive Learning (GCL)

GCL deals with data with graph structures. To generate a
positive sample, data augmentation considering the graph
structures is applied to the anchor sample. Following [54],
we adopt three data augmentations: node dropping, edge
perturbation and attribute masking. As in a normal CL,

samples other than the anchor sample in a batch are used
as negative samples.

3.2.2 SOIA-based Contrastive Learning (SCL)

The goal of the SOIA is to associate object instances across
difference videos. After the association, IoU-based dis-
tances can be measured between the associated object in-
stances. As a result, distances between videos can be de-
fined based on the IoU-based distances. In SOIA-based CL,
a positive sample is found as the closest sample in a batch
to the anchor sample in terms of the SOIA distance, and
negative samples are samples other than the positive and
anchor samples in a batch. In the following, the detail of
the SOIA and how to select positive and negative samples
are explained.
Simple algorithm for Object Instance Association
(SOIA). The SOIA is inspired from SORT [5], which is
a popular algorithm for data association in object tracking.
The SORT associates objects across different two frames to
detect an object instance, while the SOIA associates object
instances across different two videos to define a distance
between the two videos.

We first measure similarities between object instances
across different ST-graphs. Snm ∈ R|In|×|Im| is a similar-
ity matrix that indicates object instance similarities across
ST-graphs n and m. In other words, its (u, v)th element
snmuv , ∀u ∈ In, ∀v ∈ Im, indicates the similarity be-
tween object instances u and v. The similarity snmuv is de-
termined by mean intersection over union (mIoU) between
bounding boxes of objects in Nnu and Nmv . Here, Nnu



denotes a set of objects corresponding to an object instance
u in ST-graph n. Hence, snmuv = 1

T

∑T
t=1 IoU(ut, vt),

where T denotes the number of frames, and ut and vt de-
note bounding boxes at frame t of object instances u and v,
respectively. IoU(ut, vt) returns an IoU value from ut and
vt if both are detected at frame t and 0 otherwise.

From the similarity matrix Snm, which contains similar-
ities among all combinations of object instances between
ST-graphs n and m, we find the best association Mnm that
maximizes the total similarities. This problem is catego-
rized in assignment problems. We solve it by the Hungarian
algorithm [21] and obtain Mnm and Onm, where Onm de-
notes a set of object instances that no associated partners
can be found.

Finally, the SOIA distance, which is a distance between
ST-graphs n and m, is defined as follows:

dnm =
∑

(u,v)∈Mnm

1

T

T∑
t=1

W(ut, vt) +
∑

u∈Onm

1

T

T∑
t=1

mut ,

(2)
where W(ut, vt) = (1− IoU(ut, vt))mutvt . Here, mut

denotes the area of bounding box ut, and mutvt = mut

if mut > mvt and mutvt = mvt otherwise. The first term
on the right side in Eq. 2 indicates the distance based on
mIoU weighted by the bounding box area. The weight is
necessary to prevent objects with small bounding box areas
from having a large effect on the final distance. The second
term largely affects the distance when large objects remain
without an associated partner.
Selection of Positive and Negative Samples. SOIA en-
ables us to obtain video-to-video distance dnm, ∀n,m ∈ B,
where B denotes a set of indices of videos in a batch. In-
stead of augmenting the anchor sample in the usual CL,
we select a positive sample as the closest sample to the
anchor in a batch in terms of the SOIA distance. Here,
a batch often contains multiple similar scenes to the an-
chor, which may interfere the results of the representa-
tion learning. To deal with this problem, we set a mar-
gin between the positive sample and the negative samples
to be selected. More specifically, for anchor sample n∗,
we choose a candidate set of positive and negative samples:
Dn∗ = {dnm|n = n∗,m ∈ B,m ̸= n∗}. This set, Dn∗ , is
sorted in ascending order and the smallest is selected as the
positive sample. Then, a margin of α|B| is provided and the
remaining |B| − 1 − α|B| samples are selected as negative
samples.

3.2.3 Semi-Supervised Contrastive Learning (SSCL)

In the standard self-supervised CL, positive and negative
samples are determined taking no notice of their labels, as
explained in Sec. 3.2.1 and 3.2.2. In addition to these sam-
ples, positive and negative samples can be defined based on

the labels. More specifically, samples with the same label as
that of the anchor sample are selected as positive samples,
while those with different labels are selected as negative.
CL using these two types of positive and negative samples is
called the supervised CL [17]. Recently, Cui et al. [10] pro-
posed parametric contrastive learning as an extension of the
original supervised CL. The original supervised CL suffers
from the class imbalance problem. For a batch in relatively
small size, the scarcity of the images of the same label may
cause poor optimization. This problem is more serious in
the current semi-supervised setting because the batch also
contains unlabeled data. The parametric CL addresses this
problem by introducing learnable class-wise prototypes. As
described in detail below, the proposed method in this ar-
ticle adopts the parametric CL with a suitable extension to
the semi-supervised setting.
Loss Function. Let us denote a set of negative samples
corresponding to an anchor sample n as Nn and a positive
sample as pn. The positive sample pn is either generated by
data augmentation (Sec. 3.2.1) or found as the closest sam-
ple in a batch using SOIA (Sec. 3.2.2). The loss function is
defined as follows:

L =

N∑
n=1

Ln = −
N∑

n=1

∑
z+∈Pn

log

(
ez+·zn∑

zk∈An
ezk·zn

)
,

(3)
where

Pn =

{
{zpn

, cσn
} (if n is a labeled data),

{zpn} (if n is an unlabeled data),
(4)

An = {zk|k ∈ Nn} ∪ {zpn
} ∪ C. (5)

Here, C = {c1, . . . , cC} denotes a set of learnable class-
wise prototypes, and C denotes the number of scene-level
classes. zn and σn denote a feature vector output from the
GCN and a class label of n, respectively. If n is an unlabeled
video, the feature vector zn is optimized to be closer to only
the corresponding positive sample feature vector zpn

and
away from the corresponding negative samples and all pro-
totypes, which indicates that we assume that unlabeled data
is not classified into any of the predefined classes. In our
experiments, all videos that are not assigned to any of the
predefined classes are treated as unlabeled videos.

4. Evaluation
4.1. Evaluation Setup

Datasets. The performance of the proposed method was
evaluated using Honda Research Institute Driving Dataset
(HDD) [36]. The HDD includes 104 hours egocentric
videos of real human driving in the San Francisco Bay Area,
and frame-level annotations of vehicle actions. The videos
have a resolution of 1280 × 720 at 30fps. Following prior



works [36, 24], we used labels of 11 Goal-oriented actions
(e.g., left turn, right lane change, merge, etc.) and 6 Causes
(e.g., congestion, sign, red light, etc.). The 6 Causes in-
clude the five different stopping actions depending on its
cause and one deviating action. In addition, following a
prior work [36], we split 137 sessions of the HDD into 100
sessions for training and 37 sessions for testing. Note that
in order to keep the experimental conditions the same as in
the prior work [36], the model is trained with 17 labels (11
Goal-oriented actions + 6 Causes) only when evaluating the
6 Causes.
Implementation Details. As the object detector and
tracker, we adopted Faster-RCNN [39] and QDTrack [33],
respectively. The trained model with the BDD100k dataset
[55] is distributed by the authors of [33], which we used
to construct ST-graphs. The object tracking was performed
on the HDD of 30fps, and then the tracking results were
downsampled to 2.5fps. To construct ST-graphs for unla-
beled video clips, the original video was clipped every 4
seconds at equally interval. The interval was determined
to adequately cover individual actions to be detected. The
selected optimizer was Adam [18] with default parameters.
The initial learning rate was 0.01, and the cosine anneal-
ing learning rate scheduler was employed. All experiments
were performed on a workstation equipped with Tesla V100
GPUs.
Evaluation Metrics. We used mean average precision
(mAP) to evaluate the performance of the proposed method.
The AP is the area under the precision-recall curve, which
is used as standard in the prior works.
Baselines. The proposed method is compared with exist-
ing methods of baselines. These methods are not limited to
ego-vehicle action recognition, but include general action
recognition methods such as C3D [42] and I3D [6]. Follow-
ing [36], we classify the existing methods into in online and
offline settings. In the online setting, they infer an action
label of the ego-vehicle each time a new frame is entered.
In the offline setting, on the other hand, an action label is in-
ferred for each short video clip. The proposed method falls
into the latter category.

4.2. Evaluation Results for Labeled Videos

Table 1 and 2 present the experimental results obtained
by applying the proposed method to the HDD. The tables
show the results of the proposed method based on two learn-
ing methods: SOIA-based CL (SCL) and graph contrastive
learning (GCL). Table 1 shows the results of the 11 Goal-
oriented actions. As can be seen, the performances of the
two proposed methods overcome those of the existing meth-
ods. In particular, the proposed methods achieve outstand-
ing performance for individual actions that are character-
ized primarily by relationships among object instances, e.g.,
intersection passing, L/R turn, U-turn. On the other hand,

individual actions such as L/R lane change, L/R lane branch
and merge are strongly affected by other environmental con-
ditions such as lane lines. Even for these actions, the per-
formances of the proposed methods are competitive with
those of the existing methods. The railroad passing is the
most difficult action to predict because information about
the background of the scene is more important than the ac-
tion of the object instances.

Table 2 presents the results of the 6 Causes. As can be
seen, the proposed method significantly improves the per-
formance compared to the existing methods for the most
labels in the 6 Causes. In fact, scenes with these labels are
strongly affected by relationships between among object in-
stances. For example, in the “Stop for Congestion” scene, a
car is stopped in front of the ego-vehicle, and in the “Stop
for Red Light” scene, the ego-vehicle is at an intersection
and there are no cars in from of the ego-vehicle. These re-
sults might imply that the semi-supervised learning using
relationships among object instances is more effective and
leads to the performance improvement.

Furthermore, there are also distinctive differences be-
tween SCL and GCL. Since SCL uses the SOIA distances,
which are strictly defined from relationships between object
instances, the performance improvement is more significant
for actions that better fit the assumption (e.g., U-turn and
Stop for Crossing Vehicle). On the other hand, for the other
individual actions that are strongly affected by other en-
vironmental conditions (e.g., railroad passing and merge),
the benefits of the SOIA distances are limited, while GCL,
which does not use such strict distances, outperforms SCL.

4.2.1 Difference between learning methods

We compare the results of three learning methods: fully-
supervised, semi-supervised and unsupervised learning. In
the three settings, we used the same GCN architecture. In
the fully-supervised setting, we trained the model using
only labeled data. When no unlabeled data is used, the loss
function in Eq. 3 reduces to the usual cross entropy loss.
In the unsupervised setting, we trained the model without
using labeled data and used the same loss function in Eq. 3.

Figure 3 shows the results of the performance compar-
ison between the three settings when varying the number
of labeled samples. The used labeled data are labels of 11
Goal-oriented actions. As can be seen, the proposed method
in the semi-supervised setting outperforms that in the su-
pervised setting. Further, although their performances nat-
urally degrade as the number of labeled samples decreases,
the performance in the semi-supervised setting never be-
comes lower than that in the unsupervised setting. On the
other hand, the performance in the supervised setting is
lower than that in the unsupervised setting when the num-
ber of labeled samples is small in Fig. 3. These are be-



Individual actions

Methods Online Train intersection L lane R lane L lane R lane crosswalk railroad Overall
/Offline Data passing L turn R turn change change branch branch passing passing merge u-turn mAP

CNN [36]

Online

L 53.4 47.3 39.4 23.8 17.9 25.2 2.9 4.8 1.6 4.3 7.2 20.7
CNN-LSTM [36] L 65.7 57.7 54.4 27.8 26.1 25.7 1.7 16.0 2.5 4.8 13.6 26.9

ED [52] L 63.1 54.2 55.1 28.3 35.9 27.6 8.5 7.1 0.3 4.2 14.6 27.2
TRN [52] L 63.5 57.0 57.3 28.4 37.8 31.8 10.5 11.0 0.5 6.3 16.7 33.7

DEPSEG-LSTM [29] L 70.9 63.4 63.6 48.0 40.9 39.7 4.4 16.1 0.5 6.3 16.7 33.7
C3D [42] L 72.8 64.8 71.7 53.4 44.7 52.2 3.1 14.6 2.9 10.6 15.8 37.0
C3D [42]

Offline

L 82.4 77.4 80.7 67.9 56.9 59.7 5.2 17.4 3.9 20.1 29.5 45.5
I3D [6] L 85.6 79.1 78.9 74.0 62.4 59.0 14.3 29.8 0.1 20.1 41.4 49.5

GCN [24] L 85.5 77.9 79.1 76.0 62.0 64.0 19.8 29.6 1.0 27.7 39.9 51.1
Ours (SCL) L+U 98.3 94.1 95.8 62.6 67.3 53.4 28.4 78.0 1.2 22.2 60.0 60.1
Ours (GCL) L+U 98.4 93.9 95.5 64.2 69.0 55.8 34.5 73.4 24.4 42.4 30.0 62.0

Table 1. Comparison of classification performance between the proposed and existing methods for labels of 11 Goal-oriented actions. The
column for Train Data shows datasets used for training (L=labeled data, U=unlabeled data).

Individual actions

Methods Train Stop for Stop for Stop for Stop for Deviate for Stop for Overall
Data Congestion Sign Red Light Crossing Vehicle Parked Car Crossing Pedestrian mAP

I3D [6] L 64.8 71.7 63.6 21.5 15.8 26.2 43.9
GCN [24] L 74.1 72.4 76.3 26.9 20.4 29.0 49.9

Ours (SCL) L+U 95.8 92.2 76.9 67.3 61.9 65.7 76.6
Ours (GCL) L+U 95.9 90.9 81.0 54.7 53.7 69.0 74.1

Table 2. Comparison of classification performance between the proposed and existing methods for labels of 6 Causes.
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Figure 3. Comparison of classification performance between the
different learning methods in the proposed method when varying
the number of labeled samples.

cause that as the number of labeled data decreases, the semi-
supervised setting reduces to the unsupervised setting while
the fully-supervised setting reduces to the setting of random
guess.

4.3. Evaluation Results for Unlabeled Videos

In this subsection, we qualitatively evaluate the video-to-
video distances learned by the proposed methods. We pro-
vide the comparison results between three learning meth-

ods: SCL, GCL and fully-supervised learning (FSL). Here,
because of the difficulty of quantitatively evaluating the
quality of the distances between unlabeled videos, we in-
stead present as many query-retrieval examples as possible
to provide a qualitative evaluation. Specifically, we chose a
query video from unlabeled videos in the validation set and
searched the nearest neighbor video of the query video in
the embedding space learned by each method. The nearest
neighbor video was found from all videos including both
labeled and unlabeled videos in the train set. The distances
were measured using cosine similarities between feature
vectors output from GCNs. For reasons of space limita-
tion, only one example can be presented here; the rest are
presented in Appendix C.

Figure 4 shows a query-retrieval example obtained from
the three proposed methods with different learning meth-
ods: SCL, GCL and FSL. These methods were trained with
labels of the 11 Goal-oriented actions. Five frames were ex-
tracted at equal intervals from an unlabeled 4-second video.
The five images in the top row are a query video, and those
in the second, third and forth rows are top-1 retrieved videos
obtained from the proposed methods with SCL, GCL and
FSL, respectively. In the query video, the ego-vehicle is
stopped at an intersection and a white car is crossing in front
of the ego-vehicle from left to right. In the video retrieved
by the proposed method with SCL (second row), we can
see that the ego-vehicle stopped at an intersection and a car
crossing in front of the ego-vehicle from left to right, which
is similar to the scene in the query video. In the video re-
trieved by the proposed method with GCL (third row), we
can also see that the ego-vehicle stopped at an intersection.



Figure 4. Five frames extracted at equal interval from query and retrieved videos. The top row shows a query video, and the second, third
and forth rows show top-1 retrieved videos obtained from the proposed methods with SCL, GCL and FSL, respectively.

However, the behaviors of the other cars are quite different
from those in the query video (e.g., cars are crossing from
right to left). Finally, in the video retrieved with using FSL,
the ego-vehicle is not at an intersection, and the video is
completely different from the query video. From the above,
it can be said that, at least in this example, the video-to-
video distance learned with SCL is the most sensible.

A similar tendency was observed in other retrieved re-
sults (see Appendix C for more samples). FSL results are
often far from scenes in the query videos. We believe this
is because FSL only considers predefined labeled videos.
In fact, GCL, which also considers unlabeled videos, could
provide more sensible distances than FSL. However, GCL
considers only distances based on graph structures, which
are not necessarily in accord with sensible distances be-
tween driving videos. On the other hand, SCL explicitly
considers distances based on movements of object instances
(SOIA distance). Therefore, they can provide more sensi-
ble distances. Note that the labeled data used for training in
this experiment consist of only the 11 Goal-oriented actions
and do not include labels related to the scene of the query
video, such as “Stop for Red Light” and “Stop for Crossing
Vehicle”.

5. Limitation
As mentioned in Sec. 3.2.3, we assume that the unla-

beled data are not classified into any of predefined classes.
This is required to be confirmed by human annotators. In

many cases, however, these unlabeled data are collected in
large quantities during the annotation process, because the
majority of the collected videos are irrelevant scenes to the
predefined classes.

6. Conclusions
We proposed a method that can set proper and sensible

distances between all of both labeled and unlabeled driving
videos. The proposed method is based on semi-supervised
contrastive learning (SSCL). In the SSCL, the GCN was
trained using both distances determined by the labels and
distances without the labels. These distances were used
to generate positive and negative samples in a batch. We
investigated two kinds of CL. In addition to the standard
GCL, we proposed SOIA-based CL. In the evaluation for
unlabeled videos, we observed that the distance learned by
SOIA-based CL was the most proper and sensible.

Furthermore, we quantitatively evaluate the proposed
method in terms of the classification accuracy in the ego-
vehicle action recognition. We presented the results of three
different evaluations in which the proposed method was
trained with each of SCL, GCL, and FSL. The results show
that the proposed method with SCL and GCL achieved the
state-of-the-art performance on HDD. In addition, the pro-
posed method with SCL and GCL outperforms that with
FSL. Therefore, we found that using unlabeled videos for
training is effective in improving the classification perfor-
mance of the ego-vehicle action recognition.
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[2] Claudine Badue, Rânik Guidolini, Raphael Vivacqua
Carneiro, Pedro Azevedo, Vinicius B. Cardoso, Avelino
Forechi, Luan Jesus, Rodrigo Berriel, Thiago M. Paixão, Fil-
ipe Mutz, Lucas de Paula Veronese, Thiago Oliveira-Santos,
and Alberto F. De Souza. Self-driving cars: A survey. Expert
Systems with Applications, 165:113816, 2021.

[3] David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex
Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel.
Remixmatch: Semi-supervised learning with distribution
alignment and augmentation anchoring. arXiv preprint
arXiv:1911.09785, 2019.

[4] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
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A. GCN architecture
The constructed ST-graphs Gn, ∀n ∈ {1, . . . , N}, where

N denotes the number of video clips, are fed into a GCN.
Following [26], our GCN model consists of three parts: an
encoder, propagation layers, and an aggregator.
Encoder. Node attributes si and gi are separately fed into
multilayer perceptrons (MLPs) first:

s′i = MLPs(si), ∀i ∈ Vn (6)
g′
i = MLPg(gi), ∀i ∈ Vn. (7)

Here s′i ∈ R32 and g′
i ∈ R32 are the same 32-dimensional.

si and gi can have different properties due to the one-hot
encoding of si. Therefore, it is useful to first map the node
attributes at the encoder, rather than feeding them directly
to the propagation layer. The encoded attributes are con-
catenated as x(0)

i = [g′
i, s

′
i].

Propagation Layers. In a propagation layer, the features
of each node are aggregated according to adjacencies de-
fined by the ST-graphs. Our GCN model adopts the local
extrema convolution (LEConv) [37], whose update formula
for the lth layer is defined as follows:

x
(l+1)
i = σ

x
(l)
i W

(l)
1 +

∑
j∈∂i

eij

(
x
(l)
i W

(l)
2 − x

(l)
j W

(l)
3

) ,

(8)
for ∀i ∈ Vn, where ∂i denotes a set of indices of adjacent
nodes of i, and W

(l)
1 , W (l)

2 and W
(l)
3 denote learnable pa-

rameters. σ(·) denotes the ReLU activate function.
Aggregator. As outputs of the propagation layers, we ob-
tain node representations x

(L)
i , ∀i ∈ Vn, where L denotes

the number of propagation layers (L = 3 in our setting).
The aggregator performs a pooling operation to output a
graph-level representation. In our GCN model, in order
to explicitly learn instance-level features, we introduce an
instance-level pooling. As a result, graph-level represen-
tation zn can be obtained as the output of the following
aggregator operation:

zn = MLP1

(∑
u∈In

MLP2

( ∑
i∈Nnu

MLP3(x
(L)
i )

))
,

(9)
∀n ∈ {1, . . . , N}, where Nnu denotes a set of nodes corre-
sponding to object instance u in ST-graph n, and In denotes
a set of object instances in graph n.

B. Ablation Studies
To provide a further understanding of the proposed

method, we perform two kinds of ablation studies. First, we
investigate the effect of removing each of the three types
of node attributes: semantic labels, geometric features of

bounding boxes, and interaction with lane lines on classi-
fication performance. Second, we examine how effective
on the classification performance by alleviating the signif-
icant imbalance between the number of labeled and unla-
beled videos.

B.1. Effect of node attributes.

Table 3 shows the results of ablation studies for node at-
tributes. These results correspond to the classification per-
formance of SCL for labels of 11 Goal-oriented actions.
The top row in table 3 shows the results with three kinds
of node attributes. The second, third and forth rows show
the results without using semantic labels, geometric features
of bounding boxes (bbox features) and interaction with lane
lines (lane line features), respectively.

Without using the semantic labels, the mAP values are
not significantly different with those of SCL with all kinds
of node attributes. This indicates that distinguishing be-
tween kinds of object instances has little impact on the clas-
sification performance of the goad-oriented actions. How-
ever, when recognizing other kinds of scenes including un-
labeled scenes, semantic labels in node attribute would be
possible to play an importance role. For example, Fig. 9
shows pedestrians crossing a crosswalk. To recognize this
scenes, it is important to distinguish pedestrians from vehi-
cles.

When the box features are not taken into account, the
mAP values largely drop. We consider that this is because
without the bounding box information, it cannot accurately
track moves of object instances. However, the performance
degradation is less than the case without lane line features.
We believe that this is because relative positions between
object instances, which are given from a ST-graph, can also
be used to track moves of object instances. As a result, the
performance degradation may have been reduced compared
to the case without lane line features.

Finally, when the lane line features were not included in
node attributes, the performance degradation was greatest
in the three cases. We consider the reason for this is that the
lane line features cannot be substituted for other features. In
fact, the AP values of individual actions significantly influ-
enced by lane lines (L/R lane change, L/R lane branch and
merge) significantly dropped when lane line features were
not used.

B.2. Varying weights in the loss function.

Since it is much easier to collect unlabeled videos than to
collect labeled videos, the number of unlabeled data is much
more than that of labeled data in many cases. If the focus
is solely on improving the classification performance, this
imbalance can have a negative impact on the performance.
A straightforward approach to alleviate the imbalance is to
introduce weights into the loss function. Therefore, in this



Individual actions

Methods intersection L lane R lane L lane R lane crosswalk railroad Overall
passing L turn R turn change change branch branch passing passing merge u-turn mAP

SCL 98.3 94.1 95.8 62.6 67.3 53.4 28.4 78.0 1.2 22.2 60.0 60.1
SCL (w/o semantic) 97.9 94.8 95.8 60.5 57.3 53.8 20.6 77.8 3.5 28.7 55.1 58.7

SCL (w/o bbox) 98.2 92.5 94.5 55.0 53.0 55.2 22.9 73.2 1.2 23.5 30.2 54.5
SCL (w/o lane) 95.8 92.8 93.5 50.3 45.6 25.2 13.0 58.1 1.2 10.9 52.0 48.9

Table 3. Comparison of classification performance of SCL when removing each of the three kinds of node attributes. The top row shows the
results with three kinds of node attributes. The second, third and forth rows show the results without using semantic labels (w/o semantic),
geometric features of bounding boxes (w/o bbox) and interaction with lane lines (w/o lane), respectively.
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Figure 5. Change in classification performance of the proposed
method with SCL when varying α.

section, we investigate how much the classification perfor-
mance is improved when reducing the weight of unlabeled
video. The loss function with explicitly introduced weights
is

L =

N∑
n=1

Ln = −
N∑

n=1

αn

∑
z+∈Pn

log

(
ez+·zn∑

zk∈An
ezk·zn

)
,

(10)
where

αn =

{
1 (if n is a labeled data),
α (if n is an unlabeled data).

(11)

Here, α controls the strength of the effect of unlabeled
videos. When α = 1, Eq. 10 is equivalent to Eq. 8 in
the main text.

Figure 5 shows overall mAP values for labels of 11 Goal-
oriented actions when α = 1, 0.5 and 0.25. As can be seen,
although the mAP values are highest at α = 0.5 in most
cases, the difference is slight. The smaller the number of la-
beled videos, the larger the difference between the number
of labeled and unlabeled videos. However, even the number

of labeled videos was very small, the effect of the introduc-
tion of weights was not able to be confirmed. Therefore, in
the other experiments in this paper, the value of α was fixed
at 1.

C. Query-Retrieval Examples of Unlabeled
Videos

In this Appendix, we present query-retrieval examples to
qualitatively evaluate video-to-video distances learned by
the proposed methods. As described in Sec. 4.3 of the main
text, we chose a query video from unlabeled videos in the
validation set and searched the nearest neighbor video on
the query video in the embedding space learned by each
method. The nearest neighbor video was found from all
videos including both labeled and unlabeled videos in the
train set. The distances were measured using cosine similar-
ities between feature vectors output from the GCN. In Figs
6-17, the remaining samples, which could not be included
in the main text due to space limitations, are presented.

In addition, we present average SOIA distances between
query videos and corresponding top-1 retrieved videos in
Table 4. As can been seen, retrieved videos by using SCL
have the smallest average SOIA distance to the correspond-
ing query videos.

Methods Average SOIA distances (×104)
SCL 8.68
GCL 9.83
FSL 11.69

Table 4. Average SOIA distance between query videos and corre-
sponding top-1 retrieved videos.



Figure 6. Five frames extracted at equal interval from query and retrieved videos. The top row shows a query video, and the second, third
and forth rows show top-1 retrieved videos obtained from the proposed methods with SCL, GCL and FSL, respectively. In the query video,
the ego-vehicle is on a busy road. The second row of video similarly shows a crowded driving scene. Note that the proposed methods
primarily focus on the relationship between object instances detected in video and do not consider environmental conditions such as road
conditions, surrounding buildings and nature.
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