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Figure 1: CutMix (left) randomly mixes samples, yielding label misallocation, while our ScoreMix (right) creates a coherent artificial
training pair (., ym ) by pasting a region of high semantic content from the source image, x s at a non-discriminative region of the target

image x, and obtains a convex combination of the labels.

Abstract

Progress in digital pathology is hindered by high-
resolution images and the prohibitive cost of exhaustive lo-
calized annotations. The commonly used paradigm to cat-
egorize pathology images is patch-based processing, which
often incorporates multiple instance learning (MIL) to ag-
gregate local patch-level representations yielding image-
level prediction. Nonetheless, diagnostically relevant re-
gions may only take a small fraction of the whole tissue,
and current MIL-based approaches often process images
uniformly, discarding the inter-patches interactions. To al-
leviate these issues, we propose ScoreNet, a new efficient
transformer that exploits a differentiable recommendation
stage to extract discriminative image regions and dedicate
computational resources accordingly. The proposed trans-
former leverages the local and global attention of a few dy-
namically recommended high-resolution regions at an ef-
ficient computational cost. We further introduce a novel
mixing data-augmentation, namely ScoreMix, by leverag-
ing the image’s semantic distribution to guide the data mix-

ing and produce coherent sample-label pairs. ScoreMix is
embarrassingly simple and mitigates the pitfalls of previous
augmentations, which assume a uniform semantic distribu-
tion and risk mislabeling the samples. Thorough experi-
ments and ablation studies on three breast cancer histology
datasets of Haematoxylin & Eosin (H&E) have validated
the superiority of our approach over prior arts, includ-
ing transformer-based models on tumour regions-of-interest
(TRols) classification. ScoreNet equipped with proposed
ScoreMix augmentation demonstrates better generaliza-
tion capabilities and achieves new state-of-the-art (SOTA)
results with only 50% of the data compared to other mixing
augmentation variants. Finally, ScoreNet yields high effi-
cacy and outperforms SOTA efficient transformers, namely
TransPath [[43] and SwinTransformer [24], with throughput
around 3X and 4x higher than the aforementioned archi-
tectures, respectively.



1. Introduction

Due to the increasing availability of digital slide scan-
ners enabling pathologists to capture high-resolution whole
slide images (WSI), computational pathology is becoming
a ripe ground for deep learning and recently witnessed a lot
of advances. Nonetheless, the diagnosis from H&E stained
WSIs remains challenging. The difficulty of the task is a
consequence of two inherent properties of histopathology
image datasets: i) the huge size for images and ii) the cost of
exhaustive localized annotations, making the usage of most
deep learning models computationally infeasible. Patch-
based processing approaches [37, 27, [17] have become a
de facto practice for high dimensional pathology images
that aggregate individual patch representation/classification
predictions by, e.g., a convolutional neural network (CNN)
for image-level prediction. Nonetheless, patch-based meth-
ods increase the requirement of patch-level labeling and
further regions of interest (Rol) detection as diagnostic-
related tissue sections might only take a small fraction
of the whole tissue, leading to considerable uninformative
patches. Prior CNN methods [18] [22] have adopted mul-
tiple instance learning (MIL) [26] to address the above is-
sues, which incorporates an attention-based aggregation op-
erator to identify tissue sub-regions of high diagnostic value
automatically. Nonetheless, these MIL methods embed all
the patches independently and discard the inter-patches cor-
relation or only incorporate it at a later stage.

Recently, self-supervised learning (SSL) methods [22}
21, 138, 9] aimed to construct semantically meaningful vi-
sual representations via pretext tasks for histopathological
images. Despite their notable success using CNN back-
bones in improving classification performances, CNN’s re-
ceptive field often restricts the learning of global context
features. In another line of research, to compensate for
the lack of diverse and large datasets, mixing augmenta-
tion techniques [42) 45| |46]] have been developed to fur-
ther enhance the performance of these models. While there
have been substantial performance gains on natural image
datasets, we argue that such data augmentations may not be
helpful for histopathological images, as they risk creating
locally ambiguous images or mislabelled samples. Further-
more, contrary to CNNs, vision transformer (ViT) models
[13L/41]] can capture long-range visual dependencies due to
their flexible receptive fields via self-attention mechanisms.
More recently, self-supervised ViTs method [43] 23] com-
bined the advantages of ViT and SSL to efficiently learn
visual representations from less curated pre-training data.
Despite their usefulness, there is relatively little research on
the impact of data augmentation design, efficiency and ro-
bustness of ViT for histopathological image classification.
For example, can we train an efficient transformer by se-
lecting only informative regions of high diagnostic value
(Rols) from high-resolution images? What data augmen-

tation strategies can improve the transformer’s representa-
tion learning for TRols classification? This paper addresses
these questions by uncovering insights about key aspects of
data augmentation and exploits the self-attention maps to
identify the most relevant regions for the end task and train
an efficient transformer.

Contributions. Our contributions are as follows:

1. We propose ScoreNet, a new efficient transformer-
based architecture for histopathological image clas-
sification. It combines a fine-grained local atten-
tion mechanism with a coarse-grained global atten-
tion module to extract cell- and tissue-level features.
Benefiting from a differentiable recommendation mod-
ule, the proposed architecture only processes the most
discriminative regions of the high-resolution image,
making it significantly more efficient than competitive
transformer architectures without compromising accu-
racy;

2. A novel mixing data-augmentation, namely ScoreMix
for histopathological images is presented. ScoreMix
works in synergy with our architecture, as they build
upon the same observation: the different regions of the
images are not equally relevant for a given task. Using
the learned self-attention w.r.t. the [CLS] token, we
determine the distribution of the semantic regions in
images during training to ensure sampling of informed
cutting and pasting locations (see Fig.[T);

3. We empirically show consistent improvements of
ScoreNet over SOTA methods for TRols classifica-
tion on the BRACS dataset while we demonstrate
ScoreNet’s generalization capability on the CAME-
LYON16 and BACH datasets. The interpretability of
ScoreNet behaviour is also investigated. Finally, we
demonstrate ScoreNet throughput improvements over
existing efficient transformers, making it an ideal can-
didate for applications on WSIs.

2. Related work

TRols Classification. Conventionally, deep convolutional
neural networks [37} 36, 27, |17, 44] process pathology
images in a patch-wise manner using a MIL formula-
tion [26] and aggregate patch-level features extracted by
CNNs. Nonetheless, current MIL methods discard the
inter-patches interaction or only integrate it at the very
end of the pipeline. Similarly, the computational resources
dedicated to a specific region are independent of its perti-
nence for the task. Current methods rely on attention-based
MIL techniques [18} 22} [19} 16 33]] to account for the non-
uniform relevance of patches. On the contrary, the integra-
tion of contextual cues remains almost untouched, as all the
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Figure 2: An overview of the proposed ScoreNet. The recommendation stage provides tissue-level features, and differentiably selects
the most discriminative high-resolution patches. The aggregation stage independently extracts cell-level features and embeds the patches
via a local fine-grained attention mechanism and endows them with contextual information with the global coarse-grained attention

mechanism.

aforementioned methods rely on a pipeline where the patch
embedding and patch contextualization tasks are discon-
nected w.r.t. the gradient flow. For example, [19] processes
representative patches extracted by an external tool [20].
Thus, their patch extraction is fixed and not data-driven as
ours. Alternatively, [39] resort to using a multiple field-
of-views/resolutions strategy to endow local patches with
contextual information. In another line of research, graph
neural network (GNN)-based methods [47, |31] have been
proposed to capture global contextual information. These
approaches build a graph model that operates on the cell-
level structure or combines the cell-level and tissue-level
context. However, graph generation can be cumbersome
and computationally intensive, prohibiting its use in real-
time applications. Recently, SSL methods [22} 21} 38]] have
demonstrated their capabilities to improve classification for
histopathological images. Most of these methods harness
pretext tasks, e.g., contrastive pre-training, to learn seman-
tically meaningful features. Nonetheless, the CNN back-
bone used in these approaches inevitably abandons learn-
ing of global context features. The transformer-based archi-
tectures [43| 23] can be an alternative solution for process-
ing images as a de-structured patch sequence and capturing
their global dependencies. More recently, hybrid-based vi-
sion transformer models [7,134}43]] have been used in digital
pathology, either based on MIL framework [34]] or SSL pre-
training [43] on unlabeled histopathological images. Never-
theless, these methods process the whole image uniformly
and do not allow dynamic extraction of the region of inter-
est.

Mixing Data-Augmentation Methods. Recently, mixing
data augmentations strategies [42} 45| 45] have been pro-
posed to enhance the generalization capabilities of deep net-
work classifiers. These improvements are further exacer-
bated when the augmentations model the interactions be-

tween the classes [45]. These methods create a new aug-
mented sample by cutting an image region from one im-
age and pasting it on another image, while a convex com-
bination of their labels gives the ground-truth label of the
new sample. Despite the strong performances of the exist-
ing methods, none of them is genuinely satisfying as they
either create samples that exhibit atypical local features as
in MixUp [46]] or produce potentially mislabeled samples
as in CutMix [45]. CutMix approach has been improved
by [6] via re-weighting the mixing factor w.r.t. the sum
of the attention map values in the randomly sampled im-
age region, which is still at risk of producing mislabelled
samples. In addition, recent CutMix based augmentation
methods [42} 40] bear additional disadvantages. For exam-
ple, Attentive CutMix [42] requires an auxiliary pre-trained
model to select the most salient patches from the source im-
age and disregards the location of the informative regions
in the target image. SaliencyMix [40] assumes that dis-
criminative parts in an image are highly correlated with the
saliency map, which is typically not the case for histopatho-
logical images.

3. Methods

Model Overview. An overview of the proposed train-
ing pipeline for H&E stained histology TRols’ represen-
tation learning is illustrated in Fig. 2} Histopathological
image classification requires capturing cellular and tissue-
level microenvironments and learning their respective in-
teractions. Motivated by the above, we propose an ef-
ficient transformer, ScoreNet that captures the cell-level
structure and tissue-level context at the most appropriate
resolutions. Provided sufficient contextual information, we
postulate and empirically verify that a tissue’s identifica-
tion can be achieved by only attending to its sub-region in
a high-resolution image. As a consequence, ScoreNet en-



compasses two stages. The former (differentiable recom-
mendation) provides contextual information and selects the
most informative high-resolution regions. The latter (aggre-
gation and prediction) processes the recommended regions
and the global information to identify the tissue and model
their interactions simultaneously.

More precisely, the recommendation stage is imple-
mented by a ViT and takes as input a downscaled image
to produce a semantic distribution over the high-resolution
patches. Then, the most discriminative high-resolution
patches for the end task are differentiably extracted.
These selected patches (tokens) are then fed to a second
ViT implementing the local fine-grained attention module,
which identifies the tissues represented in each patch. Sub-
sequently, the embedded patches attend to one another
via a transformer encoder (global coarse grained atten-
tion). This step concurrently refines the tissues’ representa-
tions and model their interactions. As a final step, the con-
catenation of the [CLS] tokens from the recommendation’s
stage and that of the global coarse-grained attention’s en-
coder produces the image’s representation. Not only does
ScoreNet’s workflow allows for a significantly increased
throughput compared to SOTA methods (see Table[d)), it fur-
ther enables the independent pre-training and validation of
its constituent parts.

3.1. ScoreNet

Semantic Regions Recommendation. Current MIL-based
approaches [18| 22] based on patch-level features aggrega-
tion often process histopathological images uniformly and
discard the inter-patches interactions. To alleviate these is-
sues, we exploit a differentiable recommendation stage to
extract discriminative image regions relevant to the clas-
sification. More specifically, we leverage the self-attention
map of a ViT as a distribution of the semantic content.
Towards that end, the high-resolution image is first down-
scaled by a factor s and subsequently fed to the recom-
mendation’s stage ViT. The resulting self-attention map
captures the contribution of each patch to the overall rep-
resentation. Let’s assume a ViT, that processes a low-
resolution image x; € RE*"*% encompassing N patches
of dimension P, x P;. The attended patches (tokens) of
the (L — 1) layer are conveniently represented as a matrix
Z € RWWHDxd where d is the embedding dimension of the
model, and the extra index is due to the [CLS] token. Up
to the last MLP and for a single attention head, the repre-
sentation of the complete image is given by:

YicLs] = softmax(al) ZW.y (1)
N—— N~

Ix(N+1) (N+1)xd

where W, € R?*? is the value matrix, and a7 is the first
row of the self-attention matrix A:

A=ZWyy (ZWyey)" )

where Wy, and Wi, are the query and key matrices, re-
spectively. The first row of the self-attention matrix cap-
tures the contribution of each token to the overall represen-
tation (Eq. [I). This is in line with the discriminative ca-
pacity of the [CLS] token that patches having the highest
contribution are the ones situated in the highest semantic
regions of the images. The distribution of the semantic con-
tent over the patches is therefore defined as:

Ppuch = Softmax(aj ) € RY 3)

where a; stands for a; without the first entry, namely the
one corresponding to the [CLS] token. Since ViTs typ-
ically encompasses multiple heads, we propose to add an
extra learnable parameter, which weights the relative con-
tributions of each head to the end task; after aggregation of
the multiples self-attention maps, the formulation is identi-
cal to that of Eq.[3]

Concurrently with acquiring the above defined semantic
distribution, the high-resolution image, x;, € REXHXW g
tiled in a regular grid of large patches (P, x Py,), stored in
a tensor P € RYXCxXPuxPr At inference time, a conve-
nient way to select the & most semantically relevant high-
resolution regions is to encode the fop-K indices as one-hot
vectors: Y € RV*K "and to extract the corresponding K
patches, X € REXEXPrxPr yig:

X=Y'pP 4)

At training time, since the above formulation is not differ-
entiable, we propose to adopt the differentiable approach
of [10]. Following the perturbed optimizers scheme, the
top-K operation is bootstrapped by applying a Gaussian
noise, oZ, to the semantic distribution. The noisy indica-
tors, Y, are subsequently computed as:

Y, =Eg [arg max <Y, P+ O'Z>:| (®))
YeC

where o is the standard deviation of the noise, P € RV*K
is obtained by broadcasting Pyqch to match the dimension of
Y, and C is a restriction of the domain ensuring the equiv-
alence between solving Eq. [5]and the top-K operation [10].
The extraction of the high-resolution regions follows the
procedure described in Eq. Similarly, the gradient of
the indicators w.r.t. the semantic distribution, Pp,cn can be
computed as:

VY, =Egz [arg max <Y, P+ 0Z> ZT/U] (6)
YeC
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Figure 3: The bounding box selection scheme for ScoreMix.
The score distribution for each bounding box (Puhox) is obtained
by convolving the patch distribution map Ppach with a kernel of 1s
of the bounding box dimensions (hubox, Whbox ). The bbox is then
sampled from Pypox, which we often refer to as Psource OF Prarget-

Computational Complexity. Vision transformers heavily
rely on the attention mechanism to learn a high-level repre-
sentation from low-level regions. The underlying assump-
tion is that the different sub-regions of the image are not
equally important for the overall representation. Despite
this key observation, the computation cost dedicated to a
sub-region is independent of its contribution to the high-
level representation, which is inefficient. Our ScoreNet at-
tention mechanism overcomes this drawback by learning to
attribute more resources to regions of high interest. For a
high-resolution input image x;, € RE*H*W the asymptot-

2
ical time and memory cost is O (:{DI . s%, ) ) , when the
recommendation stage uses inputs downscaled by a factor s
and processes them with a patch size of P;. The derivation
of this cost, including that of the recommendation stage,
which is independent of the input size, can be found in the

Appendix.

3.2. ScoreMix

We propose a new mixing data augmentation for
histopathological images by learning the distribution of
the semantic image regions using the learned self-attention
for [CLS] token of the ViT without requiring architec-
tural changes or additional loss. More formally, let z, z; €
REXH*W pe the source and target images respectively and
let ys and y; be their corresponding labels. We aim to mix
the source and target samples to generate a new training ex-
ample (Z,,, ym). To do so, we first compute the semantic
distributions using the current parameters of the model and
the input samples; namely, we compute Pgoyce(2s,6) and
Pearget (¢, 0). Given these distributions and a randomly de-
fined bounding box size, we sample the cutting and pasting
locations from the source and target distributions, respec-

tively:

M ~ ? : IP)source(ws: 97 )\)

v @
Mt ~ 7 . (]- - ]Pta.rget(xta 91 )‘))

t
where Z, and Z; are normalization constants, and 1 — \ ~
U([0,1]) defines the strength of the mixing, i.e. the size of
the bounding box. The locations of the cutting and past-
ing regions are encoded as binary masks, i.e., M;, M; €
{0,1}#>*W " where a value of 1 encodes for a patch in
the cutting/pasting region. Under the above formalism, the
mixing operation can be defined as:

Im = (I—Mt)Q(Et
M; ® xyy < My Q 4 (8)
Ym = Mys + (1= N)ys

where 1 is a mask of ones, ® denotes the element-wise
multiplication, and ® indicates an indexing w.r.t. a mask.
Computing the Semantic Distributions. Computing the

semantic distributions of the target and source images is an
essential part of the pipeline as it allows for a data-driven
selection of the cutting/pasting sites, thereby avoiding the
pitfalls of random selection. When the size of the bounding
box matches that of a single patch, the distribution can be
directly deduced from the self-attention map, as described
in Sec.[3] As a consequence, and when the bounding box’s
size matches that of a single patch, the semantic distribution
can be directly obtained from Ppychn (see Eq. E[) In prac-
tice, we would typically use bounding boxes encompassing
more than a single patch. In that case, the distribution of
the semantic content at the bounding box resolution can be
obtained by a local aggregation of the distribution above:

Pobox (Z) X ZjGN(i) ]P)patch (.]) 9

where N (7) returns the indices of the patches situated in the
bounding box whose top left corner is the patch i. In prac-
tice, this can be efficiently implemented by first unflattening
the patch distribution Ppych, and convolving it with a kernel
of ones and of the same dimension as the desired bounding
box (see Fig. [3).

4. Experiments

Datasets. The primary dataset used in our experiments is
the BReAst Carcinoma Sub-typing (BRACS) [31]]. BRACS
consists of 4391 Rols acquired from 325 H&E stained
breast carcinoma WSI (at 0.25 pm/pixel) with varying di-
mensions and appearances. Each Rol is annotated with one
of the seven classes: Normal, Benign, Usual Ductal Hy-
perplasia (UDH), Atypical Ductal Hyperplasia (ADH), Flat
Epithelial Atypia (FEA), Ductal Carcinoma In Situ (DCIS),



and Invasive. Our experiments follow the same data split-
ting scheme as [31]] for training, validation, and test set at
the WSI level to avoid test leakage. In addition, we use pub-
licly available BreAst Cancer Histology (BACH) dataset 1]
to show ScoreNet generalization capabilities. It contains
400 training and 100 test images from four different breast
cancer types: Normal, Benign, In Situ, and Invasive. All
images have a fixed size of 1536 x 2048 pixels and a pixel
scale of 0.42 x 0.42 ym. To assess the interpretability of
ScoreNet, we further evaluate our model on the CAME-
LYON16 dataset 3] for binary tumour classification. We
extract a class-balanced dataset of 1920 x 1920 pixels from
high-resolution WSIs.

Experimental Setup. We base ScoreNet’ ViTs, namely the
one used by the recommendation stage and by the local fine-
grained attention mechanism on a modified ViT-tiny archi-
tecture (see Appendix) and follow the self-supervised pre-
training scheme of [5]] for both of the aforementioned ViTs.
Noteworthy that an end-to-end pre-training of ScoreNet
is also feasible. After pre-training, the ScoreNet is op-
timized using the SGD optimizer (momentum=0.9) with
a learning rate chosen with the linear scaling rule [14]
(Ir = 1072 - batchsize /256 = 3.125 - 10~%) annealed with
a cosine schedule until 1075, ScoreNet is finetuned for 15
epochs with a batch-size of 8. We empirically determine the
top K = 20 regions, and a downscaling factor s = 8 by a
hyperparameter sweep (cf. ablation experiment in the Ap-
pendix). All experiments are implemented in PyTorch 1.9
[28] using a single GeForce RTX3070 GPU.

4.1. TRols Classification Results and Discussion

In Table |1} we compare the TRols classification perfor-
mance of ScoreNet on the BRACS dataset against the state-
of-the-arts, including MIL-based [27, 134} [25]], GNN-based,
e.g., [31]], and self-supervised transformer-based [43] ap-
proaches. The first MIL-based baseline [27] aggregates in-
dependent patch representations from the penultimate layer
of a ResNet-50 [16] pre-trained on ImageNet [11]. The
patch model is further finetuned on 128 x 128 patches at
different magnification, e.g., 10x, 20x or 40x. The lat-
ter operate either on multi- or single-scale images to ben-
efit from varying levels of context and resolution. Simi-
larly, we report the performances of the recent MIL-based
methods, TransMIL [34], and CLAM [25]] using the orig-
inal implementations and setup. Both methods are tested
with different magnifications (see Table [I). Additionally,
the single-head (-SB) and multi-head (-MB) variants of
CLAM are used with the small (-S) and big (-B) versions
of the models (see CLAM’s implementation). We further
use various GNN-based baselines, particularly HACT-Net
[31], the current SOTA approach for TRols classification
on the BRACS. Finally, we report the performance of the re-
cent self-supervised transformer approach, TransPath [43],

which is a hybrid transformer/convolution-based architec-
ture. ScoreNet reaches a new state-of-the-art weighted
Fl-score of 64.4% on the BRACS TRols classification
task outperforming the second-best method, HACT-Net,
by a margin of 2.9% (Table [1). The results are reported
for two variants of ScoreNet, namely ScoreNet/4/1 and
ScoreNet/4/3, which use the four last [CLS] tokens of
the scorer and the last or the three last [CLS] tokens
from the coarse attention mechanism (aggregation stage).
ScoreNet/4/3 variant puts more emphasis on the features
available at (40x), whereas ScoreNet/4/1 is more bi-
ased towards the global representation available at (5x)
(with a downscaling factor s = 8). One can observe
that both model variants significantly outperform the ex-
isting baseline in terms of weighted F1-scores and for al-
most every class. More interestingly, the architectural dif-
ferences directly translate to differences in the classifica-
tion results. ScoreNet/4/3 is more suitable for classes
where the discriminative features are at the cell level
than ScoreNet/4/1, which is more suited when the tissue
organization is the discriminative criterion. Nonetheless,
both of these architectures indeed benefit from the informa-
tion available at each scale. This observation is well sup-
ported by the classification results obtained when a linear
layer is trained independently on the scorer’s [CLS] tokens
(Lin. scorer’s [CLS] in Tablem) or using only the [CLS]
tokens from the aggregation stage (Lin. encoder’s [CLS]
in Table [I). Despite the difference in results between the
two model variants, it is clear that they both perform worse
when separated, which indicates that the representations of
both stages are complementary. In brief, ScoreNet allows
for an easily tuning to meet prior inductive biases on the
ideal scale for a given task.

ScoreMix & Data-Regime Sensitivity. We also show that
ScoreNet equipped with the proposed ScoreMix augmen-
tation achieves superior TRols classification performances
compared to CutMix [45] and SaliencyMix [40]] augmenta-
tions for different data regimes, e.g., low-regime with only
10% of the data. Our proposed ScoreMix outperforms
SOTA methods with only 50% of the data and is on-par
or better than most baselines with only 20% of the data (Ta-
ble[2). We argue that these improvements are primarily due
to the generation of more coherent sample-label pairs un-
der the guidance of the learned semantic distribution. This
alleviates randomly cutting and pasting non-discriminative
patches, as is the case with CutMix. Our results further
support that image saliency used in the SaliencyMix is not
correlated with discriminative regions.

Generalization Capabilities. To gauge the generaliza-
tion capabilities of ScoreNet compared to other current
SOTA methods, e.g., HACT-Net [29], we leverage two
external evaluation datasets, namely CAMELYON16 and



Table 1: Comparison with the prior art for TRols classification using weighted and class-wise F1-scores averaged over three indepen-
dent runs on the BRACS dataset. The best results are in bold. ScoreNet/x/y refers to an instance of ScoreNet using the recommendation
module’s last x [CLS] tokens and the last y tokens from the global coarse-grained attention.

Method Normal Benign UDH ADH FEA DCIS Invasive Weighted F1
Agg-Penultimate (10x) [36] 487+ 17 443£19 450+£50 240+28 470+£43 533+£26 867+26 508+26
Agg-Penultimate (20x) [36] 420+22 423+£3.1 393£20 227425 477+£12 503+31 77.0+14 | 468+22
Agg-Penultimate (40 x) [36] 323+46 390+08 237+17 180+£0.8 37.7+£29 473£20 707+£05 | 394+19
Agg-Penultimate (10x + 20x) [36] 483+20 457+£05 41.7£50 323+09 463+£14 593+20 857+19 | 523+19
Agg-Penultimate (10x +20x +40x) [36] 503 +09 443+12 413+25 31.7+£33 51.7+31 573+£09 860+14 | 528+19
CLAM-SB/S (10x) [25] 39.6£4.6 455+49 3474+20 3044+67 688+19 643+08 842+£26 | 539+19
CLAM-SB/S (20x) [25] 502+32 455+18 322+16 255+42 696+10 60.8+27 842416 | 540+07
A CLAM-SB/S (40x) [25] 470+£52 388+18 300£77 294429 659+£12 522413 767+16 | 499+038
= | CLAM-SB/B (10x) [25] 464+60 424+28 331+£10 293421 674+£14 63.0+45 844421 | 537+£19
~ | CLAM-SB/B (20x) [25] 562+12 423+44 274+24 301+40 685+£21 609+21 846+12 | 543+15
CLAM-SB/B (40x) [25] 428+ 1.1 433+28 338+07 296+36 641+£26 520+38 788+22 | 505409
CLAM-MB/S (10x) [25] 425+33 434+36 314+£32 3214+48 675+£22 597424 838+20 | 529+17
CLAM-MB/S (20x) [25] 56.6+08 474+£09 335+£52 170%+15 703£11 569+1.6 849+12 | 538+06
CLAM-MB/S (40x) [25] 502+77 393+29 386+24 265+89 694+£26 541433 829425 | 529+038
CLAM-MB/B (10x) [25] 397+1.6 41.0+26 345+10 298+47 668+15 634+£10 835+04 | 527409
CLAM-MB/B (20x) [25] 594420 477+12 31.7+£07 201+34 683+£04 599+17 868+06 | 548+1.0
CLAM-MB/B (40x) [25] 473+32 395+15 388+45 302+63 682+19 592429 821427 | 535+13
CGC-Net [47] 308453 31.6+47 173+34 245+£52 59.0+36 494+34 753+£32 | 43.6%+05
Patch-GNN (10x) [2] 525433 476+£22 237+£46 30718 607£53 588+1.1 81.6+£22 | 52.1+£06
., | Patch-GNN (20x) [2] 439+42 434+32 195+£23 257429 556+21 529418 792411 | 47.1+£07
Z | Patch-GNN (40x) [2] 41.7+31 329+£1.0 251+£37 256+20 495+35 48.6+42 71.6+5.1 432406
% TG-GNN [29] 588+68 409+3.0 468+19 400+36 637+105 53.8+39 81.1+33 | 559+1.0
CG-GNN [29] 63.6+49 477+£29 394+47 2854+43 T21+13 546+22 822440 | 56.6+13
CONCAT-GNN 61.0+45 431+£23 420£47 26.14+37 713£21 608+37 854+27 | 57.0+£23
HACT-Net [29] 61.6+21 475+29 436+£19 404425 742+14 664+2.6 884+02 | 61.5+09
TransPath [43] 585+25 431+18 349+52 383+60 669+08 614+12 850+£14 56.7+2.0
. | TransMIL (10x) [34] 387+£54 440+£29 305+41 31.0+11.8 68.1+26 61.8+19 873+£26 | 532+1.1
g | TransMIL (20x) [34] 51.04+0.1 445+29 31.6+21 314+£103 713+48 63.0+28 899+16 | 562+1.6
g TransMIL (40x) [34] 476 +98 429+36 415+£53 384459 T27+£26 627+29 87.1+39 | 575+07
i)
§ Lin. encoder’s [CLS] 527+94 356+34 345+67 251+36 535+9.8 387+28 633+76| 438+34
& | Lin. scorer’s [CLS] 575+42 488+55 427+£35 427+74 T43+£52 605+24 90.64+02 | 609 +3.1
ScoreNet/4/1 64.6 +22 52.6+28 484+22 474+24 779+£07 593+1.1 906+15 | 64.1%07
ScoreNet/4/3 643+15 540+£22 453+34 467+10 781+28 629+20 91.0+14 | 644+0.9

Table 2: Comparison with SOTA Mixup-based augmenta-
tion methods [45}40] and the standard random augmentation
strategy using various fractions of the BRACS dataset and identi-
cal distribution for the bounding boxes’ sizes.

the CAMELYON16 datasets). Experimental results in Ta-
ble [3| demonstrate the superiority of ScoreNet in learning
generalizable features. It further demonstrates the robust-
ness of ScoreNet to changes in magnification. Indeed, the
model is pre-trained on BRACS (40x), while BACH’s im-

Dataset Random Aug. CutMix [45] SaliencyMix [40] ~ ScoreMix red A X £20 Furth

BRACS 10%  529+24 537429 535427 559419 ages were acquired at a magnification of 2Ux. Furthermore,
BRACS 20% 576+18  580+14 578+ 1.0 58.7 + 0.8 the CAMELYON16 dataset contains WSIs collected from
BRACS 50% 60.4 + 1.8 612425 59.8+2.4 62.3 0.6 lymph nodes in the vicinity of the breast, while BRACS
BRACS 100%  627+16  63.1+1.1 62.8+ 1.2 64.0 + 0.7

contains WSIs collected by mastectomy or biopsy (i.e., di-
rectly in the breast). The excellent knowledge transfer be-
tween the two datasets highlights the transferability of fea-

BACH. After training on the BRACS dataset, the weights tures learned by ScoreNet in various use cases.

of ScoreNet are frozen. To evaluate the quality of the

learned features, we either train a linear classifier on top Interpretability? To probe the internal behavior of

of the frozen features or apply a k-nearest-neighbor clas-
sifier (k = 1) without any finetuning. We perform strat-
ified 5-fold cross-validation. For HACT-Net, we use the
available pre-trained weights and follow the implementa-
tion of [31]. As HACT-Net sometimes fails to generate em-
beddings and to have a fair comparison, we only evaluate
the samples for which HACT-Net could successfully pro-
duce embeddings (around 95% of the BACH and 80% of

ScoreNet, we finetune the model on CAMELYON16 im-
ages using image-level labels only. At test time, we scru-
tinize the learned semantic distributions of the tumour-
positive images. The semantic distributions depicted in
Fig. |4] seems to indicate that ScoreNet learns to identify
the tumour area and interpret cancer-related morpholog-
ical information, while never having been taught to do
so. Quantitatively, we observe that, on average, 74.6% of



Table 3: Generalization capabilities of ScoreNet compared to
HACT-Net trained on BRACS and evaluated on the BACH’s anno-
tated images and 1000 images from CAMELYON16, respectively.
The weighted Fl-scores over a stratified 5-fold cross-validation
fold is reported.

BRACS — BACH BRACS — CAMELYON16
Linear k-NN Linear k-NN

TransPath [43] 61.8+48 720+£29 581148 69.9 £2.5
TransMIL 46.5+102 740+48 59.8+3.0 60.8 £5.3
CLAM-SB/S 533+13.0 69.8+45 567+£19 68.0 3.5
CLAM-SB/B 575+3.6 753+£31 555441 68.0+ 1.5
HACT-Net 402+28 328458 60.0+4.6 61.0+42
ScoreNet 734+£35 769+61 81.1+35 77.0 £ 4.6

s
v

[ Tumor Mask W Aggregated Self-Attention

Figure 4: ScoreNet Interpretability. Visualization of the seman-
tic distribution, overlaid with the tumour ground-truth mask on a
few samples of the CAMELYON16 dataset. The semantic distri-
butions are obtained from the recommendation stage, i.e., at low-
resolution. ScoreNet is pre-trained on BRACS and finetuned on
CAMELYONI16.

the 20 patches selected from positive images are tumour-
positive. Furthermore, we report an average image-wise
AuC of 73.6% when interpreting the probability of the rec-
ommendation stage to sample a patch as the probability of
it being tumour-positive.

Ablation on Efficacy of ScoreNet. The critical aspect
of ScoreNet is its improved efficiency compared to other
transformer-based architectures. This improvement is due
to the choice of a hierarchical architecture and the exploita-
tion of redundancy in histology images. At inference time,
we expect a gain in throughput compared to the vanilla ViT
of the order of the squared downscaling factor, s, (see Ap-
pendix), typically s> = 64, which is well reflected in prac-
tice, as shown in Table 4 Due to the self-supervised pre-
training, ScoreNet does not require any stain normalization
or pre-processing, unlike its competitor HACT-Net. Simi-
larly, ScoreNet yields higher throughput than other SOTA
efficient transformers architectures, namely TransPath [43]],

Table 4: Inference throughput comparison of ScoreNet,
HACT-Net, and SOTA transformer-based architectures. All
models were tested with the same image size and a single GeForce
RTX 3070 GPU.

Image size ~ Throughput (im./s)  Pre-processing
HACT-Net 1536 x 2048  4.95e¢-4 £+ 1.40e-3 v
Vanilla ViT [13] 1536 x 2048 3.8+0.1 -
SwinTransformer [24] 1536 x 2048 76.8 +£ 0.4 X
TransPath 1536 x 2048 97.6 +£3.1 X
ScoreNet 1536 x 2048 335.0 +7.9 X

and SwinTransformer , with throughput around 3 x and
4x higher than these methods. The latter observation is in-
teresting considering the linear asymptotic time and mem-
ory cost of the SwinTransformer, which is probably a con-
sequence of the fact that SwinTransformers process a lot of
uninformative high-resolution patches in the first layer(s).

Ablation on Shape Cues and Robustness. We investi-
gate ScoreNet’s ability to learn shape-related features. To
do so, we study shape cues extracted by the recommenda-
tion model via the concatenated [CLS] tokens (see Fig. |Z|)
Consequently, we implement shape removal by applying a
random permutation of the downscaled image’s tokens at
test time. With this setup, a weighted F1-score of 59.8 +
0.8% is reached, representing a significant drop in perfor-
mance compared to 64.4 + 0.9% without permutation. It
demonstrates that i) the recommendation stage’s concate-
nated [CLS] tokens contribute positively to the overall rep-
resentation and ii) the latter is not permutation invari-
ant and thus shape-dependent. In a second experiment,
we show the whole recommendation stage is also shape-
dependent. To that end, we repeat the same experiment, but
the patches are extracted from the permuted images, reach-
ing a weighted F1-score of 59.5 4 0.6%. We further observe
that for a given image, the overlap of the selected patches
with and without permutation is, on average, only 15.7%,
which indicates that the semantic distribution learned by
ScoreNet is shape-dependent.

5. Conclusion and Future Work

We have introduced ScoreNet, an efficient transformer-
based architecture that dynamically recommends discrimi-
native regions from large histopathological images, yield-
ing rich generalizable representations at an efficient com-
putational cost. In addition, we propose ScoreMix, a new
attention-guided mixing augmentation that produces coher-
ent sample-label pairs. We achieve new SOTA results on the
BRACS dataset for TRols classification and demonstrate
ScoreNet’s superior throughput improvements compared to
previous SOTA efficient transformer-based architectures.
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A. Appendix Overview

In this appendix, we provide additional ablation studies
and experimental details. The remaining of this appendix is
organized as follows. In Sec. [B| we detail the architectural
and training details, e.g., parameters choices. Additional
ablations are detailed in Sec. [(]. A detailed derivation of
the computational cost is presented in Sec. [D} We discuss,
in Sec. [E] some properties of ScoreMix and present some
examples of our proposed ScoreMix augmentation. Finally,
the suitability of ScoreNet to learn from uncurated data is
evaluated in Sec.[H

B. Experimental Setup & Datasets
B.1. Networks Architectures

ScoreNet. The proposed ScoreNet architecture comprises
two stages: the recommendation and aggregation stages.
The former leverages a modified ViT-Tiny to produces the
semantic distribution. Similarly, the latter relies on an iden-
tical ViT-Tiny to independently embed the selected high-
resolution patches (local fine-grained attention) and on a
transformer encoder to mix the embedded patches (global
coarse-grained attention). The following parameters of the
two identical ViT-Tiny were modified to be tailored for the
task:

* embed_dim=96.
* depth=8.

* num_heads=4.
* mlp_ratio=2.

These modifications were brought to allow for a self-
supervised pre-training with a sufficiently large batch size
(bs > 128), which was reported to be of significant impor-
tance to reach good performance [5]. The parameters of
the transformer encoder implementing the global coarse-
grained attention mechanism are:

* embed_dim=96.
* depth=4.

* num_heads=4.
* mlp_.ratio=2.

Overall ScoreNet’s model totals approximately 1.79M pa-
rameters.

SwinTransformer. SwinTransformers [24] relies on hierar-
chical architecture attention mechanism, namely intra- and
inter-window attentions. The patch-merging operation re-
duces the time, and memory cost of SwinTransformers [24]]
significantly, which decreases the total number of tokens by
4, while increasing the embedding by 2. The architecture
is modified to accept non-square windows, allowing Swin-
Transformers to process non-square images images. The
resulting parameters are:

* patch_size=16.

¢ input_embed_dim_size=24.

e output_embed. dim_size=192.
* depths=[2, 2, 6, 2].

e num_heads=[3, 6, 12, 24].
e window_size=(6, 8).

* mlp_ratio=4.

Overall the SwinTransformer model totals approximately
1.77M parameters.

TransPath. As described in [43]], TransPath’s architecture
leverages a CNN encoder to jointly reduce the input image’s
size, extract relevant features, and tile the image in pre-
embedded patches. Subsequently, a transformer encoder
processes the CNN encoder’s features to capture global in-
teractions. The CNN encoder’s architecture is as follows:

* n_convolutions=4.
e nfilters=[8, 32, 128, 512].
e kernel_sizes=[(3, 3), (3, 3), (3,
3), (3, 3)1].
* pooling_kernel_sizes=[ (4, 4), (2,
2), (4, 4), (4, 4)].
* activation=ReLU [L13].
A projection convolution is used to match the desired em-
bedding dimension of the transformer encoder. Its parame-
ters are:

e nfilters=192.
e kernel_sizes=(1, 1).
The parameters of the transformer encoder are:

e embed_dim=192.
e depth=4.

* num_heads=4.

* mlp_ratio=2.

Each transformer block rely on TransPath’s customized
token-aggregating and excitation multi-head self-attention
(MHSA-TAE) [43]. Overall, TransPath’s model totals ap-
proximately 1.93M parameters.

TransMIL. We adopt the original implementation as pro-
vided by the authors [34]. It relies on a ResNet-50 [16]] pre-
trained on ImageNet [11] to embed the individual 256 x
256 patches. Overall, TransMIL’s model totals approxi-
mately 3.19M parameters (not counting the parameters of
the ResNet-50).

CLAM. The implementation of CLAM follows the code
provided by the authors [25]. It relies on a ResNet-50
[16] pre-trained on ImageNet [11] to embed the individ-
ual 256 x 256 patches. Overall, the variations of CLAM-
(SB/MB)/(S/B) total from 1.32M to 1.46M parameters (not
counting the parameters of the ResNet-50).



B.2. Self-Supervised Pre-training

Modular Pre-training. Our modular architecture allows
for independent self-supervised pre-trainings of the recom-
mendation stage’s ViT and that of the local fine-grained at-
tention mechanism. A two steps pre-training can be ben-
eficial, as it provides the possibility to validate each part
independently. Similarly, one of the modules, typically the
one implementing the fine-grained local attention, can be
trained on an auxiliary annotated dataset or be replaced by
a standard pre-trained model.

The self-supervised pre-training follows the guidelines
of [5]]. Apart from the differences in architectures described
in Sec. [B.I] minor modifications were made in the projec-
tion head to account for the reduced heterogeneity in our
datasets compared to that in ImageNet [12]]. The modifica-
tions are:

e hidden_dim=1024.
* bottleneck_dim=128.
e out_dim=1024.

These modifications are in line with the interpretation of [4]]
which considers the last linear layer as a projection on a
set of learnable centroids and that their number should re-
flect the level of diversity present in the dataset. For this
interpretation to hold, it is required that both the last layer’s
input and its weights are normalized, which is the case in
our setup. The remaining parameters, aside from the posi-
tion encoding which is discussed in Sec. [C] are set to the
default values (see [3]] for details).

End-to-end Pre-training. In some cases, an end-to-end
pre-training of ScoreNet is preferable. For that purpose,
we experimented with two approaches: DINO and a variant
of it for that purpose. The former uses the default values for
all parameters but those of the projection head described
above. On the contrary, the latter benefits from different
augmentations and another pretext task and thereby avoid a
potential pitfall of DINO: encouraging contextual bias [35]],
which occurs when the similarity between the representa-
tions of views depicting distinct tissue types is enforced.

In this regard, the set of admissible augmentations are
constrained to those that change the pixels’ values, but not
their locations. Consequently, a given image’s different
views are bounded to bear identical semantic content. A
key aspect of DINO’s strong performance is due to en-
forcing the local-to-global correspondence between the stu-
dent’s local crops and that of the teacher’s global crop. To
mimic that knowledge distillation mechanism, we encour-
age the student, which only processes the most discrimi-
native high-resolution patches, to match the teacher’s rep-
resentation, which on the contrary, is based on all high-
resolution patches. One can observe that this pretext task
enforces local-to-global correspondence while providing a

strong supervisory signal to the student’s scorer, which has
to highlight the most relevant regions for the task to be suc-
cessfully accomplished.

In that setting, ScoreNet’s representation is obtained
by the concatenation of the [CLS] tokens of the global
coarse-grained attention module’s last two transformer
blocks. This representation benefits from global contextual
information through the teacher, which processes the whole
high-resolution image. The projection head’s parameters
are identified as described above.

B.3. Datasets

In addition to the annotated TRols from two datasets,
namely BRACS [30] and BACH [l1]], additional sets of un-
labeled of images are used to pre-train the models and for
various ablations. The sets of unlabeled images are detailed
here.

BRACS. The BRACS dataset encompasses both the anno-
tated TRols and the 547 whole-slide images from which
they were extracted. We use the WSIs to create an unla-
beled pre-training set. More precisely, two types of auxil-
iary datasets are extracted from BRACS’s WSIs: tiles set at
40x and low-resolution thumbnails set at 4?0 X, where s is
the down-scaling ratio. The former set is used to pre-train
the local fine-grained attention module, whereas the latter
serves to pre-train the recommendation stag’s scorer. We
experimented with two variants of these paired sets. The
first variant is designed for a version of ScoreNet, where
the dimension of the finely attended regions is P, = 224,
the recommendation stage processes low-resolution patches
of dimension P, = 16 and consequently a down-scaling ra-
tio s = 14. The second variant is designed for a version
of ScoreNet, where the dimension of the finely attended
regions is P, = 128, the recommendation stage processes
low-resolution patches of dimension P, = 16 and conse-
quently a down-scaling ratio s = 8. The resulting sets con-
tain approximately 150k images (for a fair comparison of
the two versions, see Sec. .

The last images are extracted from BRACS to conduct
TransPath’s self-supervised pre-training. From the WSIs,
an unlabeled set of approximately 100k images at 40x are
extracted. The images have dimensions 1536 x 1536, which
is approximately the median dimensions of the annotated
TRols.

BACH. Similarly, the BACH dataset comprises an anno-
tated set of TRols and the accompanying 40 whole-slide
images. From the WSIs, an unlabeled pre-training set of
approximately 11k images at 20x are extracted. The im-
ages have the exact dimensions as the annotated TRols,
1536 x 2048.

CAMELYONI16. Finally, additional tiles set is extracted
from CAMELYON16, which is, to our knowledge, the only



one with patch-level annotations. This set is used to eval-
uate the pre-training of the fine-grained attention module.
The latter is composed of 10k images at 40x, of dimen-
sions 128 x 128 or 224 x 224. It is class-balanced, and any
patch which contains tumorous tissue is considered tumour
positive. This set is also used to measure the effectiveness
of the position encoding on the fine-grained attention mod-
ule in Sec.[Cl

C. Additional Ablations

Down-Scaling Ratio & Dimensions of the Attended Re-
gions. A key component of the proposed pipeline is to
determine the down-scaling ratio, s, and the dimension of
the square patches in low-resolution, P, X P, and in high-
resolution, P, x Pj. Considering the well-studied nature
of the ViTs scorers, we use the standard patch dimension
P, = 16 for the patches in low-resolution. It has been
shown that smaller patches (P, = 8 or P, = 5) improve
the quality of the learned representations [3], nonetheless
the incurred increase in computational and memory cost
is unsuitable for our application. For the high-resolution
patches, we experiment with two standard patch dimen-
sions: P, = 128 and P, = 224. As the self-attention of the
recommendation stage is used as a learnable distribution of
the semantic content, there should exist a 1-to-1 mapping
between the low-resolution patches and the high-resolution
regions that can be extracted. As a consequence, the down-
scaling ratio is fully determined by the dimensions of the
patches: s = P,/P,. In our case, it translates to down-
scaling ratio of either s = §, or s = 14.

To find out which of these two setups is the most suit-
able for our application, we compare the models obtained
by each of them via a weighted k& Nearest Neighbours clas-
sifier, which has the advantage of being fast and not requir-
ing any finetuning. In Table[6] we compare the classification
results on the low-resolution (% x) BRACS dataset. We re-
port the results of both the teacher and the student models
as well as those obtained by a CNN with comparable ca-
pacity and identical pre-training. We do not observe signifi-
cant differences between the two scales. On the other hand,
these differences are much more emphasized when evalu-
ating the same models on the low-resolution (% x) BACH
dataset (see Table[5)). These promising results on the BACH
dataset, despite the mismatched scales, are to be credited to
the local to global views pre-training method [5]].

The quality of the fine-grained attention module is as-
sessed with the aforementioned method on the tile CAME-
LYON16 dataset introduced in Sec.[B.3] and the hereby ob-
tained results are reported in Table In conclusion, we
observe that the difference is either marginal (Table [6] &
or significantly in favor of the setup where s = 8 (Ta-
ble[5) and therefore we choose this setup for the remaining
experiments and architectures. As a side note, the CNN ar-

chitecture performs substantially worth, but it is most likely
due to the fact that the DINO [5]] method is biased towards
ViT architectures. Positional Encoding. Without position
encoding (PE), a ViT processes tokens as a set and hence
completely discards the global shape information; there-
fore, position encoding is essential. The typical approach is
to learn a single matrix of absolute and additive position en-
coding jointly during the training phase. This approach suf-
fers from two drawbacks: i) the absolute encoding of each
token’s position implies that a pattern is different at every
location it occurs, which reduces the sample efficiency [32],
and ii) as a consequence of the storage of the position en-
coding in a single matrix, the model treats the input tokens
as a 1D sequence and thus mislays the multi-dimensionality
of the inputs. The latter is not an issue as long as the input
images have the same aspect ratio, as is the case with the
local/global crops strategy of DINO [5]. Nonetheless, and
as depicted in Fig. [5] this approach fails when the model
is fed an image of a different aspect ratio than those used
to train the position encoding. As illustrated in Fig. 5] the
2D sine-cos position encoding does not introduce any arti-
facts when used with images of different resolutions. On the
other hand, any absolute position encoding is not a transla-
tion equivariant operation, an undesired property for pla-
nar images. For these reasons, we experiment with Con-
ditional Position encoding Vision Transformer (CPVT) [8].
This PE is input-dependent and convolution-based; conse-
quently, it is suitable for any input resolution and patch-wise
translation-equivariant. Fig. [6]reveals that the PE of border
tokens is slightly different due to the needed zero-padding.
This finding suggests that the absolute position encoding
can be inferred from zero-paddings [8]. We argue that
CPVT is well suited to be used conjointly with ScoreMix
as the local processing of the token is convenient for de-
tecting local discontinuity caused by the pasting operation,
which is needed to incorporate the added content to the
global representation (see Sec. [E)). In Table [§] and Table 0
we evaluate the discriminability of the features obtained by
a pre-training under the DINO framework and with various
position encoding methods. Table [9] which reports results
on the tile CAMELYON16 dataset (see Sec.[B.3), does not
provide substantial shreds of evidence in favor of one PE
or the other; we postulate that this lack of significant dif-
ferences is due to the lessened importance of position en-
coding for the tile dataset. Indeed, at 40x and with tiles
of dimension 128 x 128, the available features are mostly
texture-based, and the relative organization of the patches
is less relevant. This claim is well supported by the sub-
stantial differences in performance obtained by distinct PE
when evaluated on the low-resolution BACH and BRACS
datasets (see Table P). These differences are further exac-
erbated by the fact that images on which performance is
evaluated are either of varied size (BRACS) or at least of a



Table 5: A weighted &k Nearest Neighbors classifier assesses the learned features’ discriminability (weighted F1-score) on the low-
resolution BACH dataset. The performances of CNN and ViT-based architectures are compared, and similarly for two down-scaling
ratios (s = 8 or s = 14). We use a 4-fold scheme with 75%/25% train/test splits.

ViT CNN
Teacher Student Teacher Student
k s=14 s =28 s=14 s=28 s=14 s =28 s=14 s=28
1 717 +64 785+64 73.6+51 7T74+51 63.6+51 644+19 63.8+32 639+22
5 715+17 81.7+£32 728+19 81.0+4.0 651+33 647+21 641+46 65427
10 719+24 778+28 7254+25 779+34 620+38 589+29 615+58 61.1+25
20 713 +£40 763+30 725+£30 765+40 640+L£6.7 555+18 61.0£92 554+24
50 712 +40 74.7+47 709+33 743+57 593+53 561+32 581+62 54.6=+39
100 71.7+41 740+55 714+38 73.6+£59 574+34 506+5.1 562+3.0 48.7+4.7
Learnable (15x13) 2D sine-cos (15x13)
Learnable (14x14) 2D sine-cos (14x14)
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Figure 5: The cosine similarity of a learnable and 2D sine-cos positional encoding is compared. The learnable positional encoding
introduces undesirable artifacts when the aspect ratio changes (Learnable (15x13)).

Table 6: A weighted k£ Nearest Neighbors classifier assesses
the learned features’ discriminability (weighted F1-score) on
the low-resolution BRACS dataset. The performances of CNN
and ViT-based architectures are compared, and similarly for two
down-scaling ratios (s = 8 or s = 14). The k-NN classifier is
trained on the merged train/valid set and evaluated on the test set
(see [30]), hence the high performances.

ViT CNN
Teacher Student Teacher Student
k s=14 s=8 s=14 s=8 s=14 s=8 s=14 s=38
1 52.5 54.3 51.6 55.0 452 455 454 44.7
5 55.2 56.1 55.4 55.8 47.1 47.6 46.6 46.2

10 57.2 56.4 57.5 56.7 49.3 46.5 50.5 45.8
20 56.9 58.0 58.1 57.6 47.1 47.6 459 47.0
50 56.2 57.5 55.7 56.9 412 449 40.6 449
100 539 54.0 54.3 53.7 40.3 43.5 40.1 44.2

different dimension than those used during the pre-training
(BACH). Notably, there seems to be a significant perfor-
mance discrepancy between the models using a [CLS] to-
ken (CPVT) and those based on a global average pooling
(CPVT-GAP). Based on these results, we select the CPVT-

GAP approach for the remaining experiments. Note that we
referred to [CLS] token throughout this text when referring
to a GAP token. Additionally, we have slightly modified
the method to be able to extract one self-attention map per
transformer head: instead of performing the GAP operation
after the very last layer of the transformer encoder, we do
it after the (L — 1) layer and concatenate the resulting
token to the sequence, thereby producing a pseudo [CLS]
token. Similarly, when m pseudo [CLS] tokens are used,
this operation is performed after the (L — m)*" layer.

Selecting the Number of Finely Attended Regions. The
effect of the number of selected regions is depicted in Table
One can observe that it does not appear as the most de-
termining factor, particularly that the results are not mono-
tonically increasing, which is unexpected. There are two
potential explanations for this behavior. The first is due to
the heterogeneity of the BRACS dataset. More precisely, it
encompasses images containing less than 50 patches, which
implies that the image must first be resized, potentially
harming the predictions. The second explanation is that
the model used for this ablation is a ScoreNet/4/1 variant,
which by design relies less on the high-resolution images



Table 7: A weighted k& Nearest Neighbors classifier assesses the discriminability (weighted F1-score) of the learned features on the
tile CAMELYON16 dataset (see Sec. @) The performances of CNN and ViT-based architectures is compared, and similarly for two
tile dimensions (128 x 128 and 224 x 224) corresponding to down-scaling ratios of s = 8 and s = 14, respectively. A 4-fold approach
with 75%/25% train/test splits is used.

ViT CNN
Teacher Student Teacher Student
k s=14 s =28 s=14 s=28 s=14 s =28 s=14 s =28
1 89.7+06 89.1+04 89.6+0.6 89.1+04 870+08 858+11 872+09 858+0.8
5 91.7+04 91.1+05 91.6+03 912+06 899+17 8388+18 89.8+17 88.7+1.7
10 919+0.5 914+05 91.9+05 915+04 903+£10 89.0£05 902+1.1 89.0£0.6
20 916 0.6 912+03 91.6+04 912+04 900+1.1 89.0+£05 89.8+1.1 889+0.6
50 9144+09 907+06 913+1.0 90.7+05 888+1.1 838.6+08 8389+1.1 88.5+0.8
100 909 +11 901+06 909+11 900+05 882+10 87610 83.1+1.0 87609

Input |mage (1536x2048)

Input patch row (1-12)

Conditional PE (12x16)
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Figure 6: The conditional position encoding [8] of a non-squared input image is represented. The PE is image-dependent and captures

the local interactions between tokens.

than its ScoreNet/4/3 counterpart. The respective proper-
ties of these two variants are subject to Sec. [C.1]

C.1. ScoreNet Under the Magnifying Glass

Just a Glorified Low-resolution ViT? We explore the us-
age of high-resolution images for predictions. For that
purpose, at test time, we mask 75% of the selected high-
resolution regions and report the obtained results in Ta-
ble As expected, we observe that the ScoreNet/4/3
variant uses the high-resolution content more. Furthermore,
these results shed light on how the high-resolution informa-
tion is not equally relevant for each class. An interesting
observation is that for each variant of ScoreNet, the higher
the performance of a given model is, the more it is affected
by the removal of the high-resolution information (see Ta-

ble[12).

Table 12: The performance drop incurred by the high-
resolution masking operation of individual models is moni-
tored. The models that rely the most on the high-resolution con-
tent are the ones that perform the best.

ScoreNet/4/1 ScoreNet/4/3
633 =25 27+02|633 2% 605+0.1
638 2% 616401 | 648 2% 596403
649 22 627403650 2% 586403

Despite that, we expected a more considerable drop in
performance from this masking operation, which raises the
question; is ScoreNet nothing but a glorified low-resolution
ViT? To answer that question, we train the same ViT as the
one used in the recommendation stage and the same setting,
but basing the predictions on the scorer’s [CLS] tokens and
hence without the feedback from the high-resolution stage.
Table [13| clearly shows a gap of almost 10% compared to



Table 8: A weighted k£ Nearest Neighbors classifier assesses the learned features’ discriminability (weighted F1-score) on the
low-resolution BACH and BRACS datasets. A fixed and absolute PE (2D sine-cos)’s performances are compared to a learnable and
conditional PE (CPVT and CPVT-GAP). The k-NN classifier is trained on the merged train/valid set and evaluated on the test set (BRACS),
and a 4-fold approach with 75%/25% train/test splits is used for BACH dataset.

BACH BRACS
2D sine-cos CPVT CPVT-GAP 2D sine-cos CPVT CPVT-GAP
k Teacher Student Teacher Student Teacher Student Teacher Student Teacher Student Teacher Student
1 760 £34 750+40 76.6+29 77.7+20 785+64 7T74+5.1 422 423 49.6 49.2 54.3 55.0
5 746 +42 756+42 768+30 763+37 81.7+32 81.0+4.0 453 45.7 53.3 53.2 56.1 55.8
10 763+41 756+46 763+50 760+52 77.8+28 77.9+34 47.2 46.3 54.3 54.5 56.4 56.7
20 739435 739435 757+£53 729458 763+3.0 76.5+4.0 48.2 47.6 53.3 51.5 58.0 57.6
50 735+43 73.0+4.1 742+51 73.4+£65 747+47 7T43+£57 47.0 473 50.8 49.7 57.5 56.9
100 72.84+37 730+3.1 73.6+£58 714+74 740+55 73.6+59 45.5 45.0 48.4 48.1 54.0 53.7

Table 9: A weighted k Nearest Neighbors classifier assesses the
discriminability (weighted F1-score) of the learned features on
the tile CAMELYONI6 dataset (see Sec.[B.3). A fixed and abso-
lute PE (2D sine-cos)’s performances are compared to a learnable
and conditional PE (CPVT and CPVT-GAP). A 4-fold approach
with 75%/25% train/test splits is used.

2D sine-cos CPVT CPVT-GAP

k Teacher Student Teacher Student Teacher Student

1 882+09 834+0.6 888+04 888+04 89.1+04 89.1+04
5 91.1+£09 91.0+1.0 909+05 909+0.6 91.1+05 91.2+0.6
10 912+£07 912+05 91.1+£04 91.1+£03 914+05 91.5+04
20 91.1+07 91.1+06 91.3+05 914+05 91.2+03 91.2+04
50 905+07 90.6+0.7 90.8+0.6 908+0.5 90.7+06 90.7+0.5
100 902+1.8 902+08 902+0.6 902+0.6 90.1+0.6 90.0=+0.5

ScoreNet’s results and, more interestingly, a gap of more
than 5% when compared to the same ViT, but trained with
the high-resolution feedback. The above results indicate
that high-resolution information distillation occurs dur-
ing the training of ScoreNet.

D. Computational Cost

Vision transformers heavily rely on the attention mecha-
nism to learn a high-level representation from low-level re-
gions. The underlying assumption is that the different sub-
regions of the image are not equally important for the over-
all representation. Despite this key observation, the com-
putation cost dedicated to a sub-region is independent of its
contribution to the high-level representation, which is in-
efficient and undesirable. Our ScoreNet attention mecha-
nism overcomes this drawback by learning to attribute more
computational resources to regions of high interest. Let us
consider a high-resolution input image z;, € REXHXW 5
low-resolution version of the image x; € RE*"*¥ is ob-
tained by applying a down-scaling factor s, as h = H/s
and w = W/s. The low-resolution image is fed to a scorer
model (recommendation stage), which recommends the re-
gions where to apply fine-grained attention. If this oper-
ation is implemented by a ViT, its computational cost is

2
o ( % . %) with P is the dimension of the patches in

low-resolution. Using a ViT as the scorer model, there is
a one-to-one mapping between the low-resolution patches
and the regions the model can process with fine-grained at-
tention; as a consequence, the dimension of the regions is
P, = s- P,. Attending to such regions with a patch size,

2
P,, has a computational cost of O ((f;z . %’;) ) and the

2
model processes k of them, hence O <k . (%’; . };—2) ) Fi-
nally, a coarse attention mechanism is applied to endow
the locally attended regions with contextual information.
This final step costs O (k?). On the other hand, a vanilla

ViT would attend uniformly across the whole image with
2
a cost of O ((5 . %) ) Importantly, we observe that

only the recommendation stage’s cost depends on the input
size; consequently, if this step is implemented as a ViT and
with a down-scaling ratio s € [8, 14], the asymptotic cost is
reduced by approximately two orders of magnitude, as we
typically used P, = P, in practice. At last, one can observe
that the asymptotic cost can be made linear w.r.t. the input
dimension by adopting a convolution-based architecture for
the recommendation stage.

E. ScoreMix Investigation & Examples

The underlying assumption of the “cut-and-paste”-based
augmentation methods is that the trained model can assimi-
late the pasted region to the representation of the target im-
age. In the case of ScoreNet, it translates to attending to the
pasted area in a low or high-resolution image. Fig.[7|depicts
an example of ScoreNet being able to detect and localize
the pasted regions even when the pasted region is small and
hard to distinguish. We further observe that a local change
in the image directly affects the global representations as the
representation of each token is adapted to accommodate the
local change in information. This behavior would typically



Table 10: The number of finely attended regions is selected by independently training our pipeline 5 times on 10% of the BRACS
dataset with a varying number of proposal regions. The number of training epochs is fixed and is the same for all experiments. The models
are trained with standard data augmentation methods, i.e., none of ScoreMix, SaliencyMix, or CutMix.

# Regions Normal Benign UDH ADH FEA DCIS Invasive Weighted F1
k=5 537+£52 440451 29.7+£53 288+68 693+42 569+65 869+32| 542+£1.8
k=10 521+62 44.0+39 31.0+£53 286+43 698+£36 564+39 859£14 | 540+08
k=20 5224+34 422+56 296+75 319+53 719+23 575+3.6 869+25| 547 +08
k=50 515+54 428+47 300£68 259+7.1 705+£40 558+52 857£09 | 533+25

Table 11: At test time, 75% of the selected high-resolution regions are randomly masked. ScoreNet/4/1 and ScoreNet/4/3 do not
equally rely on the high-resolution content.

Masking Normal Benign UDH ADH FEA DCIS Invasive | Weighted F1
ScoreNet/4/1 64.6£22 526428 484+22 474+24 779407 593+1.1 90.6=£15| 64.1+£0.7
Masked ScoreNet/4/1  61.1 £2.7 508 +14 459+22 410£35 788=+£05 599+33 90.6=+1.1| 624+0.6
“ScoreNet/4/3 643+ 15 540+£22 453+34 467+1.0 78.1+28 629+20 91.0+£14 | 644+£09
Masked ScoreNet/4/3 649 +24 51.7+05 444+40 220+62 776+10 608+1.6 872+13| 59.6+0.7

not be observed in a CNN-based architecture until the very
last layers. Fig. [7]further highlights the ability of ScoreMix
to treat images of different dimensions and aspect ratios.

F. Learning From Uncurated Data.

We gauge the ability of ScoreNet to learn from unla-
beled data on the BACH dataset [1]], which encompasses
both a small set of 400 annotated TRols images, and the
WSIs containing the aforementioned TRols. Our model
is first pre-trained using DINO’s self-supervised learning
scheme [5] on an unlabeled set of ~ 11k images extracted
from WSIs and then is evaluated on the labeled image set
using standard protocols, namely linear probing and k-NN
(see Table [T4). We also report the non-empty cluster’s pu-
rity for the clusters learned by DINO. This metric indicates
the quality of a cluster containing samples from a single
class. Learning from large uncurated images is particularly
challenging, as the increased receptive field allows for the
representation of more complex tissue interactions. This
further deviates from the discriminative pretext task’s as-
sumption that the images represent a single centered object.
Since the DINO method enforces a local-to-global corre-
spondence between large and smaller image crops, it may
enforce similarity between different tissue types. For that
purpose, we modify DINO’s pretext task so that the student
network only processes the highly discriminative patches to
match the teacher’s representation, allowing the processing
of all the high-resolution patches. To ensure that the pre-
text task does not encourage contextual biases [35], we only
employ augmentations that change the image pixels’ values,
but not their locations, such that the semantic content of the
two augmented views is identical. As can be observed in
Table[T4] this proposed strategy yields significant improve-
ments compared to other baselines.

Table 14: Comparison with the prior art for learning capabil-
ities from uncurated data on the BACH dataset using DINO’s
pre-training. A comparison results between the effectiveness of
DINO’s standard pretext task (ScoreNet) and the proposed unbi-
ased pretext task (ScoreNet ) are also reported.

ScoreNet" ScoreNet TransPath [43] SwinTransformer [24]
k-NN 73.7 £ 1.7 65.0 +3.7 652+ 1.4 63.7+4.1
Lin. eval ~ 73.0 + 2.9 66.0 + 2.6 642 +4.0 625+ 1.7
Purity 783+239 764+£249 740+£233 71.8 £23.9




Table 13: The ViT network of recommendation stage is trained without receiving any feedback from the high-resolution-based
predictions. Its features discriminability is significantly worth than that of the same model but trained jointly with the high-resolution

stage.
Model Normal Benign UDH ADH FEA DCIS Invasive | Weighted F1
ViT 533+28 428+19 371+29 324+£24 773£02 512+£13 8.0+18| 555=£0.1
Lin. scorer’s [CLS] 57.5+42 488455 427435 4274+74 743+£52 605+£24 906+02 | 609 +3.1
“ScoreNet/4/1 646 £22 52.6+28 484+22 474+24 779+07 59311 90.6+1.5| 64107
ScoreNet/4/3 643+15 540+22 453+34 467+10 781+28 629+20 91.0+14 | 644109

Source

Figure 7: The learned semantic distribution can detect and localize the newly pasted content. The green box highlights the region
pasted from the source to the target image. The blue box represents the region where the new content is pasted. The yellow box highlights
the modified region in the mixed image. T represents the scorer network of ScoreNet.



