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Figure 1. We introduce a new task of generating new images and their segmentation masks from a single training pair, without access to any
pre-training data. Under this challenging regime, our proposed GAN model (OSMIS) achieves a synthesis of a high structural diversity,
preserving the photorealism of original images and a precise alignment of produced segmentation masks to the generated content.

Abstract

Joint synthesis of images and segmentation masks with
generative adversarial networks (GANs) is promising to
reduce the effort needed for collecting image data with
pixel-wise annotations. However, to learn high-fidelity
image-mask synthesis, existing GAN approaches first need a
pre-training phase requiring large amounts of image data,
which limits their utilization in restricted image domains.
In this work, we take a step to reduce this limitation, intro-
ducing the task of one-shot image-mask synthesis. We aim
to generate diverse images and their segmentation masks
given only a single labelled example, and assuming, con-
trary to previous models, no access to any pre-training
data. To this end, inspired by the recent architectural de-
velopments of single-image GANs, we introduce our OS-
MIS model which enables the synthesis of segmentation
masks that are precisely aligned to the generated images
in the one-shot regime. Besides achieving the high fidelity
of generated masks, OSMIS outperforms state-of-the-art
single-image GAN models in image synthesis quality and
diversity. In addition, despite not using any additional
data, OSMIS demonstrates an impressive ability to serve
as a source of useful data augmentation for one-shot seg-
mentation applications, providing performance gains that
are complementary to standard data augmentation tech-
niques. Code is available at https://github.com/
boschresearch/one-shot-synthesis.

1. Introduction

Deep neural networks have been shown powerful at
solving various segmentation problems in computer vision
[8, 10, 17, 26, 24, 35]. The success of these segmentation
models strongly relies on the availability of a large-scale
collection of labelled data for training. Nevertheless, anno-
tation of a large dataset is not always feasible in practice
due to a very high cost of manual labelling of segmenta-
tion masks [7]. For example, accurately labelling a single
image with many objects can take more than 30 minutes
[38]. Therefore, diminishing the human effort required for
obtaining diverse and precisely aligned image-mask data is
an important problem for many practical applications.

Recently, several works [33, 38, 18, 29] proposed to
tackle this issue by jointly generating images and segmen-
tation masks with generative adversarial networks (GANs).
Utilizing a few provided pixel-level annotations in addition
to an image dataset for training, such GAN models become
a source of labelled data that can be used to train neural net-
works in various practical applications. Despite achieving
impressive synthesis of segmentation masks based on lim-
ited annotated examples, existing image-mask GAN models
still require large pre-training image datasets to learn high-
fidelity image synthesis. This naturally restricts their ap-
plication only to the data domains where such datasets are
available (e.g., images of faces or cars). However, in some
practical scenarios such a dataset can be difficult to find, for
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Training pair SemanticGAN [18] DatasetGAN [38] OSMIS

Figure 2. A comparison to SemanticGAN [18], trained on a single image-mask pair (in red), and DatasetGAN [38], pre-trained on a single
image and trained on a single manual mask annotation. Both models suffer from memorization, while SemanticGAN also has poor quality
due to training instabilities. In contrast, OSMIS avoids mode collapse and generates diverse high-quality samples. This is achieved by
means of a discriminator that judges the realism of different objects separately, which prevents memorization of the whole given image.

example in one-shot segmentation applications [1], where
the object types can be rare. Therefore, in this work we aim
to learn a high-fidelity joint mask and image synthesis hav-
ing as little limitations on the data domain as possible. To
this end, we propose a novel GAN training setup, in which
we assume availability only of a single training image and
its segmentation mask, not relying on any image dataset for
pre-training (see Fig. 1). After training, we aim to generate
diverse new image samples and supplement them with accu-
rate segmentation masks. To the best of our knowledge, we
are the first to consider such a training scenario for GANs.

Training a GAN from a single training sample is well
known to be challenging due to the problem of memoriza-
tion [23], as in many cases the generator converges to re-
producing the exact copies of training data. For example,
as shown in our experiments, this issue occurs in the prior
image-mask GAN models from [18, 38] (see Fig. 2). Re-
cently, the issue of memorization has been mitigated in the
line of works on single-image GANs, which enabled diverse
image synthesis from a single training image [30, 12, 31].
Inspired by these models, we aim to extend this ability to a
joint synthesis of images and segmentation masks. To this
end, we propose a new model, introducing two modifica-
tions to conventional GAN architectures. Firstly, we intro-
duce a mask synthesis branch for the generator, enabling the
synthesis of segmentation masks in addition to images. Sec-
ondly, to ensure that the produced segmentation masks are
precisely aligned to the generated image content, we pro-
pose a masked content attention module for the discrimi-
nator, allowing it to judge the realism of different objects
separately from each other. This way, to fool the discrimi-
nator, the generator is induced to label synthesized images
accurately. In effect, our proposed model enables a struc-
turally diverse, high-quality one-shot joint mask and image
synthesis (see Fig. 1), and we thus name it OSMIS. As we
show in our experiments, compared to prior single-image
GANs [30, 12, 31], OSMIS not only offers an additional
ability to generate accurate segmentation masks, but also
achieves higher quality and diversity of generated images.

Despite using only a single image-mask pair for train-
ing, OSMIS can generate a set of labelled samples of a high

structural diversity, which sometimes cannot be achieved
with standard data augmentation techniques (e.g., flipping,
zooming, or rotation). For example, for a given scene, OS-
MIS can change the relative locations of foreground objects
or edit the layout of backgrounds (see Fig. 1, 4, 5). More-
over, in contrast to [18, 38], OSMIS can successfully han-
dle masks of different types, e.g., having class-wise (see
Fig. 1) or instance-wise (see Fig. 4) annotations. This sug-
gests a good potential of our model to serve as a source
of additional labelled data augmentation for practical appli-
cations. We demonstrate this potential in Sec. 4.2, where
we apply OSMIS at the test phase of one-shot video ob-
ject segmentation [26] and one-shot semantic image seg-
mentation [1]. The results indicate that the data generated
by OSMIS helps to improve the performance of state-of-
the-art networks: OSVOS [6], STM [25], and RePRI [5],
providing complementary gains to standard data augmen-
tation. We find these results promising for utilization of
one-shot image-mask synthesis in future research.

2. Related Work
GANs generating segmentation masks. Recently, it

was observed that a GAN generator, trained on a large
dataset, implicitly learns discriminative pixel-wise features
of the generated scene objects [33]. Thus, several works
proposed to collect feature activations from different gen-
erator layers and transform them into a segmentation mask
using a small decoder. RepurposeGAN [33] and Dataset-
GAN [38] proposed to train the decoder using a handful of
manually annotated generated images. LinearGAN [36] re-
placed manual annotations by the predictions of an external
segmentation network. Alternatively, SemanticGAN [18]
and EditGAN [21] enforced the alignment between gener-
ated images and masks with the loss from an additional dis-
criminator, which takes both images and masks as inputs.

Although the above models require only a few masks
to achieve high-quality image-mask synthesis, they are not
successful when the number of training images is not suf-
ficient. For example, DatasetGAN and SemanticGAN suf-
fer from instabilities and memorization issues when trained
on a single image-mask pair (see Fig. 2 and A in the sup-
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Figure 3. OSMIS model. A simple mask synthesis branch in the generator G allows the generation of segmentation masks of objects
together with images. The precise alignment between the masks and the generated image content is enforced by a masked content attention
(MCA) module in the discriminator D, designed to evaluate the realism of different objects separately from each other.

plementary material.). In contrast, our model learns in this
regime successfully, as it does not rely on large-scale pre-
training data. As shown in experiments, this makes our
model better suited for the scenarios dealing with restricted
data domains, such as one-shot segmentation applications.
Furthermore, our model is trained in a purely adversarial
fashion without any additional overhead, e.g., not requiring
manual annotations of generated images, external segmen-
tation networks, or additional discriminators.

Single Image GANs. A line of works investigated un-
conditional GAN training using only a single image. Un-
der such critically low-data regime, the models are suscep-
tible to training instabilities, as the discriminator can sim-
ply memorize the training sample and provide uninforma-
tive gradients to the generator [14]. SinGAN [30] pro-
posed to mitigate this issue using a cascade of GANs, where
each GAN stage is restricted to learn only the patch dis-
tribution at a certain image scale. ConSinGAN [12] im-
proved the performance and efficiency of SinGAN by re-
balancing the training of different GAN stages and by train-
ing several stages concurrently. Since then, numerous fur-
ther variations of multi-stage GAN training have been pro-
posed [2, 9, 4, 11]. More recently, One-Shot GAN [31] pro-
posed a two-branch content-layout discriminator, trained as
a single stage, enabling the synthesis of images with content
and layouts significantly differing from the original sam-
ple. Our paper has a similar motivation to the above works,
since we also aim to train a GAN model on a single data
instance. However, we extend the single image setup with
the synthesis of segmentation masks, which no prior work
has considered, to the best of our knowledge.

3. Method
Given a single image with its pixel-level segmentation

mask and assuming no access to any pre-training data, we
aim to generate a diverse set of new image-mask pairs. In
this section, we present OSMIS, our one-shot image-mask
synthesis model. Adopting One-Shot GAN [31] as a state-
of-the-art image synthesis baseline (Sec. 3.1), we propose
modifications to the generator and discriminator architec-

ture, enabling one-shot synthesis of segmentation masks
that are precisely aligned with generated images (Sec. 3.2).

3.1. One-Shot GAN baseline

As the baseline network architecture, we select the state-
of-the-art model One-Shot GAN [31], as it achieves the
highest quality and diversity of one-shot image synthesis
among previous works. One-Shot GAN proposed a two-
branch discriminator, in which an input image x is first
transformed into a feature representation F (x) by a low-
level discriminator Dlow−level. Next, two separate discrim-
inators assess different aspects of F (x). The content dis-
criminatorDcontent judges the realism of objects regardless
of their spatial location by averaging out the spatial infor-
mation contained in F (x) via global average pooling. On
the other hand, the layout discriminator Dlayout evaluates
the realism only of the spatial scene layouts by squeezing
F (x) with a one-channel convolution. In addition, the dis-
criminator applies feature augmentation in the content and
layout representations of F (x) to further increase the high-
level diversity among generated samples. The adversarial
loss of the One-Shot GAN model consists of three terms:

Ladv(G,D) = LDcontent
+ LDlayout

+ 2LDlow-level
, (1)

where each term is the mean of binary cross entropies ob-
tained at different layers of respective discriminator parts.

3.2. OSMIS model

In contrast to one-shot image synthesis, we assume that
the single training image is provided with its pixel-level
mask of objects, not assuming any fixed annotation type
(e.g., class-wise or instance-wise). To incorporate it into
the training process, we introduce two modifications to the
architecture of the baseline model. Firstly, we propose to
generate segmentation masks simultaneously with images
via an additional generator’s mask synthesis branch. Sec-
ondly, to enforce the precise mask alignment to the gen-
erated image content, we re-formulate the objective of the
content discriminator Dcontent, designing it to judge the fi-
delity of different objects separately from each other. This
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is made possible by the introduced masked content attention
module, which builds a separate content feature vector for
each object considering the provided segmentation mask.
The overview of our model architecture is shown in Fig. 3.
Next, we describe the proposed modifications in detail.

Mask synthesis branch in the generator. In line with
[33, 38], we hypothesize that during training the genera-
tor should be able to learn discriminative features that com-
pletely describe the appearance of generated objects. Thus,
while synthesizing an image, we collect feature activations
of the generator layers and use them as input for the mask
synthesis branch. In contrast to [33, 38], we use only the ac-
tivations after the last generator block, as this simplest solu-
tion already performs well in our experiments. Using a sim-
ple convolution followed by a softmax activation, we trans-
form these features into an N -channel soft probability map,
where each channel corresponds to one of N − 1 objects of
interest in the segmentation mask or to the background. To
obtain the final discrete mask prediction, an argmax opera-
tion T along the channel dimension is applied.

To enable the training of the mask synthesis branch with
the discriminator loss, the generated masks should allow
back-propagation of gradients, similarly to generated im-
ages. In our experiments, feeding the discriminator the con-
tinuous segmentation probability maps obtained before the
non-differentiable argmax operation T impaired the GAN
training, as the discriminator learnt to detect the continuous-
discrete discrepancy between fake and real inputs. Thus,
inspired from [34, 3], we enable back-propagation through
argmax by developing a straight-through gradient estimator:

MaskArgmax(y) = y + T (y)− sg[y], (2)

where sg denotes a stop-gradient operation. This way,
the discriminator is provided with the generated masks in
a discrete form T (y), which enables its effective training,
while the generator can be trained with the gradients pass-
ing through its probability map prediction y.

Yet, this solution can sometimes lead to degenerate so-
lutions, e.g., when all the pixels are predicted as the back-
ground channel. This cannot be corrected during training,
as in this case the gradient flow through all the other mask
channels is blocked. We found that it can be mitigated by
softening the argmax operation T at the beginning of train-
ing. For this, during the firstP0 epochs we regard each mask
pixel as a random variable following Bernoulli distribution:

T (y) =

{
∼ Bernoulli(y) epoch < P0,

argmax(y) epoch ≥ P0.
(3)

Masked content attention in the discriminator. To
provide a training signal to the generator’s mask synthesis
branch, we propose to incorporate the learning of the image-
mask alignment to the objective of the content discrimina-
tor Dcontent. In [31], Dcontent was designed to judge the

content distribution of the whole given image. Consider-
ing the provided segmentation mask, we can now select the
image areas belonging to different objects, and require the
discriminator to learn their appearance separately from each
other. With this objective, as the discriminator can compare
the appearance of the area belonging to the same object in
real and fake images, it encourages the generator not only to
synthesize realistic objects, but also to label them correctly.

To this end, we introduce a masked content attention
(MCA) module. As shown in Fig. 3, MCA receives a
downsampled segmentation mask y along with an interme-
diate feature representation F (x) = Dlow−level(x) of an in-
put image x, and thereout produces a set of N content vec-
tors, corresponding to the masked content representations
of each of the N −1 objects of interest and the background:

MCA(x, y) = {AvgPool (F (x)× 1y=i)}Ni=1. (4)

Accordingly, we re-design the objective of the content
discriminator (further denoted Dobject). For each of the ob-
tained object representations, our proposed Dobject is in-
duced to predict a correct identity of each object or back-
ground of a real image, while all the identities of fake im-
ages should be categorized as an additional fake class:

LDobject
=−E(x,y)

[
N∑
i=1

αi logDi
object(MCAi(x, y))

]

−Ez

[
N∑
i=1

log(1−Dfake
object(MCAi(G(z)))

]
,

(5)
where z is the noise vector used by the generator G to syn-
thesize a fake image-mask pair G(z) = {Gx(z), Gy(z)},
(x, y) denotes the real image-mask pair, and Di(∗) is the
discriminator logit for the object i. Considering that differ-
ent objects or background can occupy different areas, we
introduce a class balancing weight αi, which is the inverse
of the per-pixel class frequency in the segmentation mask y:

αi =
(sum(1y=i))

−1∑N
j=1(sum(1y=j))−1

. (6)

Note that the balancing is applied only for real images, as
in Eq. 5 all fake objects are considered as the same class.

Our Dobject learns the content distribution of each ob-
ject separately. The advantage of such a training scheme
is two-fold. Firstly, a generator now needs to synthesize
correct segmentation masks in order to fool the discrimi-
nator. The precise image-mask alignment is thus enforced
directly by the adversarial loss, without the need for us-
ing additional networks or manual annotation. Secondly,
as MCA provides representations only of separate objects,
Dobject has restricted access to the content distribution of
the whole image. In effect, the discriminator memorization
of the whole training sample becomes more difficult, which
enables more diverse image synthesis (see Table 3).
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Training pair Generated samples Training pair Generated samples

Figure 4. Qualitative results of OSMIS on DAVIS [26]. Given a single image-mask pair for training, our model achieves high-fidelity image
synthesis with a high structural diversity, changing the positions of objects or editing the layout of backgrounds. For each synthesized
image, it produces segmentation masks that accurately annotate the generated content. Training pairs are shown in red frames.

Training pair Generated samples Training pair Generated samples

Figure 5. Qualitative results of OSMIS on COCO [20]. OSMIS successfully deals with different scene types and annotation styles. For
example, it achieves high quality and diversity for both indoor and outdoor scenes, or sparse and dense annotations of foreground objects.

4. Experiments
We evaluate our model as follows. Firstly, we provide

the qualitative and quantitative assessment of the achieved
one-shot image-mask synthesis, evaluating the quality and
diversity of generated images, as well as their alignment to
the produced segmentation masks (Sec. 4.1). Secondly, we
apply OSMIS to two one-shot segmentation applications,
demonstrating the potential of the generated image-mask
pairs to be used as data augmentation (Sec. 4.2).

4.1. Evaluation of one-shot image-mask synthesis

Training details. We train our model with the loss
from Eq. (5) for the object discriminator Dobject, setting
P0=15000. We employ differentiable augmentation (DA)

of input images and masks while training the discrimina-
tor, using the whole set of transformations as proposed in
[14]. We use an exponential moving average of the gen-
erator weights with a decay of 0.9999, and follow [31] in
setting all the other hyperparameters. More training details
are shown in the supplementary material.

Datasets. To evaluate the synthesis, we use the DAVIS
dataset [26], originally introduced for video object segmen-
tation. For each video from the DAVIS-17 validation split,
we take the first frame and its segmentation mask of objects,
which results in 30 image-mask pairs on which we train sep-
arate models. The resolution is set to 640x384. For addi-
tional visual results, we use samples from COCO [20], try-
ing to closely fit their resolution. Note that the datasets have
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Method SIFID↓ LPIPS↑
SinGAN [30] 0.131 0.267
ConSinGAN [12] 0.103 0.296
One-Shot GAN [32] 0.091 0.347
OSMIS (ours) 0.073 0.387

Table 1. Comparison of image quality and diversity to single-
image GANs on DAVIS-17. Bold denotes the best performance.

Method SIFID↓ LPIPS↑ mIoU
DatasetGAN [38] 0.118 0.007 91.1*
SemanticGAN [18] 0.211 0.012 65.8
OSMIS (ours) 0.073 0.387 86.6

Table 2. Comparison to prior image-mask GANs on DAVIS-17.
Bold denotes the best performance. Red indicates mode collapse.
* Indicates manual annotation of masks for DatasetGAN training.

different annotation types (class-wise and instance-wise).
Metrics. To mind a possible quality-diversity trade-off

in our one-shot regime [27, 19], we assess the quality and
diversity of generated images separately. For this, we report
the average SIFID [30] as the measure of image quality,
while the average LPIPS [37] between the pairs of gener-
ated images is used to assess the diversity of synthesis.

On the other hand, evaluating the quality of generated
masks is challenging, because generated images do not have
ground truth segmentation annotations. To bypass this is-
sue, we propose to evaluate the alignment between gener-
ated masks and synthetic images using an external segmen-
tation network. For this, we take a UNet [28] and train it
on the generated image-mask pairs for 500 epochs. After
training, we compute its mIoU performance on the origi-
nal real image, augmented with standard geometric trans-
formations. Intuitively, a good performance on this test re-
veals that synthetic masks describe well the objects from
the real data, indicating precise alignment between the gen-
erated images and their masks.

Qualitative results. Fig. 4 and 5 show image-mask pairs
generated by OSMIS trained on samples from DAVIS and
COCO. Given only a single image-mask pair, our model
learns to generate new image-mask pairs, demonstrating a
remarkable structural diversity among samples, photoreal-
ism of synthesized images, and a high quality of generated
annotations. For example, OSMIS can re-synthesize the
provided scene with a different number of foreground ob-
jects, e.g., more dogs (3rd example in Fig. 4), less people
(2nd example in Fig. 5), or edit layouts of backgrounds (1st

examples in Fig. 4-5), in all cases providing accurate seg-
mentation masks for the re-synthesized scenes. We note
that reaching such structural differences to training data si-
multaneously with photorealism is extremely difficult from
a single sample. For example, it could not be achieved with
DatasetGAN or SemanticGAN due to memorization issues
and training instabilities (see Fig. 2). Lastly, we remark that

Mask supervision SIFID↓ LPIPS↑ mIoU
None 0.071 0.368 -
Projection [22] 0.071 0.362 72.1
Input concat. 0.079 0.328 82.4
SemanticGAN Dm [18] 0.074 0.351 83.3
MCA (ours) 0.073 0.387 86.6

Table 3. Comparison of MCA to other mask synthesis supervi-
sion mechanisms on DAVIS-17. Red indicates decreased diversity
compared to the baseline. Bold denotes the best performance.

OSMIS successfully deals with very different scene types
(e.g., both indoor and outdoor scenes), supports masks with
both sparse and dense object annotations (e.g., foreground
objects occupying small or large image areas), and can han-
dle masks with many objects or even separate instances of
the same semantic class (e.g., fish in 4th example in Fig. 4).

Quantitative results. We compare the quality and di-
versity of generated images to the single-image GAN mod-
els SinGAN [30], ConSinGAN [12] and One-Shot GAN
[31]. The image-mask synthesis is compared to the pre-
vious methods DatasetGAN [38] and SemanticGAN [18].
We use the official repositories provided by the authors.

The quantitative comparison of the image synthesis to
single-image GAN models on DAVIS-17 is presented in
Table 1. Compared to these models, OSMIS not only of-
fers an additional ability to generate segmentation masks,
but also achieves higher image quality and diversity. As
seen in Table 1, despite a potential trade-off between SIFID
and LPIPS, our model outperforms previously published
baselines in both metrics by a notable margin. Further, Ta-
ble 2 demonstrates that prior image-mask methods, Dataset-
GAN and SemanticGAN, suffer from instabilities and fail to
achieve diverse synthesis, scoring very low in LPIPS.

Ablations. In Table 3 we compare the proposed masked
content attention module (MCA) with three alternative dis-
criminator mechanisms to provide supervision for the gen-
erator’s mask synthesis branch. The simplest baseline is to
concatenate the input masks to images, requiring the dis-
criminator to judge their realism jointly. Another method is
to use projection [22], by taking the inner product between
the last linear layer output of Dlow-level and the pixel-wise
linear projection of the input mask. Finally, we compare
to the approach of SemanticGAN [18], adding a separate
discriminator network Dm which takes both segmentation
masks and images, and propagate its gradients only to the
generator’s mask synthesis branch. While training these
baselines, we preserve all the OSMIS hyperparameters, but
remove the MCA and use the original Dcontent as in [31].
As seen from mIoU in Table 3, MCA enables the genera-
tion of segmentation masks with the best alignment to the
generated image content, as measured by an external seg-
mentation network. Notably, while all the alternative meth-
ods negatively affect diversity, MCA improves it (0.387 vs
0.368 LPIPS), highlighting its regularization effect which
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Training pair Nlow-level = 1 Nlow-level = 2 Nlow-level = 3 Nlow-level = 4 Nlow-level = 5

Figure 6. Trade-off between the image and mask quality when varying the number of Dlow-level discriminator blocks. Increased number
improves image quality, but harms the ability of masks to capture fine-grained object details due to stronger downsampling during training.

Nlow-level SIFID↓ LPIPS↑ mIoU
1 0.262 0.395 82.4
2 0.165 0.404 87.1
3 0.102 0.394 86.9
4 0.073 0.387 86.6
5 0.070 0.321 83.9

Table 4. Ablation on the number of Dlow-level discriminator blocks
on DAVIS-17. Bold denotes the best performance.

prevents the discriminator memorization of training data.
While enabling on average higher image diversity and

mask quality, we found that MCA can struggle if the train-
ing sample contains annotations of fine-grained object de-
tails, due to downsampling of input masks. This is illus-
trated in Fig. 6 and Table 4, for which we train OSMIS
with different numbers of low-level discriminator blocks
Nlow-level, corresponding to different degrees of mask down-
sampling. We observe a trade-off between the quality of
images and masks: decreasing Nlow-level improves the im-
age diversity and pixel-level mask fidelity, but harms im-
age quality. We selected Nlow-level = 4 as a compromise
between the metrics in Table 4, even though this configura-
tion sometimes fails to annotate small object details (as in
Fig. 6). Note that despite this limitation, MCA still outper-
forms alternative methods that do not use downsampling on
DAVIS-17 (see Table 3), and leads to image-mask pairs that
are more useful as data augmentation, as discussed next.

4.2. Application to one-shot segmentation tasks

After training, OSMIS can augment the provided image-
mask pair with novel diverse samples. As such diversity
(edited backgrounds, objects changing relative locations) is
difficult to achieve by means of standard data augmentation,
we foresee a potential usage of our model as a source of la-
belled data augmentation. Thus, in what follows, we test the
efficacy of OSMIS generations when applied at test phase
of two one-shot segmentation applications.

One-shot video object segmentation. We apply our
model to the semi-supervised one-shot video segmentation
benchmark DAVIS [26]. At test phase, this task provides
a video and the segmentation mask of objects only in the

Network Augmentation: DAVIS-16 DAVIS-17
Standard Ours

OSVOS [6]

7 7 76.9 51.3
3 7 78.5 (80.2) 52.9 (52.8)

7 3 78.2 52.6
3 3 79.8 54.2

STM [25]

7 7 89.7 (89.4) 72.4 (72.2)

3 7 89.9 72.4
7 3 90.1 72.6
3 3 90.2 72.7

Table 5. Effect of data augmentation on the mean of mIoU and
contour accuracy (J&F) of one-shot video object segmentation.
Bold denotes the best performance. Round brackets show the re-
sults reported in [6, 25]. Reproduced and reported numbers for
OSVOS differ as its official code lacks some model components.

first frame, while a model is required to segment all the re-
maining video frames. We select two popular models from
the literature: OSVOS [6], which fine-tunes the network
weights on the first video frame and segments other frames
independently, and STM [25], which propagates the seg-
mentation prediction sequentially using a space-time mem-
ory module. We conduct experiments on two DAVIS splits:
DAVIS-16, having 20 videos with a single annotated object;
and its extension DAVIS-17, having 30 videos with multi-
instance annotations. To evaluate the video segmentation,
we compute the average of the mean mIoU region similarity
(J ) and the mean contour accuracy (F) across all videos,
which is a popular metric for this task [26].

One-shot semantic image segmentation. The sec-
ond setup is the one-shot image segmentation benchmark
COCO-20i [20]. In this task, a segmentation model is first
trained on a large dataset. At test phase, the model is given
a single image-mask pair (support set) with an object of a
previously unseen test class, and is then required to seg-
ment another sample (query image) containing instances of
the same class. We conduct experiments with the state-of-
the-art RePRI network [5]. COCO-20i contains 80 classes,
which are divided into 4 folds, with 60 base and 20 test
classes in each fold. To test OSMIS, we randomly selected 5
support samples for each test class, resulting in 100 image-
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Network Augmentation: COCO0 COCO1 COCO2 COCO3

Standard Ours

RePRI [5]

7 7
31.2 38.3 32.9 33.2
(31.2) (38.1) (33.3) (33.0)

3 7 31.8 38.5 33.4 33.8
7 3 32.4 38.7 33.7 34.3
3 3 32.8 39.0 34.1 34.6

Table 6. Effect of synthesized data augmentation on mIoU of one-
shot image segmentation. In each data split, support examples
were sampled from a subset of 100 image-mask pairs, for which
our model was trained. Bold denotes the best performance. The
round brackets contain the numbers reported in [5].

mask pairs in each of the folds, and trained OSMIS on all
of them separately. The performance of this task is evalu-
ated separately for each fold, using the average mIoU across
many different support-query examples.

Experimental setup. For both applications, we train
OSMIS on the single given image-mask pair (the first video
frame or support sample). We try to closely fit the resolu-
tion of each image from COCO, and set a fixed resolution
of 640x384 for images from the DAVIS benchmark. Af-
ter training, we generate a pool of synthetic image-mask
pairs consisting of n = 100 samples. As OSMIS can oc-
casionally fail and synthesize noisy examples, we compute
the SIFID metric [30] for each generated image as a mea-
sure of its quality. Ranking the images by the average of
SIFID ranks at different InceptionV3 layers, we exclude
bad-quality samples by filtering out 15% lowest-ranked im-
ages. Finally, we add the remaining synthetic samples to the
original image-mask pair as data augmentation. See more
setup details in Sec. B of the supplementary material.

Among the used segmentation models, only OSVOS [6]
applies data augmentation at test phase (random combina-
tions of image-mask flipping, zooming, and rotation). Thus,
in experiments we compare our synthetic data augmentation
to this pipeline (referred to as standard augmentation).

Results. The performance of segmentation networks us-
ing different data augmentation is shown in Tables 5 and 6.
To account for the variance between runs, all the results are
averaged across 5 runs with different seeds for augmenta-
tion. We generally managed to reproduce the official re-
ported numbers closely, with the exception of OSVOS, for
which the official codebase1 does not implement the model
in full configuration. As seen in Tables 5 and 6, the syn-
thetic data augmentation produced by OSMIS yields a no-
table increase in segmentation performance, on average im-
proving the metrics of OSVOS and STM by 1.3 and 0.3
J&F points, and RePRI by 0.9 mIoU points compared to
the models using no data augmentation. Despite a possi-
ble mismatch between OSMIS training resolution and tar-
get image size (e.g., 640x384 vs 854x480 for DAVIS) and

1https://github.com/kmaninis/OSVOS-PyTorch

Synthesis method OSVOS, DAVIS-16 RePRI, COCO0

J&F mIoU
Reference w/o synth. augm. 78.5 31.8
SemanticGAN [18] 73.1 29.4
DatasetGAN [38] 77.8 30.9
Projection [22] 78.4 30.9
Input concat. 79.3 31.9
SemanticGAN Dm [18] 79.5 32.3
MCA (ours) 79.8 32.8
Table 7. Impact on the performance of synthesized data produced
with different models and mask supervision methods. The refer-
ence performance is obtained using standard data augmentation.
Bold denotes the best performance.

the need for image resizing, our synthetic data augmenta-
tion consistently outperforms standard data augmentation
for STM and RePRI, and is almost on par for OSVOS,
which was originally tuned for training with standard data
augmentation. These results validate the ability of OSMIS
to generate structurally diverse data augmentation of suffi-
cient quality in the one-shot regime. Finally, we note that
the effect of OSMIS generations is complementary to stan-
dard data augmentation, as the best results for all models are
observed when the two pipelines are used in combination.

Table 7 demonstrates the efficiency of synthetic data aug-
mentation obtained with different GAN models. The pre-
vious image-mask models DatasetGAN and SemanticGAN
both show poor applicability in the scenario of one-shot
applications due to poor synthesis performance. Further,
among the comparison methods for mask synthesis supervi-
sion, the strongest increase in performance is achieved with
our proposed MCA module. This indicates that the high
synthesis diversity and precise image-mask alignment (see
Table 3) are the keys to achieve useful data augmentation.

5. Conclusion
We presented OSMIS, an unconditional GAN model that

can learn to generate new high-quality image-mask pairs
from a single training pair, not relying on any pre-training
data. In such a low-data regime, our model generates pho-
torealistic scenes that structurally differ from the original
samples, while the produced masks are precisely aligned to
the generated image content. Although the synthesis of OS-
MIS is inherently constrained by the appearance of objects
in the original sample, it can serve as a source of useful
data augmentation for one-shot segmentation applications,
providing complementary gains to standard image augmen-
tation. Thus, we find using one-shot image-mask synthesis
in practical applications promising for future research.
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One-Shot Synthesis of Images and Segmentation Masks
Supplementary material

A. Qualitative comparisons to prior image-
mask GAN models

A qualitative comparison of OSMIS to prior image-mask
GAN models, SemanticGAN [18] and DatasetGAN [38],
is presented in Fig. A, corresponding to the quantitative
comparison of these models from Table 2. The displayed
samples were generated with a checkpoint that achieved
the lowest SIFID [30]. Like OSMIS, SemanticGAN was
trained from scratch, using a single provided image-mask
pair as real data. On the other hand, the training of Dataset-
GAN consisted of two stages: pre-training of the StyleGAN
[15] backbone architecture on the single provided training
image, and training a label synthesis branch with manual
segmentation annotations of generated images. In our one-
shot setup, since StyleGAN typically collapsed to generat-
ing the same image, annotating a single generated sample
was enough to train the label synthesis branch.

As seen from Figure A, both SemanticGAN and Dataset-
GAN suffer from memorization issues, always producing
the same image that repeats the layout of the training sam-
ple. In Table 2 this is reflected in very low LPIPS diversity
scores achieved by both models. In addition, SemanticGAN
shows unstable training in our one-shot regime, which re-
sults in a low visual quality of generated images and noisy
annotations (note poor performance in SIFID and mIoU in
Table 2). For DatasetGAN, we observed no such instabil-
ities, which made the manual annotation of generated im-
ages straightforward. Despite a good visual image quality
and accurate manual annotation of masks (high mIoU in Ta-
ble 2), the low diversity of DatasetGAN prevents it from
producing useful data augmentation for one-shot segmenta-
tion tasks (see Table 7).

In contrast, OSMIS achieves high diversity and visual
quality of generated image-masks at the same time. For ex-
ample, in the examples from Fig. A our model can change
the number of sails, horse riders, sumo wrestlers, or cars, at
the same time editing the layout of the backgrounds, while
still preserving the realism of objects. Such structural di-
versity of OSMIS enables its effective generation of data
augmentation for one-shot segmentation tasks (see Sec 4.2).

B. Additional details on the application of OS-
MIS to one-shot segmentation tasks

B.1. Details of the experimental setup

Tables 5 and 6 show the performance of one-shot
segmentation networks using different data augmentation

strategies. The simplest strategy is to use no data augmen-
tation, when the fine-tuning of networks is performed only
on a single provided image-mask pair. When fine-tuning
with our synthesized data augmentation, we extend the pool
of the available data with 85 filtered samples generated by
OSMIS. Finally, when adding standard data augmentation
to the two previous strategies, we apply random combina-
tions of image-mask flipping, zooming, and rotation to the
samples from the pool. The exact method of utilizing data
augmentation depends on the segmentation network, as de-
scribed next.

OSVOS [6] fine-tunes weights of a pre-trained segmen-
tation network on the image and mask of the first frame of a
given video sequence. At each fine-tuning epoch, we dou-
ble the batch size and randomly add generated image-mask
pairs to the original data. Therefore, we keep the 50%-50%
ratio between real and synthetic data, which we found to
yield the best video segmentation performance.

STM [25] scans a given video sequence frame-by-frame,
starting from the first frame, for which a mask annotation is
provided. This image-mask pair, as well as each K-th pair
of a video frame and its segmentation prediction are added
to a spatio-temporal memory bank. The memory bank is
used to make the segmentation prediction of the latest video
frames more accurate. To employ data augmentation, we
added synthesized image-mask pairs to the STM memory
bank at step 0, before processing the first video frame. To
fit the memory bank into GPU memory, we had to limit
the number of added samples to 10, which were sampled
randomly from the synthetic pool.

RePRI [5] trains a small pixel-level classifier given a sin-
gle support image-mask pair containing an object of a pre-
viously unseen class. We simply provide synthetic image-
mask pairs as data augmentation for the original data. To
fit the extended support set into GPU memory, we limited
the number of added samples to 10. This way, the task of
RePRI could be technically regarded as 11-shot semantic
image segmentation, where all the available support data
originates from a provided data sample.

B.2. Ablation on filtering out bad-quality samples

Filtering out noisy synthetic examples before forming a
pool of synthetic samples is an important step to achieve
good performance of data augmentation. For example, us-
ing generated image-mask pairs without filtering resulted
in modest or negative performance gains for one-shot seg-
mentation networks (see Table A). On the contrary, a simple
strategy to filter out 15% of lowest-ranked generated im-
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Training pair SemanticGAN [18] DatasetGAN [38] OSMIS

Figure A. A quantitative comparison of OSMIS to previous image-mask GAN models SemanticGAN [18] and DatasetGAN [38]. Both
the models suffer from memorization, repeating the layout of the training samples, while SemanticGAN also achieves poor visual quality
of images and masks due to training instabilities. In contrast, OSMIS achieves both diversity and quality, placing foreground objects in
different locations in the scene and editing the layouts of backgrounds.

ages by SIFID, computed after the first pooling layer of the
InceptionV3 network, helps to reduce the impact of bad-
quality augmentation and, in effect, substantially improves
the final segmentation performance.

However, we observed that the SIFID metric is biased
towards low-level image statistics, such as color and texture
distributions, and is not indicative of the quality of gener-
ated images at higher scales. We illustrate this in Fig. B,
where we display visual examples of images at different lev-
els of SIFID, obtained after the first pooling layer, second
pooling layer, pre-classifier features, and the final features
of the InceptionV3 network (denoted as SIFID-1,2,3,4).

To account for the quality of generated images at dif-
ferent scales, we ranked synthesized examples by a joint

ranking, taking the average of their ranks across different
SIFIDs. As seen in Table A, filtering out noisy examples
using this strategy helps to boost the performance of one-
shot segmentation networks. Furthermore, we observed that
it helps to significantly decrease the performance variance
between different runs, which generally increased while us-
ing synthetic data augmentation in our experiments.

Finally, we conduct an ablation on how many lowest-
ranked images should be filtered for optimal performance.
Table A demonstrates that the filtering rate should be nei-
ther too low nor too high: filtering out only 5% or 10%
leaves some low quality images that are harmful for the data
augmentation efficiency, while filtering too many samples
(25%, 50%) decreases the diversity of the synthetic data
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Figure B. Generated images shown for different levels of SIFID, computed at various InceptionV3 layers. We observed that SIFID at the
earliest InceptionV3 layers is biased towards low-level image statistics, such as colors and small textures, and is not indicative of image
quality at higher scales (appearance of objects, layout of backgrounds). Thus, to filter out noisy generated examples, we use a joint ranking
of images at different InceptionV3 layers.

Data selection η
OSVOS, DAVIS-16 RePRI, COCO0

J&F mIoU
Reference w/o augmentations 78.5 (+0.0) ±0.3 31.2 (+0.0) ±0.1

No data selection - 78.7 (+0.2) ±0.6 30.7 (-0.5) ±0.5

Only SIFID-pool1 15% 79.3 (+0.8) ±0.5 32.2 (+1.0) ±0.4

SIFID-{1,2,3,4} (ours)

5% 79.3 (+0.8) ±0.6 31.9 (+0.7) ±0.4

10% 79.6 (+1.1) ±0.4 32.6 (+1.4) ±0.2

15% 79.8 (+1.3) ±0.3 32.8 (+1.6) ±0.2

25% 79.7 (+1.2) ±0.3 32.3 (+1.1) ±0.2

50% 79.5 (+1.0) ±0.3 32.0 (+0.9) ±0.1

Table A. Impact of synthetic data selection strategies on one-shot
segmentation performance. Bold and underlined show the first and
second best performance.

pool and thus also diminishes its effectiveness.
Overall, we conclude that data filtering is a crucial step

that is needed to achieve high performance gains with the
help of synthetic data augmentation. Table A shows that
our proposed data selection scheme is effective at filtering
out bad generated examples, which results in higher perfor-
mance of one-shot segmentation networks without notably
increasing their variance between runs.

C. Architecture of OSMIS and training details
The architecture of the OSMIS generator and discrim-

inator is summarized in Tables B and C. We build upon
the structure of One-Shot GAN [31], which utilizes ResNet
blocks for both the generator and discriminator, enables
multi-scale gradients (MSG) [13] by employing skip con-
nections between the latest generator layers and the low-
level discriminator Dlow−level, and provides control over

the final image resolution by changing the input noise
shape.

To achieve image-mask synthesis at a high resolution of
384x640, we set the input noise shape to 3×5, use 8 ResNet
blocks in the generator, 4 ResNet blocks for the low-level
discriminator Dlow−level, and 4 blocks for the object and
layout discriminators Dobject and Dlayout. Before feeding
the intermediate features F (x) = Dlow−level(x) of an input
image x to Dobject, we process it by the masked content at-
tention module (MCA), which forms N content representa-
tions, corresponding to objects or background in the image.
Thus, for the object discriminator we use a batch size which
is N times higher than for other discriminator parts.

We train OSMIS with the ADAM optimizer [16], using
a batch size of 3, momenta (β1, β2) = (0.5, 0.999), and a
learning rate of 0.0002. During training, we use an expo-
nential moving average of the generator weights with a de-
cay of 0.9999, which is used at inference. P0 from Eq. (5) is
set to 15000 epochs. We extend the differentiable augmen-
tation (DA) pipeline used in [31] by using the whole set of
transformations as proposed in [14], which we found bene-
ficial for image quality and diversity. Considering the pro-
vided segmentation mask, we modify the discriminator fea-
ture augmentation (FA), ensuring that it does not interfere
with the learning of the appearance of foreground objects.
For this, the content FA is applied only to the representa-
tion of the background, while for the layout FA, the mixed
spatial areas are sampled respecting the object boundaries
in the segmentation mask. In our experiments, we observed
this to be beneficial for the visual quality of images, as the
model learnt to preserve the objects’ appearance better.
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Operation Input Size Output Size

ConvTransp2D z (64,1,1) up_0 (256,3,5)
ResBlock-Up up_0 (256,3,5) up_1 (256,3,5)
ResBlock-Up up_1 (256,3,5) up_2 (256,6,10)
ResBlock-Up up_2 (256,6,10) up_3 (256,12,20)
ResBlock-Up up_3 (256,12,20) up_4 (256,24,40)
ResBlock-Up up_4 (256,24,40) up_5 (256,48,80)
ResBlock-Up up_5 (256,48,80) up_6 (256,96,160)
ResBlock-Up up_6 (256,96,160) up_7 (128,192,320)
ResBlock-Up up_7 (128,192,320) up_8 (64,384,640)

Conv2D, TanH up_5 (256,48,80) image_3 (3,48,80)
Conv2D, TanH up_6 (256,96,160) image_2 (3,96,160)
Conv2D, TanH up_7 (128,192,320) image_1 (3,192,320)
Conv2D, TanH up_8 (64,192,320) image_0 (3,384,640)

Table B. The OSMIS generator. The configuration is presented for the input noise of size (3× 5) and the final resolution of (640× 384).

Operation Input Size Output Size

Low-level discriminator Dlow−level

Conv2D image_0 (3,384,640) feat_0 (32,384,640)
Conv2D image_1 (3,192,320) feat_1 (8,192,320)
Conv2D image_2 (3,96,160) feat_2 (16,96,160)
Conv2D image_3 (3,48,80) feat_3 (32,48,80)
ResBlock-Down feat_0 (32,384,640) down_0 (64,192,320)

ResBlock-Down
down_0 (64,192,320)

down_1 (128,96,160)
feat_1 (8,192,320)

ResBlock-Down
down_1 (128,96,160)

down_2 (256,48,80)
feat_2 (16,96,160)

ResBlock-Down
down_2 (256,48,80)

F (256,24,40)
feat_3 (32,48,80)

Object discriminator Dobject

MCA F (256,24,40) F_con N×(256,1,1)
ResBlock-Down F_con N×(256,1,1) cont_0 N×(256,1,1)
ResBlock-Down cont_0 N×(256,1,1) cont_1 N×(256,1,1)
ResBlock-Down cont_1 N×(256,1,1) cont_2 N×(256,1,1)
ResBlock-Down cont_2 N×(256,1,1) cont_3 N×(256,1,1)

Layout discriminator Dlayout

Conv2D F (256,24,40) F_lay (1,24,40)
ResBlock-Down F_lay (1,24,40) lay_0 (1,12,20)
ResBlock-Down lay_0 (1,12,20) lay_1 (1,6,10)
ResBlock-Down lay_1 (1,6,10) lay_2 (1,3,5)
ResBlock-Down lay_2 (1,3,5) lay_3 (1,3,5)

Table C. The OSMIS discriminator. The configuration is presented for the input noise of size (3×5) and the final resolution of (640×384).
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