
ar
X

iv
:2

20
9.

02
96

0v
1

 [
cs

.C
V

]
 7

 S
ep

 2
02

2

Difficulty-Net: Learning to Predict Difficulty for Long-Tailed Recognition

Saptarshi Sinha

Hitachi Ltd.

Tokyo, Japan

saptarshi.sinha.hx@hitachi.com

Hiroki Ohashi

Hitachi Ltd.

Tokyo, Japan

hiroki.ohashi.uo@hitachi.com

Abstract

Long-tailed datasets, where head classes comprise much

more training samples than tail classes, cause recognition

models to get biased towards the head classes. Weighted

loss is one of the most popular ways of mitigating this issue,

and a recent work has suggested that class-difficulty might

be a better clue than conventionally used class-frequency

to decide the distribution of weights. A heuristic formu-

lation was used in the previous work for quantifying the

difficulty, but we empirically find that the optimal formu-

lation varies depending on the characteristics of datasets.

Therefore, we propose Difficulty-Net, which learns to pre-

dict the difficulty of classes using the model’s performance

in a meta-learning framework. To make it learn reasonable

difficulty of a class within the context of other classes, we

newly introduce two key concepts, namely the relative dif-

ficulty and the driver loss. The former helps Difficulty-Net

take other classes into account when calculating difficulty

of a class, while the latter is indispensable for guiding the

learning to a meaningful direction. Extensive experiments

on popular long-tailed datasets demonstrated the effective-

ness of the proposed method, and it achieved state-of-the-

art performance on multiple long-tailed datasets.

1. Introduction

Despite the outstanding performance of the recent deep

learning (DL) models on public datasets, deploying such

models in the real world often leads to a performance drop.

One of the causes is that the public datasets are usually al-

most perfectly class-balanced while real-world data are gen-

erally long-tailed, where a few classes (called head classes)

consist of a significantly larger number of training samples

than the rest of the classes (called tail classes). The ‘long-

tailed recognition’ research domain particularly aims at ad-

dressing this issue.

Amongst multiple possible strategies to tackle long-

tailed recognition problems, cost-sensitive learning is one

of the most popular and promising strategies. Most cost-

50 100 150 200
Imbalance

40

50

60

Cl
as
sif
ica

tio
n
ac
c
ra
cy
 (%

)

dc=1− ac [31]
dc=1− a2c
dc= log(2− ac)/log2
dc=1− (ac/∑

k
ak)

O rs

Figure 1. Different quantifications of class-difficulties perform

better than others in different situations (imbalance ratios). The

imbalance in the data is calculated as the ratio of the frequency

of the most frequent class to that of the least frequent class. We

compute class-wise difficulty (dc) using four different functions of

class-wise accuracy (ac) for the CDB-CE [31] loss function and

compare their performance on the CIFAR100-LT. Interestingly,

the alternate formulations work better than the originally proposed

one (dc = 1 − ac) in many cases. However, the best perform-

ing function changes with the imbalance values. This brings us

to the question “Which formulation to choose for my imbalanced

dataset?”

sensitive learning techniques modify the cost function to

penalize the model differently for different samples. This

modification is generally done by scaling the cost value us-

ing different weights, and the research direction is mainly

aimed at finding an effective weight-assignment strategy.

One simple and intuitive way is to assign weights using the

inverse of the class-frequencies. Recently, more sophisti-

cated approaches such as class-balanced loss [7] and equal-

ization loss [36] have been proposed. However, most of

these approaches give more weights to the tail classes be-

cause they assume that tail classes are always the most dif-

ficult to learn. Recently Sinha et al. [31, 32] empirically

showed that the above assumption does not always hold true

and further claimed that class-difficulty might be a better

clue to decide weights.

While they proposed an intuitive quantification of the

class-level difficulties, this quantification is preliminarily

determined regardless of the property of a given dataset,

and thus may not be optimal in different situations. In

http://arxiv.org/abs/2209.02960v1

fact, we empirically found that multiple quantifications for

class-wise difficulty gave comparable or even better results

than [31] as shown in Figure 1. This adds the extra tedious

task of selecting the appropriate formulation for a given im-

balanced data.

Motivated by recently proposed Meta-Weight-Net

(MWN) [29], our research aims to address the above is-

sue by meta-learning a simple model, named Difficulty-

Net, to predict class-level difficulty scores and then dynam-

ically distribute the weights based on the scores. Such a

strategy removes dependence on any prior formulation for

class-wise difficulty and lets the model learn any suitable

function to compute it. The key difference with MWN is

three folds. First, while MWN is a sample-level weighting

method, ours is a class-level weighted approach, whose ad-

vantage in long-tailed recognition has been revealed in [31]

and also discussed in Sec. 3.2 and Sec. 4.5. Second, we

propose to use relative difficulties rather than absolute diffi-

culties that are used in prior works [29, 31] so that the other

classes’ difficulties are also taken into account when deter-

mining the difficulty of a class. Third, we propose a new

loss function that drives the learning process of Difficulty-

Net in a reasonable direction, without which the perfor-

mance turned out to degrade.

To summarize, our key contributions are:

• We propose Difficulty-Net, which learns to predict

class-difficulty in a meta-learning framework.

• We argue that relative difficulty is more important and

effective than absolute difficulty, and provide an em-

pirical evidence for the argument.

• We propose a new loss function, called driver loss, that

guides the learning process in a reasonable direction.

• We conducted extensive experiments on multiple long-

tail benchmark datasets and achieved state-of-the-art

results. In addition, we provide in-depth analysis on

the effect and property of the proposed method in com-

parison to previous works, which revealed the effec-

tiveness of our method.

2. Related works

Major strategies to tackle the long-tailed recognition can

be broadly categorized as data re-sampling methods [3, 13,

17, 30, 34, 32], metric learning [15, 20, 33, 40], knowledge

transfer [24, 43, 44], mixture of experts [41, 45, 50], cost-

sensitive learning [2, 7, 25, 29, 32] and decoupled learn-

ing [19, 28, 48, 51].

Data re-sampling techniques [3, 13, 17, 30, 34] try

to neutralize the long-tail by under-sampling from head

classes or over-sampling from tail classes. Under-

sampling [34] generally results in poor representation of

the head classes, while a straight-forward over-sampling

strategy of replicating tail-class samples causes the model

to overfit on the repeated samples. Another popular over-

sampling technique is synthetic data generation [3, 13] for

the tail classes. Certain class-balanced sampling approaches

such as class-aware sampling [17, 19, 42] and square-root

sampling [19] have been shown to be more effective than

using over- or under-sampling. They typically try to in-

crease the sampling rate for the tail classes during training.

However, they still result in overfitting due to the repeated

sampling of the same samples from tail classes.

Metric learning methods [1, 15, 20, 33, 40, 49] aim to

learn a high-quality feature extractor that preserves inter-

class and intra-class relationships in the feature space.

They achieve this by learning from pairs [20, 33, 49] or

triplets [1, 15] of input samples. Metric learning has been

used in long-tailed recognition [24, 38] in hope that high-

quality feature extractor will mitigate the imbalance be-

tween head and tail classes. An effective sampling of

the sample groups is the key for efficient training in this

scheme. However, such sampling strategies come with

the risk of under-representation or overfitting, as explained

above.

Knowledge transfer [8, 24, 43, 44, 47] in long-tailed

recognition tries to transfer knowledge gained from the head

classes to the tail classes. They achieve this either by learn-

ing modular transformations from few-shot model param-

eters to many-shot models [43, 44] or by designing exter-

nal modules for feature transfer [24, 47]. Designing such

modules is usually computationally expensive in real-world

usecases [19].

Mixture of experts (MoE) [41, 45, 50, 52] is an

ensemble-based technique where the expert models are

trained to gain diverse knowledge. The aggregated knowl-

edge of the experts is either used directly to alleviate the

long-tail [41, 50] or used to teach a student model for that

purpose [45]. Despite the increasing popularity of this do-

main, our research focuses on the improvement of a single

model as it can then easily be combined with any mixture.

Cost-sensitive learning can be achieved by logit-

adjustment loss [2, 25, 37] and weighted loss [7, 11, 23,

27, 29, 35, 36] approaches. Most prior methods distribute

these adjustment or weight values on the basis of class-

frequencies. Recently, Sinha et al. [31, 32] showed that

class-difficulty is a better metric for the purpose. How-

ever, finding an optimal formulation for calculating class-

difficulty is not a trivial task as the optimal formulation

usually varies depending on datasets as shown in Figure 1.

Our research builds on the work of Sinha et al. [31] and

tries to remove the requirement of any prior formulation

by using meta-learning. Meta-learning [12] has previously

been used in long-tailed recognition to learn [18, 27] or

predict [29] sample weights. The closest to our research

is Meta-Weight-Net (MWN) [29], which learns a model to

predict sample-level weights from training loss. Different

from them, we use class-level weighting, which is known to

be better than sample-level weighting in long-tailed recog-

nition [31].

Recently, Kang et al. [19] found that decoupling

model learning into representation learning and classifier

learning helps long-tailed recognition. Since this find-

ing, most works have tried to improve either the data-

representation [28, 46] or the classifier [22, 39, 48, 51]. We

show that our method also benefits from this framework and

achieves state-of-the-art results based on it.

3. Proposed method

3.1. Background

Generally, the prior assumption is that the tail classes are

the most difficult to learn for the models. However, it has

recently been empirically shown that the number of training

instances of a class might not be the best clue to determine

its difficulty because some classes are well-represented even

with fewer training samples. On the basis of this finding,

Sinha et al. [31] came up with a simple formulation to di-

rectly calculate the difficulty of a class from the model’s

performance. The formulation says that if the model’s clas-

sification accuracy on a class c is ac, then the difficulty of

the class dc can be computed as dc = 1− ac.
However, we found two lacking points in the formula-

tion. First, as stated in Sec. 1, we found multiple decreas-

ing functions of accuracy ac that outperformed the above

formulation in multiple setups. In the meantime, we also

found that the best performing formulation varies inconsis-

tently with the data imbalance and thus it is not possible to

preliminarily define the best formulation for a given dataset.

Second, while the above formulation helps to compute the

absolute difficulty of a class, we believe it is more impor-

tant to compute the difficulty of a class relative to the other

classes because it is reasonable to assign a high difficulty

score to a class with high accuracy (i.e. easy class) if the

other classes have even higher accuracies. For that purpose,

all the classes need to be considered when computing the

difficulty of a single class, which is not done in [31].

To address these issues, we propose meta-learning the

formulation that is most effective for a given dataset, taking

relative difficulties into consideration.

3.2. Meta­learning via Difficulty­Net

Difficulty-Net design. Given a dataset of C classes, we

aim to learn a formulation that can compute the relative dif-

ficulty for each class. For this purpose, we design the for-

mulation for class-wise difficulty as

d1, d2, . . . , dC = D({ac}
C
c=1; θ). (1)

Note that both dc and ac change as the training progresses,

but here we omit the notation of training steps for simplicity.

D is a neural network with parameters θ. In our implemen-

tation, we choose D to be a simple MLP model with two

hidden layers. The output layer dimension is kept same as

the number of classes and a sigmoid activation at the output

ensures the difficulty scores to be in the range (0, 1). The

input to D are the model’s classification accuracies for all

C classes. The design of D ensures that while estimating

the difficulty for a class, the model’s performance on the

other classes is also taken into account. We refer to D as

‘Difficulty-Net’.

Meta-learning objective: Suppose a classification prob-

lem in which we are provided a training dataset Strain =
{xi, yi}

N
i=1, where xi is the ith training sample and yi ∈

{1, . . . , C} is its corresponding ground truth label. Given

a classifier neural network f(x;φ) with learnable parame-

ters φ, our primary objective is to learn the optimal parame-

ters φ∗ so that f(x;φ∗) provides the minimum classification

loss on the training set Strain, i.e.

φ∗ = arg min
φ

1

N

N
∑

i=1

L(f(xi;φ), yi), (2)

where L computes the loss corresponding to f ’s prediction

for a given sample and is typically the cross-entropy loss.

In long-tailed recognition, the training dataset Strain is

class-imbalanced. In such cases, optimization using Eq. 2

leads to biased learning of φ. To compensate for the im-

balance, we modify the learning objective as most weighted

loss approaches do, i.e.

φ∗ = arg min
φ

1

N

N
∑

i=1

wiL(f(xi;φ), yi), (3)

where wi is the weight assigned to the training sample xi.

In our proposed approach,wi is computed by Difficulty-Net

D as

wi(AC , θ) = D(AC ; θ)yi
, (4)

where D(AC ; θ)yi
is the difficulty score for class yi pre-

dicted by Difficulty-Net and AC = {ac}
C
c=1 is the set of

accuracies of f(x;φ) for all C classes, evaluated prior to

this calculation. Therefore, the learning objective for φ∗ is

modified as

φ∗(θ) = arg min
φ

1

N

N
∑

i=1

wi(AC , θ)L(f(xi;φ), yi). (5)

Since the optimization of our main classifier network de-

pends on the effectiveness of Difficulty-Net, it is impor-

tant to optimize the parameters θ of D as well. Inspired

by [29], we use a small balanced meta-dataset Smeta =

{xmeta
i , ymeta

i }Mi=1 for optimizing the parameters θ as fol-

lows.

θ∗ = arg min
θ

1

M

M
∑

i=1

Lmeta
i (φ∗(θ))

= arg min
θ

1

M

M
∑

i=1

L(f(xmeta
i ;φ∗(θ)), ymeta

i). (6)

However, we found that Lmeta alone is not enough for

Difficulty-Net to learn to estimate difficulties from accu-

racy. Even for 2 classes with very different accuracy val-

ues, Difficulty-Net learned using Eq. 6 tends to give sim-

ilar difficulty scores for both classes. To address this is-

sue, we add another loss component to drive the learning of

Difficulty-Net in a practically correct direction. We call this

loss ‘driver loss’ and calculate it as

Ldr(AC , θ) =
1

C

C
∑

c=1

((1− âc)−D(AC ; θ)c)
2
, (7)

where âc = ac/
∑

k ak is the normalized accuracy of class

c. The Ldr is built on the motivation that Difficulty-Net

should learn to give high difficulty scores to a class, if the

accuracy of the class is relatively low. Now the parameters

θ of Difficulty-Net D are optimized as

θ∗ = arg min
θ

λLdr(AC , θ) +
1

M

M
∑

i=1

Lmeta
i (φ∗(θ)), (8)

where λ is a hyper-parameter controlling the influence of

Ldr. Note that too high value of λ will simply cause D to

always predict class difficulties as dc = 1 − âc. We ablate

over various values of λ in our experiments.

Learning method. Following [29], our meta-learning

method is a 3-step process. Given a classifier network

f(x;φt) and Difficulty-Net D(; θt) at time step t, the first

step aims to learn intermediate classifier parameter φ̂t by

φ̂t(θt)←− φt − α
1

b

b
∑

i=1

wi(AC,t, θt)
∂L(f(xi;φ), yi)

∂φ

∣

∣

∣

φt

,

(9)

where α is the step size for gradient descent and b is the

number of samples in one mini-batch sampled from the

training set Strain. AC,t is the classification accuracy of

f(x;φt) on all the C classes at time step t and is computed

on a validation dataset Sval.

The second step updates the parameters θ of Difficulty-

Net using the obtained intermediate classifier f(x; φ̂t) on a

mini-batch of size m sampled from the meta-dataset. The

update is done by

θt+1 ←−

θt −β

∂(λLdr(AC,t, θ) +
1

m

m
∑

i=1

Lmeta
i (φ̂t(θ)))

∂θ

∣

∣

∣

θt

, (10)

where β is the step size for updating the parameters of

Difficulty-Net.

Finally, the third step uses the updated parameters θt+1

to update the parameters of the classifier network f(x;φt)
over the same mini-batch sampled in Eq. 9.

φt+1 ←− φt − α
1

b

b
∑

i=1

wi(AC,t, θt+1)
∂L(f(xi;φ), yi)

∂φ

∣

∣

∣

φt

.

(11)

The above three steps are executed iteratively till conver-

gence or the end of the training. The overall algorithm is

presented in Algorithm 1 in the supplementary material.

For our experiments, we construct the Smeta following

exactly the same procedure as [18, 29]. We also found that

Smeta is reusable as Sval for calculating AC,t. Therefore,

we do not use any extra data compared to previous methods.

Also, although it is ideal to calculate AC,t for every time

step t, we calculate the accuracy only after every epoch in

our implementation for saving computational time.

Difference with MWN and CDB-CE. Although we

share a similar meta-learning framework as MWN [29],

our approach is very different from theirs in more than one

way. One difference is that MWN is a sample-level weight-

ing strategy while ours is a class-level weighting strategy.

The advantages of class-level weighting over sample-level

weighting in long-tailed learning is pointed out in [31] and

also reflected in our experimental results.

Ours is not the straight-forward combination of

MWN [29] and CDB-CE [31]. First, both MWN and CDB-

CE use absolute difficulties of a sample or a class to deter-

mine the weights. We believe, however, the relative diffi-

culty compared with other samples or classes is more im-

portant because it is reasonable to assign a high difficulty

score to a class with high accuracy (i.e. easy class) if the

other classes have even higher accuracies. The proposed

method estimates relative difficulties of each class amongst

all the classes, and it turned out to be more effective as we

will show in Sec. 4.5. Second, the straight-forward combi-

nation of these prior works without the driver loss turns out

to learn almost nothing and predicts almost identical diffi-

culties for all the classes as we will show in Sec. 4.5. The

newly proposed driver loss is essential to guide the training

in a reasonable direction.

The empirical evidences of these arguments are provided

in Sec. 4.5 and 4.6.

4. Experiments

4.1. Datasets

CIFAR100-LT. CIFAR100 [21] is an object-centric bal-

anced classification data-set comprised of tiny images be-

longing to 100 different classes. Long-tailed versions of the

dataset are artificially created by reducing the training sam-

ples per class according to an exponential function as given

in [7]. Following [7], we use CIFAR100-LT with imbalance

varying in 10–200.

ImageNet-LT. ImageNet-LT is a long-tail version of Ima-

geNet [9] created by [24]. It contains 1000 object categories

with heavy imbalance of 256. We use the same train, val

and test splits as [24].

Places-LT. Places-2 [53] is a large-scale scene-centric im-

age dataset, used for scene recognition tasks. Places-LT is

a long-tailed subset of Places-2 with 365 classes and imbal-

ance of 996, created by [24]. We use the same splits as [24].

For constructing Smeta, we followed the setup of previ-

ous meta-learning based methods [18, 29] to ensure the fair

comparison. Please see the supplementary material for the

details. The evaluation results are reported on balanced test

sets.

4.2. Implementation details

Following previous long-tailed works [7, 24, 36], we

use ResNet-32 [14] for CIFAR-100-LT experiments. On

ImageNet-LT, we follow [19, 24, 51] and use ResNet-

10 [14], ResNet-50 [14]. As in [51], we use pretrained (on

ImageNet [9]) ResNet-152 [14] and finetune it on Places-

LT. The basic architecture of Difficulty-Net is the same for

all the datasets as explained in Sec. 3.2, i.e. MLP with two

hidden layers, but we change the dimension of hidden and

output layers as different datasets have different number of

classes. We will explain a simple way to select the dimen-

sion of hidden layers in the supplementary material. We

evaluate our method both in end-to-end (e2e) learning and

decoupled learning [19] settings. For using Difficulty-Net

in decoupled learning, we first train the respective model us-

ing Difficulty-Net based weighting. Then, following [19],

we freeze the feature extractor and re-train the classifier

without using Difficulty-Net. We use λ = 0.3 for all the

experiments unless otherwise stated since we find it works

reasonably well as we will show in Sec. 4.5. Further details

are provided in the supplementary material.

4.3. Compared methods

For comparison, we use multiple SOTA methods in-

cluding (1) data-resampling: class-balanced sampling (CB

sampling) [19], (2) cost-sensitive learning: equalization

loss (EQL) [36], focal loss [23], class-balanced loss [7],

label-distribution-aware-margin (LDAM) loss [2], pre-

formulated class-difficulty balanced loss (CDB-CE) [31],

Imbalance

Method 200 100 50 20 10

e2e training

Focal Loss [23] 39.64 44.03 48.91 55.57 61.10

MWN [29] 40.25 44.81 49.68 56.53 61.44

Class-Balanced [7] 39.95 44.78 47.67 56.83 59.95

CB-DA [18] 40.89 46.24 49.80 56.67 62.16

LDAM [2] 41.42 46.14 49.19 55.90 62.08

EQL [36] 43.46 46.47 51.34 56.82 60.13

CDB-CE [31] 40.42 45.25 49.45 56.66 61.52

PaCo [6] 43.09 47.26 52.14 58.37 63.12

+ Bal. Softmax [26] 46.72 51.47 55.88 60.32 64.10

+ Bal. Softmax [26]† – 52.00 56.00 – 64.20

Ours 44.80 47.96 54.27 58.93 63.52

+ Bal. Softmax 47.53 52.14 56.86 61.72 65.67

decoupled learning

cRT [19] 44.05 48.04 53.32 58.72 63.74

LWS [19] 44.42 48.13 53.44 59.10 63.97

LAS [51] 44.87 48.68 53.85 59.36 64.18

DRO-LT [28] † – 47.31 57.57 – 63.41

BALMS [26] 46.12 50.95 54.42 59.00 63.10

MWN + cRT 44.56 48.34 53.62 59.05 63.99

MWN + LWS 44.71 48.65 53.77 59.22 64.15

MWN + LAS 45.04 49.12 53.95 59.38 64.24

Ours + cRT 47.45 52.01 56.34 61.08 64.80

Ours + LWS 47.91 52.62 56.61 61.38 65.08

Ours + LAS 48.32 52.96 56.90 61.46 65.22

Table 1. Top-1 classification accuracy (%) on CIFAR-100-LT. †

denotes copied results from origin paper [6, 28]. The best results

are made bold while the second best results are underlined, which

applies for the other tables as well.

(3) metric learning: parametric contrastive learning

(PaCo) [6], (4) decoupled learning: classifier normaliza-

tion (τ -norm) [19], classifier re-training (cRT) [19], learn-

able weight scaling (LWS) [19], label-aware smoothing

(LAS) [51], balanced meta-softmax (BALMS) [26], dis-

tribution robustness loss (DRO-LT) [28], (5) meta learn-

ing: Meta-Weight-Net (MWN) [29], class-balancing as

domain-adaptation (CB-DA) [18]. For the sake of fairness,

we do not compare our method directly with MoE meth-

ods [41, 45] as they use ensemble of multiple expert mod-

els, while we focus on improving the learning for a single

expert. However, we verified that the proposed method can

exhibit significant performance gains by using simple en-

sembling techniques and can outperform SOTA MoE meth-

ods. The results are found in the supplementary material.

4.4. Main results

CIFAR100-LT. Following [6, 36], we use AutoAug-

ment [4] and Cutout [10] for all our implementations on

CIFAR100-LT. As explained in [36], this achieves a higher

baseline than other commonly followed ones. Therefore,

to ensure the fairness of comparison, we re-implemented

the compared methods in our training setup using their

published codes. Results without using AutoAugment and

Cutout are provided in the supplementary material. We

achieved better results than originally reported results for

all the re-implemented methods except PaCo [6], which

uses additional augmentation. Therefore, we list the orig-

inal results of PaCo for reference in addition to the results

in the fair setting. PaCo uses an additional center learn-

ing rebalance step, for which they employ Balanced Soft-

max (Bal. Softmax) [26]. We report the results of PaCo

both with and without the use of Bal. Softmax. For the fair

comparison with PaCo + Bal. Softmax, we tested Ours +

Bal. Softmax in addition to the vanilla variant (Ours).

In e2e learning, our proposed approach without com-

bining any other techniques (Ours) achieved better perfor-

mance than all previous stand-alone methods as seen in

Table 1. The margin of improvement is higher in high-

imbalanced situations. End-to-end learning with Ours +

Bal. Softmax turned out to be very effective and created new

SOTA for low imbalanced cases (i.e. 10 and 20).

In decoupled-learning, we find that when we use feature

extractors trained using Difficulty-Net, any popular classi-

fier learning method (e.g. cRT, LWS, LAS) gives improved

performance. This shows that our proposed method learns

very powerful data representations. Ours + LAS achieved

the best results in high imbalanced situations (e.g. 200 and

100), while it achieved the second best in all other cases.

ImageNet-LT. Table 2 shows the results on ImageNet-LT.

In e2e learning alone, irrespective of the model used, we

achieved better overall accuracy than other e2e methods and

comparable accuracy with multiple decoupled methods.

Furthermore, Difficulty-Net based representation learn-

ing with popular classifier re-training methods achieved

state-of-the-art results. Using both ResNet-10 and ResNet-

50, Ours + LAS achieved the best overall accuracy,

which re-confirms the effectiveness of this method. More

ImageNet-LT results with many-/med-/few-shot splits are

available in the supplementary material.

Places-LT. From Table 1 and Table 2, it is evident that

our Difficulty-Net based weighting is consistently effec-

tive when used for the representation learning in decoupled

training methods. Therefore, for Places-LT, we only report

the results of Ours + {cRT, LWS, LAS} and compare them

with previous SOTA results in Table 3. The results ver-

ify that the representation learned using our method is very

powerful and helps us achieve the best overall accuracy by

simple classifier re-balancing. Our improvements in over-

all accuracy is majorly accounted for by significant gains in

medium- and few-shot accuracies. Even though our repre-

sentation learning is effective with any classifier re-training

Method ResNet-10 ResNet-50

e2e training

CE 34.8 41.6

Focal loss [23] 30.5 –

EQL [36] 36.4 –

CB-DA[18] 36.7 48.0

CDB-CE [31] 38.5 –

Bal. Softmax [26] 41.1 –

PaCo [6] ∗ – 49.8

+ Bal. Softmax [26]∗ – 53.5

Ours 41.4 51.2

+ Bal. Softmax 44.3 53.7

decoupled learning

cRT [19] 41.8 47.3

LWS [19] 41.4 47.7

MiSLAS [51] – 52.7

BALMS [26] 41.8 –

DRO-LT [28] – 53.5

Ours + cRT 43.6 53.5

Ours + LWS 44.4 53.7

Ours + LAS 44.6 54.0

Table 2. Top-1 classification accuracies (%) on ImageNet-LT. ∗

represents reproduced results using author’s codes without using

RandAugment [5] for fair comparison. Other baseline results are

copied from original papers. Results using RandAugment are pro-

vided in the supplementary material.

Method Many Med Few All

CE 45.7 27.3 8.2 30.2

CB sampling [19] – – – 30.3

Focal Loss [23] 41.1 34.8 22.4 34.6

cRT [19] 42.0 37.6 24.9 36.7

LWS [19] 40.6 39.1 28.6 37.6

BALMS [26] 41.2 39.8 31.6 38.7

LADE [16] 42.8 39.0 31.2 38.8

DisAlign [48] 40.4 42.4 30.1 39.3

IEM [54] 46.8 39.2 28.0 39.7

MiSLAS [51] 39.6 43.3 36.1 40.4

PaCo [6] 37.5 47.2 33.9 41.2

Ours + cRT 43.0 43.8 35.0 41.7

Ours + LWS 41.4 43.7 36.9 41.5

Ours + LAS 42.4 43.7 36.6 41.7

Table 3. Top-1 classification accuracies (%) for Places-LT.

method, especially Ours + LAS significantly boosts results

for the few-shot classes and achieved SOTA in overall ac-

curacy. PaCo achieved the best results for the medium-shot

classes, but it sacrificed the performance on the many-shot

classes significantly, resulting in lower overall accuracy.

4.5. Ablation study

In this sub-section, we first show the ablation study

of our key components, namely relative difficulty and the

0 20 40 60 80 100
Classes

0.0
0.2
0.4
0.6
0.8

Class accuracy
Predicted difficulty (λ= 0)
Predicted difficulty (λ= 0.3)

Figure 2. Difficulty scores for CIFAR100-LT (imbalance=100)

classes predicted by Difficulty-Net learned with λ = 0 and λ =

0.3. The classes are sorted in increasing order of their accuracy.

driver loss. Then we re-verify the effectiveness of the class-

level weighting studied in [31] in our meta-learning frame-

work. Further, we verify the effectiveness of using the meta-

learning loss in our method. We conclude this sub-section

with the effectiveness of the proposed method by comparing

it with the straight-forward combination of CDB-CE [31]

and MWN [29].

Absolute difficulty vs. relative difficulty. For predicting

absolute difficulty, we modified Difficulty-Net from Eq. 1

to dc = Dabs(ac; θ) and trained it in the same way as be-

fore. The comparison is provided in Table 4 (#7 vs. #9).

As can be seen, relative difficulty significantly outperforms

absolute difficulty for both low and high imbalance. This

verifies the effectiveness of relative difficulty.

Contribution of Ldr. The value of λ in Eq. 8 controls the

impact of Ldr. Here we analyse the effect of λ. For that, we

evaluate the performance of ResNet-32 trained end-to-end

using different values of λ and report the results in Table 5.

It shows that λ = 0, which is equivalent to #6 in Table 4,

works significantly poor especially in high imbalance case,

which asserts the importance of using Ldr. We find that for

higher imbalance, higher λ works better. But, too high λ
leads to significant drop in performance. Irrespective of the

imbalance, λ = 0.3 works consistently well.

To further analyse the usefulness of Ldr, we visualise

the predicted difficulty by Difficulty-Net trained with and

without Ldr. The results are shown in Figure 2. It shows

that using Ldr with λ = 0.3 provides a more meaningful

learning of Difficulty-Net compared to when not using Ldr

(λ = 0). The latter predicts similar difficulty scores for all

the classes inspite of the highly biased accuracy. However,

using Ldr helps Difficulty-Net to predict high difficulty for

less accurate classes.

Sample-level difficulty vs. Class-level difficulty. We

modified the Difficulty-Net to predict sample-level dif-

ficulties and compared it with the proposed method.

We modified the Difficulty-Net as d1, d2, ..., dB =
Dsample({ls}

B
s=1; θ) where B is the total number of sam-

ples in a single batch, ls is the model’s cross-entropy loss

for samples s, and ds is the predicted difficulty for sample

s. Simply, we meta-learn the Dsample to predict difficulty

of each sample relative to other samples in the same train-

ing batch. Note that this variant uses relative difficulty and

the driver loss, and thus is different from MWN.

In Table 4 (#8 vs. #9), it is seen that class-level diffi-

culty significantly outperforms the sample-level difficulty

in overall performance. This proves the effectiveness of

class-difficulty in our proposed method. We believe that

this happens because the head classes have higher absolute

number of hard samples than the tail classes simply because

the head classes have much more training samples. In such

case, as pointed out in [31], sample-level weighting gives

higher weights to head classes in total, and therefore cause

the model to get biased to the head classes. This is veri-

fied by the fact that class-level performs much better espe-

cially for the tail classes (med and few-shot) as shown in the

supplementary material. Another interesting observation is

that our sample-level Difficulty-Net even significantly out-

performs MWN (#3 vs. #8), which re-verifies the effective-

ness of our newly proposed components, namely relative

difficulty and the driver loss.

Contribution of Lmeta. Here we verify the usefulness of

Lmeta in our Difficulty-Net training. In Table 4 (#5 vs. #6),

we see that using meta-learning loss gives a boost of 0.89%

(for imb. 100) which confirms the benefit of using ML.

The straight-forward combination of CDB-CE and

MWN does not work. As stated in Sec. 3.2, ours is not

the straight-forward combination of the previous methods.

Evidently from Table 4 (#4 vs. #9), such straight-forward

combination does not work well, which verifies the contri-

butions of our newly proposed components.

4.6. Further analysis

It is evident in Figure 2 that Difficulty-Net successfully

learns to predict reasonable difficulty from the class-wise

accuracies. Here we further analyse how the predicted dif-

ficulties change as the training progresses. For this pur-

pose, we plot the entropy of the difficulty scores with the

training steps in Figure 3. We compute the entropy as

E({dc}
C
c=1) = − 1

C

∑C

c=1
log(C dc∑

k
dk

). Figure 3 shows

that the entropy decreases with the training steps. This sug-

gests that the predicted difficulty scores gradually become

more and more uniform, as the model’s class-wise perfor-

Name S vs. C A vs. R ML L
dr Imb.=100 Imb.=10

1 Focal loss [23] S A 44.03 61.10

2 CDB-CE [31] C A 45.25 61.52

3 MWN [29] S A X 44.81 61.44

4 CDB-CE + MWN C A X 45.42 61.87

5 Ours w/o L
dr and ML C R 45.51 62.44

6 Ours w/o L
dr C R X 46.40 63.10

7 Ours w/o relative difficulty C A X X 46.81 62.32

8 Ours w/o class-level weighting S R X X 45.76 62.51

9 Ours C R X X 47.96 63.52

Table 4. Classification accuracy on CIFAR100-LT with imbalance ratio (Imb.) 100 and 10. “S vs. C” means Sample-level vs. Class-level.

“A vs. R” means Absolute difficulty vs. Relative difficulty. ML stands for Meta Learning.

λ 0 0.3 0.6 0.9 1.0

Imbalance=100 46.40 47.96 48.03 47.35 46.66

Imbalance=10 63.10 63.52 63.44 62.62 62.24

Table 5. Accuracy (in e2e learning) for different values of λ on

CIFAR100-LT.

0 2k 4k 6k 8k 10k 12k
Training steps

10−5

10−3

E

Figure 3. Plotting entropy (E) of difficulty scores predicted

by Difficulty-Net against number of training steps. We used

CIFAR100-LT (imbalance=100) for this plot.

mance gradually gets balanced. this result empirically sup-

ports the rationality of Difficulty-Net.

Further, we analyse the characteristics of difficulties es-

timated by Difficulty-Net in comparison with those by [31].

We pick three classes from the CIFAR100-LT classes (one

from each of many-, medium- and few-shot classes) and

show how the normalized weights of the classes change

as the training progresses. As shown in Figure 4, CDB-

CE weighting [31] leads to more fluctuations in the as-

signed weights, while Difficulty-Net based weighting is

more smooth and stable. This suggests that Difficulty-

Net has capability of ‘remembering’ which class is difficult

whereas CDB-CE weighting tends to be heavily affected

by quick accuracy change at each time step. We believe

this characteristic of Difficulty-Net encourages consistent

and stable training of the model, ending up in better perfor-

mance than CDB-CE weighting. Another interesting obser-

vation in Figure 4 is that the difficulties of the three classes

0 2k 4k 6k 8k 10k12k
0

0.5

1.0

1.5

0 2k 4k 6k 8k 10k12k0.8

0.9

1.0

1.1

1.2

1.3
many shot class
medium shot class
few shot class

Figure 4. Assigned weights to three different classes during train-

ing with CDB-CE [31] (Left) and our Difficulty-Net (Right). The

vertical axis represents assigned weights and the horizontal axis

represents training steps.

estimated by Difficulty-Net tend to converge as the training

progresses ,which is not observed in the case of CDB-CE.

This observation is consistent with Figure 3, which showed

that the predicted difficulty scores gradually become more

uniform as the model’s performance gets balanced.

5. Conclusion

This paper has proposed Difficulty-Net, a novel method

for long-tailed recognition that learns to predict difficulty of

classes in a meta-learning framework. The proposed method

has mainly three key features compared to prior works.

First, it removes any dependence on heuristic formulations

thanks to its ability to learn any suitable difficulty formula-

tion for a given dataset. Second, it estimates relative diffi-

culty of a class compared to the other classes whereas prior

works use only absolute difficulty of a class in question.

Third, it employs a new driver loss function that helps to

drive Difficulty-Net learning in a reasonable direction. We

verified the effectiveness of the proposed method by con-

ducting extensive experiments on multiple datasets. Further

analysis also demonstrated the usefulness of relative diffi-

culty and the newly proposed driver loss function.

References

[1] Sumia Abdulhussien Razooqi Al-Obaidi, Davood Zabi-

hzadeh, Ali Salim Rasheed, and Reza Monsefi. Robust met-

ric learning based on the rescaled hinge loss. Int. J. Mach.

Learn. Cybern., 11:2515–2528, 2020.

[2] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,

and Tengyu Ma. Learning imbalanced datasets with label-

distribution-aware margin loss. In NeurIPS, 2019.

[3] Nitesh Chawla, Kevin Bowyer, Lawrence Hall, and W.

Kegelmeyer. Smote: Synthetic minority over-sampling tech-

nique. J. Artif. Intell. Res. (JAIR), 16:321–357, 2002.

[4] Ekin Dogus Cubuk, Barret Zoph, Dandelion Mane, Vijay Va-

sudevan, and Quoc V. Le. Autoaugment: Learning augmen-

tation policies from data. In CVPR, 2019.

[5] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Randaugment: Practical automated data augmentation

with a reduced search space. In CVPR Workshops, pages

702–703, 2020.

[6] Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya

Jia. Parametric contrastive learning. In ICCV, pages 715–

724, 2021.

[7] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge

Belongie. Class-balanced loss based on effective number of

samples. In CVPR, 2019.

[8] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and

Serge Belongie. Large scale fine-grained categorization and

domain-specific transfer learning. In CVPR, pages 4109–

4118, 2018.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and

Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image

Database. In CVPR, 2009.

[10] Terrance DeVries and Graham W Taylor. Improved regular-

ization of convolutional neural networks with cutout. arXiv

preprint arXiv:1708.04552, 2017.

[11] Qi Dong, Shaogang Gong, and Xiatian Zhu. Class rectifi-

cation hard mining for imbalanced deep learning. In ICCV,

2017.

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In ICML, page 1126–1135, 2017.

[13] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao.

Borderline-smote: A new over-sampling method in im-

balanced data sets learning. In Advances in Intelligent

Computing, volume 3644, pages 878–887, 2005.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016.

[15] Elad Hoffer and Nir Ailon. Deep metric learning using triplet

network. In Similarity-Based Pattern Recognition, pages 84–

92, 2015.

[16] Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun

Seo, Beomsu Kim, and Buru Chang. Disentangling label dis-

tribution for long-tailed visual recognition. In CVPR, pages

6626–6636, 2021.

[17] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou

Tang. Learning deep representation for imbalanced classi-

fication. In CVPR, pages 5375–5384, 2016.

[18] Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan

Yang, Liqiang Wang, and Boqing Gong. Rethinking class-

balanced methods for long-tailed visual recognition from a

domain adaptation perspective. In CVPR, 2020.

[19] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan,

Albert Gordo, Jiashi Feng, and Yannis Kalantidis. Decou-

pling representation and classifier for long-tailed recogni-

tion. In ICLR, 2020.

[20] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,

Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and

Dilip Krishnan. Supervised contrastive learning. In NeurIPS,

pages 18661–18673, 2020.

[21] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.

[22] Yu Li, Tao Wang, Bingyi Kang, Sheng Tang, Chunfeng

Wang, Jintao Li, and Jiashi Feng. Overcoming classifier im-

balance for long-tail object detection with balanced group

softmax. In CVPR, pages 10991–11000, 2020.

[23] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollar. Focal loss for dense object detection. TPAMI,

42(02):318–327, 2020.

[24] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang,

Boqing Gong, and Stella X. Yu. Large-scale long-tailed

recognition in an open world. In CVPR, 2019.

[25] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh

Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar.

Long-tail learning via logit adjustment. In ICLR, 2021.

[26] Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Zhao, Shuai Yi, and Hongsheng Li. Balanced meta-softmax

for long-tailed visual recognition. In NeurIPS, 2020.

[27] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urta-

sun. Learning to reweight examples for robust deep learning.

In ICML, 2018.

[28] Dvir Samuel and Gal Chechik. Distributional robustness loss

for long-tail learning. In ICCV, 2021.

[29] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,

Zongben Xu, and Deyu Meng. Meta-weight-net: Learning

an explicit mapping for sample weighting. In NeurIPS, 2019.

[30] Naman D. Singh and Abhinav Dhall. Clustering and learning

from imbalanced data. ArXiv, abs/1811.00972, 2018.

[31] Saptarshi Sinha, Hiroki Ohashi, and Katsuyuki Naka-

mura. Class-wise difficulty-balanced loss for solving class-

imbalance. In ACCV, 2020.

[32] Saptarshi Sinha, Hiroki Ohashi, and Katsuyuki Nakamura.

Class-Difficulty Based Methods for Long-Tailed Visual

Recognition. International Journal of Computer Vision,

pages 1–15, 2022.

[33] Hyun Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese.

Deep metric learning via lifted structured feature embedding.

In CVPR, pages 4004–4012, 2016.

[34] Muhammad Atif Tahir, Josef Kittler, and Fei Yan. Inverse

random under sampling for class imbalance problem and its

application to multi-label classification. Pattern Recognition,

45(10):3738–3750, 2012.

[35] Jingru Tan, Xin Lu, Gang Zhang, Changqing Yin, and Quan-

quan Li. Equalization loss v2: A new gradient balance

approach for long-tailed object detection. In CVPR, pages

1685–1694, 2021.

[36] Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli

Ouyang, Changqing Yin, and Junjie Yan. Equalization loss

for long-tailed object recognition. In CVPR, 2020.

[37] Jiaqi Wang, Wenwei Zhang, Yuhang Zang, Yuhang

Cao, Jiangmiao Pang, Tao Gong, Kai Chen, Ziwei Liu,

Chen Change Loy, and Dahua Lin. Seesaw loss for long-

tailed instance segmentation. In CVPR, 2021.

[38] Peng Wang, K. Han, Xiu-Shen Wei, Lei Zhang, and Lei

Wang. Contrastive learning based hybrid networks for long-

tailed image classification. In CVPR, 2021.

[39] Tao Wang, Yu Li, Bingyi Kang, Junnan Li, Junhao Liew,

Sheng Tang, Steven Hoi, and Jiashi Feng. The devil is

in classification: A simple framework for long-tail instance

segmentation. In ECCV, pages 728–744, 2020.

[40] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and

Matthew R Scott. Multi-similarity loss with general pair

weighting for deep metric learning. In CVPR, pages 5022–

5030, 2019.

[41] Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu,

and Stella Yu. Long-tailed recognition by routing diverse

distribution-aware experts. In ICLR, 2021.

[42] Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Junjie Yan.

Dynamic curriculum learning for imbalanced data classifica-

tion. In ICCV, pages 5016–5025, 2019.

[43] Yu-Xiong Wang and Martial Hebert. Learning to learn:

Model regression networks for easy small sample learning.

In ECCV, pages 616–634, 2016.

[44] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learn-

ing to model the tail. In NeurIPS, 2017.

[45] Liuyu Xiang, Guiguang Ding, and Jungong Han. Learning

from multiple experts: Self-paced knowledge distillation for

long-tailed classification. In ECCV, pages 247–263, 2020.

[46] Yuzhe Yang and Zhi Xu. Rethinking the value of labels for

improving class-imbalanced learning. In NeurIPS, 2020.

[47] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Man-

mohan Chandraker. Feature transfer learning for face recog-

nition with under-represented data. In CVPR, 2019.

[48] Songyang Zhang, Zeming Li, Shipeng Yan, Xuming He, and

Jian Sun. Distribution alignment: A unified framework for

long-tail visual recognition. In CVPR, 2021.

[49] Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and

Yu Qiao. Range loss for deep face recognition with long-

tailed training data. In ICCV, pages 5419–5428, 2017.

[50] Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi Feng.

Test-agnostic long-tailed recognition by test-time aggregat-

ing diverse experts with self-supervision. arXiv, 2021.

[51] Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia. Im-

proving calibration for long-tailed recognition. In CVPR,

2021.

[52] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen.

BBN: Bilateral-branch network with cumulative learning for

long-tailed visual recognition. In CVPR, pages 1–8, 2020.

[53] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,

and Antonio Torralba. Places: A 10 million image database

for scene recognition. TPAMI, 2017.

[54] Linchao Zhu and Yi Yang. Inflated episodic memory with

region self-attention for long-tailed visual recognition. In

CVPR, 2020.

ar
X

iv
:2

20
9.

02
96

0v
1

 [
cs

.C
V

]
 7

 S
ep

 2
02

2

Difficulty-Net: Learning to Predict Difficulty for Long-Tailed Recognition

Supplementary Material

Imb. Train Val / Meta Test

CIFAR-LT 10–200 49–2 / 490 10 100

ImageNet-LT 256 5 / 1280 10 50

Places-LT 996 5 / 4980 10 100

Table 5: The imbalance ratio (Imb.) and the number of sam-

ples per class in each datasets. Since the training splits are

imbalanced, we show the number of samples in the least

and most frequent classes. Note that exactly the same set of

images are used for both the validation sets and meta sets.

This indicates that meta-learning based methods including

ours do not exploit any extra data.

1. More implementation details

1.1. More details on datasets

Table 5 shows the number of samples in training, vali-

dation, and test splits in each dataset. As shown in the ta-

ble, meta-learning (ML) based methods including ours and

[18, 29] reuse validation images for constructing Smeta, a

dataset to be used for meta learning. Note that (1) our pro-

posed method was compared with other ML based methods

in exactly the same conditions, (2) we re-ran the experi-

ments using public codes of previous methods and therefore

all the methods compared in this paper are evaluated using

exactly the same split as shown above, and (3) all the ML

based methods including ours do not use any extra data, and

therefore they do not receive any unfair benefit compared to

other methods by having Smeta. All the hyper-parameters

were tuned using the validation sets.

1.2. Hyperparameter settings

For CIFAR100-LT, following [36, 6], we use AutoAug-

ment [4] and Cutout [10]. Following [36], we train ResNet-

32 [14] for 12.8K steps with a batch size of 128 and an ini-

tial learning rate of 0.1. The learning rate is linearly warmed

up to 0.2 over the first 400 steps. It is also decayed by 0.1

after 6.4K and 9.6K steps. For the classifier learning stage

in decoupled learning methods, we fix the feature extractor

and re-train the classifier for 50 steps using class-balanced

sampling following [19]. The learning rate used is 0.1 and is

decayed by 0.1 after 30 and 40 epochs. For both the stages,

we use a weight decay of 1e−4. CIFAR100-LT experiments

are done on a single NVIDIA Tesla V100 GPU.

For ImageNet-LT, we follow [51] and train the models

for 180 steps with an initial learning rate of 0.05. The batch

size used is 128. We use cosine learning rate decay and

weight decay of 5e − 4. In decoupled training, for the sec-

ond stage we only re-train the classifier for 10 steps using

batch size 128 and cosine decayed learning rate with an ini-

tial value of 0.05. The models are trained on four NVIDIA

Tesla V100 GPUs.

For Places-LT, following [51, 24] we load a ResNet-152

pretrained on ImageNet and then finetune it for 30 steps

using an initial learning rate of 0.01 and weight decay of

5e− 4. The learning rate is decayed by 0.1 after 10 and 20

steps. The batch size used is 128. For the classifier learn-

ing stage, we retrain the classifier for 20 steps with a batch

size of 256 and initial learning rate of 0.1, which is cosine

decayed. The training is done on four NVIDIA Tesla V100

GPUs.

For all the datasets, we use SGD optimizer with momen-

tum 0.9. For Difficulty-Net learning, we use ADAM op-

timizer with a learning rate of 0.001 and a weight decay

1e− 4. All implementations are done on PyTorch.

1.3. Designing the Difficulty­Net

As stated in Sec. 3.2, our Difficulty-Net is a MLP with

2 hidden layers. The illustration of our Difficulty-Net is

given in Fig. 5. The output layer dimension changes with

the number of classes in the dataset. Here we provide a

simple way to select the hidden layer dimensions H . To

come up with the method, we compare the end-to-end train-

ing performance using different values for H on 2 different

datasets. The results are given in Table 6.

We find that the best working H is different for different

datasets. Therefore, based on the results, we decide to select

H = 2n such that 2n−1 ≤ C < 2n, where C is the number

of classes and n is a positive integer.

The value of C and H for the three different datasets that

we used are given in Table 7.

http://arxiv.org/abs/2209.02960v1

.

.

.

.

.

.

.

.

.

.

.

.

�

�2

� −

�

�

�2

� −

�

Input layer

dim =

Hidden layer 1

dim = �

Hidden layer 2

dim = �

Output layer

dim =

Figure 5: Illustration of our Difficulty-Net

H
CIFAR100-LT ImageNet-LT

(C = 100) (C = 1000)

128 47.96 39.4

256 48.06 40.4

512 47.81 41.2

1024 47.34 41.4

2048 46.92 40.8

Table 6: Effect of H on e2e training of ResNet-32

and ResNet-10 on CIFAR100-LT (imbalance=100) and

ImageNet-LT respectively.

Dataset C H

CIFAR100-LT 100 128

ImageNet-LT 1000 1024

Places-LT 365 512

Table 7: C and H for datasets used in our experiments.

1.4. Algorithm for meta­learning via Difficulty­Net

The algorithm for our Difficulty-Net based learning is

provided in Algorithm 1. As stated in Sec. 3.2, our learning

method comprises of three main steps (Eq. 9,10 and 11) that

are represented by steps 7, 8 and 10 in the algorithm. Note

that in our algorithm, Smeta is reused as validation set Sval

for calculating accuracies.

2. More Results

2.1. CIFAR100­LT results without using extra aug­
mentations

For the CIFAR100-LT results reported in Table 1, we

used extra augmentations (AutoAugment [4] and Cutout

[10]) to ensure same training setups as recent SOTA meth-

Algorithm 1 Meta-learning using Difficulty-Net

Require: Training set Strain, Meta dataset Smeta

Require: Initial learnable parameters θ1 and φ1

Require: Max iterations T , Value of λ

Require: Learning rates α, β and batch sizes b, m

1: for t = 1 . . . T do

2: Compute AC,t using f(x;φt) on Smeta

3: Sample mini-batch of size b from Strain

4: Sample mini-batch of size m from Smeta

5: Compute weights with AC,t and θt using Eq. 4

6: Compute intermediate φ̂t(θt) using Eq. 9

7: Update θt to θt+1 using Eq. 10

8: Re-compute Eq. 4 with AC,t and θt+1

9: Update φt to φt+1 using Eq. 11

10: end for

Output: φT+1, θT+1

ods such as PaCo[6], BALMS [26] and DRO-LT[28] for

fair comparison. As expected, these additional augmenta-

tion techniques provide a significant boost in the results. To

verify that our proposed method is effective independent of

these extra augmentations, we compare the results of our

method with other SOTA methods without using the aug-

mentation techniques. The results are reported in Table 8.

With or without extra augmentations, Ours + LAS proves to

be very effective.

2.2. ImageNet­LT results on many­, med­ and few­
shot classes

In Table 2, we saw that our proposed method helps to

achieve the best overall accuracy. Here we study the ef-

fectiveness of our method for each of many-, medium- and

few-shot classes. The comparison results are given in Ta-

ble 9. We find that in both e2e learning and decoupled learn-

ing, Difficulty-Net based weight assignment helps to signif-

icantly boost the performance of the few-shot and medium-

shot classes. We believe this result indicates the strong

capability of Difficulty-Net based weighting in mitigating

biased performance caused by the class imbalance. Espe-

cially, Ours + LAS is the most effective for the few-shot

classes, irrespective of the model used.

2.3. ImageNet­LT Results Using RandAugment

In Table 2, we reproduced the results of PaCo [6] without

using RandAugment [5] for the sake of fair comparison with

all the other methods that do not use RandAugment. How-

ever, the originally reported results in [6] use RandAugment

as additional augmentation, which are significantly higher

than the reproduced results. This suggests that PaCo is

greatly benefited by the use of RandAugment. Therefore,

we used RandAugment with our method and compared the

results with PaCo in Table 10. We only used Ours + LAS for

Imbalance

Method 200 100 50 20 10

e2e training

Focal Loss [23] † 35.62 38.41 44.32 51.95 55.78

MWN [29] † 37.91 42.09 46.74 54.37 58.46

Class-Balanced [7] † 36.23 39.60 45.32 52.99 57.99

CB-DA [18] † 39.31 43.35 48.53 55.62 59.58

LDAM [2] † – 39.60 – – 56.91

EQL [36] † 37.34 40.54 44.70 54.12 58.32

CDB-CE [31] † 37.40 42.57 46.78 54.22 58.74

PaCo [6] 36.96 40.92 46.97 53.66 59.59

+ Bal. Softmax [26] 39.55 44.13 48.60 55.89 60.24

Ours 39.94 43.82 49.00 55.70 60.25

+ Bal. Softmax 41.43 45.81 51.14 56.58 61.33

decoupled learning

cRT [19] 40.13 44.04 48.97 55.67 59.54

LWS [19] 40.70 45.05 49.70 56.22 60.00

LAS [51] 40.76 45.32 49.96 56.66 59.96

BALMS [26] 39.58 44.64 48.52 54.28 58.34

MWN + cRT 40.57 44.00 49.47 56.05 59.64

MWN + LWS 40.48 44.52 49.10 55.89 59.48

MWN + LAS 40.94 44.64 49.15 55.91 59.24

Ours + cRT 41.12 45.41 50.50 56.30 60.86

Ours + LWS 41.67 46.04 51.27 56.66 61.30

Ours + LAS 42.19 46.42 51.60 56.82 61.47

Table 8: Top-1 classification accuracy (%) on CIFAR100-

LT without using extra augmentation i.e. AutoAugment and

Cutout. † denotes copied results from origin paper [31, 18].

The best results are made bold while the second best results

are underlined, which applies for the other tables as well.

the comparison because Ours + LAS is the best performing

decoupled learning method as seen in Table 1,2 and 3.

From Table 10, we find that using RandAugment benefits

our method as well. With or without RandAugment [5],

Ours+LAS outperformed PaCo.

2.4. Comparison on ImageNet­LT with MoE meth­
ods

In Sec. 4.4, we did not compare our proposed method di-

rectly to mixture of experts (MoE) methods as the latter uses

multiple experts while we focus on improving the learning

of a single expert. For the fair comparison with MoE meth-

ods, we created an ensemble of Difficulty-Net based trained

models. For the ensemble creation, we trained two expert

models using Ours + LAS decoupled learning. The back-

bone architectures of these two models were kept the same.

The only difference between these models was that one used

a linear classifier and the other used a cosine classifier. Dur-

ing inference, we simply took the mean outputs of these two

models. The results of this simple ensemble is provided in

Table 11.

As can be seen, although our ensemble comprises of only

two expert models, it performs significantly better than 3-

experts and 4-experts RIDE [41]. This shows that our pro-

posed Difficulty-Net is effective in learning expert models

for MoE methods. However, the current ensemble is heuris-

tic and a detailed research on contribution of Difficulty-Net

in MoE is left for the future.

2.5. More results on sample­level v/s class­level dif­
ficulty

As empirically verified in Table 4, class-level difficulty is

more effective than sample-level difficulty in our Difficulty-

Net. We believe that this happens because as stated in

[31] and Sec. 4.5, the absolute number of hard samples in

head classes is significantly higher than that in tail classes

due to the inherent long-tail characteristic of the dataset.

Using sample-level difficulty gives high weights to all the

hard samples irrespective of their classes, resulting in more

weights for the head classes and therefore getting the model

biased to the head classes.

We verified this by conducting a simple experiment on

CIFAR100-LT. For 2 classes A and B with 376 and 46 train-

ing samples respectively, the absolute number of hard sam-

ples given high weights by sample-level method was higher

for A(50) than B(13). Although higher proportion of sam-

ples in B(≈ 28%) received high weights compared to A

(≈ 13%), A got more weights compared to B due to its

higher absolute number of hard samples. As a result, the

accuracy for A is improved from 46% to 62% and that for

B is decreased from 31% to 21%, hence boosting the bias.

In such case, using class-level difficulty gives high weights

to all samples of B, resulting in more weights for B. As a

result, the accuracy on B was improved from 31% to 40%,

while that on A was almost maintained (46% to 44%).

The effectiveness of class-level difficulty in Difficulty-

Net for overcoming model bias is further verified in Ta-

ble 12. Using sample-level difficulty causes the model to

get biased towards the many-shot classes while class-level

difficulty is particularly useful for improving performance

on the med-shot and few-shot classes.

Backbone Network ResNet-10 ResNet-50

Method Many Medium Few Overall Many Medium Few Overall

e2e training

CE 57.6 25.7 3.2 34.8 64.0 38.8 5.8 41.6

Focal Loss [23] 36.4 29.9 16.0 30.5 – – – –

OLTR [24] 43.2 35.1 18.5 35.6 – – – –

EQL [36] – – – 36.4 – – – –

CDB-CE [31] – – – 38.5 – – – –

Bal. Softmax [26] 55.8 35.7 20.9 41.1 – – – –

PaCo[6]∗ – – – – 68.4 44.8 14.7 49.8

+ Bal. Softmax [26]∗ – – – – 59.9 52.6 36.1 53.5

Ours 58.8 36.4 13.9 41.4 68.1 47.2 21.5 51.2

+ Bal. Softmax 54.6 41.6 27.8 44.3 63.6 51.4 35.8 53.7

decoupled learning

cRT [19] – – – 41.8 58.8 44.0 26.1 47.3

LWS [19] – – – 41.4 57.1 45.2 29.3 47.7

MiSLAS [51] – – – – 61.7 51.3 35.8 52.7

BALMS [26] 50.3 39.5 25.3 41.8 – – – –

Ours + cRT 53.3 41.1 27.4 43.6 63.2 51.8 35.2 53.5

Ours + LWS 51.6 43.7 29.3 44.4 62.5 52.3 36.6 53.7

Ours + LAS 51.8 43.6 30.2 44.6 62.9 52.6 36.8 54.0

Table 9: Top-1 accuracy (%) on many-, medium- and few-shot classes of ImageNet-LT. ∗ represents results reproduced using

author’s codes without using RandAugment [5] for fair comparison. Other results are copied from original papers.

Method ResNet-10 ResNet-50

PaCo + Bal. Softmax [6] – 57.0

Ours + LAS 46.9 57.4

Table 10: Top-1 accuracy (%) using RandAugment[5].

Baseline results are copied from the original paper [6].

Method ResNet-10 ResNet-50

LFME [45] 38.8 –

RIDE (2 experts) [41] – 54.4

RIDE (3 experts) [41] – 54.9

RIDE (4 experts) [41] – 55.4

Ours (2 experts) 47.5 56.2

Table 11: Comparison with mixture of expert methods.

Baseline results are copied from the original papers [45, 41].

Imbalance 100 10

Difficulty Many Med Few All Many Med Few All

Sample-level 67.00 47.46 18.99 45.76 74.50 61.01 48.02 62.51

Class-level (ours) 64.47 51.21 24.92 47.96 70.48 64.40 53.36 63.52

Table 12: Comparison of sample-level difficulty and class-

level difficulty on CIFAR100-LT.

