2204.02227v3 [cs.CV] 26 May 2023

arxXiv

SD-Conv: Towards the Parameter-Efficiency of Dynamic Convolution

Shwai He!-2 Chenbo Jiang?

Daize Dong? Liang Ding!*

1JD Explore Academy
2University of Electronic Science and Technology of China
3Nanjing University of Science and Technology Zijin College

shwai.he@Qgmail.com, cbjiang@foxmail.com,

dzdong2019@gmail.com, dingliangl@jd.com

Abstract

Dynamic convolution achieves better performance for ef-
ficient CNN s at the cost of negligible FLOPs increase. How-
ever, the performance increase can not match the signifi-
cantly expanded number of parameters, which is the main
bottleneck in real-world applications. Contrastively, mask-
based unstructured pruning obtains a lightweight network
by removing redundancy in the heavy network. In this pa-
per, we propose a new framework, Sparse Dynamic Convo-
lution (SD-CONV), to naturally integrate these two paths
such that it can inherit the advantage of dynamic mecha-
nism and sparsity. We first design a binary mask derived
from a learnable threshold to prune static kernels, signifi-
cantly reducing the parameters and computational cost but
achieving higher performance in Imagenet-1K. We further
transfer pretrained models into a variety of downstream
tasks, showing consistently better results than baselines. We
hope our SD-Cony could be an efficient alternative to con-
ventional dynamic convolutions.

1. Introduction

There have been rich discussions on the representa-
tion power of deep neural networks in two opposite direc-
tions [36,45]. From the perspective of increasing the model
capacity, more layers and channels with specialized infras-
tructure (e.g. dynamic convolution [7]) can achieve higher
performance with less overfitting [1,41]. In the view of
model compression, network pruning and quantization of
complex networks can induce smaller models possibly at
the expense of minor accuracy loss [12, 14]. Regarding the
trade-off between cost and gain in these two opposite ap-
proaches, what will happen when we combine them for in-
frastructure optimization? Especially, can we combine the

*Corresponding author

advances of dynamic convolution and sparsity towards the
best of both worlds — achieving a desirable trade-off be-
tween complexity and performance?

Dynamic convolution (DY-Conv) [7] achieves significant
performance gains over static convolution with negligible
computational cost but relatively high memory cost. Specif-
ically, it utilizes an input-based attention mechanism to gen-
erate dynamic attention weights to combine multiple paral-
lel static kernels, boosting the performance at the cost of
increased convolutional parameters.

However, during inference, this parameter increase
does not match the model performance improvement com-
pletely. For example, DY-ResNet-18 [7] is 2.3% higher than
ResNet-18 and 4% lower than ResNet-50 in Top-1 accuracy
on Imagenet-1K [8], while its parameter amount is about
four times of ResNet-18 and twice of ResNet-50. In ad-
dition, large-scale DNNs require huge storage and deploy-
ment cost, which becomes the main bottleneck of the real-
world deployment [13,26,30]. These phenomena raise the
problem of parameter efficiency when we try to adopt dy-
namic convolution more efficiently.

A possible routine to improve the parameter efficiency
in dynamic convolution is to refine the method of ker-
nel combination. For example, Li et al. [34] reformulate
the linear combination of dynamic convolution into a sum-
mation of the static kernel and sparse dynamic residual.
Another scheme is to increase the sparsity to build com-
pact parameter-efficient networks. One can prune task-
unrelated neurons that usually have small absolute val-
ues [13, 17,56] or contribute little to the decrease of loss
function [32,33,44].

In recent studies, some sparse networks not only de-
crease storage and computational requirements but also
achieve higher inference scores than dense networks [10],
suggesting the potential utility of sparse structure in allevi-
ating overfitting problems [25,51]. In terms of the represen-
tation power of subnetworks, the Lottery Ticket Hypothe-

sis [13] shows that there consistently exists lightweight sub-
networks that can be trained from scratch with competitive
learning speed as their larger counterparts, while maintain-
ing comparable test accuracy. Based on this hypothesis, we
assume that we can find the subnetworks for dynamic con-
volution in the training process and achieve a compact and
efficient dynamic convolution network.

In this work, we re-examine the parameter efficiency for
dynamic convolution. We first simply prune out half of the
parameters in the k parallel kernels for pretrained dynamic
convolution layers. Surprisingly, we find that this pruning
operation has minimal effect on the numerical feature of dy-
namic parameters and a negligible impact on performance.

Based on this discovery, we further propose to integrate
dynamic convolution with sparsity, namely sparse dynamic
convolution, which enjoys natural complementarity. Tech-
nically, we present a new algorithm to train the dynamic
convolution modes via iterative pruning. Specifically, we
set a learnable threshold for each convolutional layer and
prune the neurons whose magnitudes are below the thresh-
old. We also propose a penalty term to explicitly regulate
the Ly-norm of maintained parameters to guarantee the total
parameters under an overall budget without additional hy-
perparameters. Considering that the computational kernel
is a linear combination of static kernels, the masked kernels
can then be integrated into a sparsely computing kernel with
reduced FLOPs.

To validate the efficiency of sparse dynamic convolu-
tion, we execute our methods on both ImageNet-1K [8]
and downstream tasks, and demonstrate the promotion that
arises from both dynamic convolution and sparsity: Dy-
namic mechanism improves the representation power with
negligible extra computational cost; Sparsity reduces the re-
dundancy of dynamic convolution and promotes the perfor-
mance during inference. In short, our main contributions
are as follows:

e We propose the Sparse Dynamic Convolution (SD-
Conv) to improve the parameter efficiency of dynamic
convolution by marrying the dynamic convolution and
sparsity to maintain the advantage of both worlds.

e We propose a novel Lg-norm based pruning method
with an optimization policy to train sparse dynamic
convolution networks efficiently.

e Our experiments on both upstream tasks and down-
stream tasks have shown the complementarity between
sparsity and dynamic convolution.

2. Related Work

Both dynamic convolution and sparsity are often consid-
ered separately to promote neural networks. We delve into
the combination of them and briefly review them as follows:

Dynamic Networks Dynamic networks adapt input-
based parameters or activation functions to boost represen-
tation power. HyperNetworks [16] use a secondary network
to generate parameters for the main network. SENet [23]
applies channel-wise attention to channels. DRConv [6]
transfers the increasing channel-wise filters to a spatial di-
mension with a learnable instructor. CondConv [52] and
Dynamic Convolution [7] each proposed a new convolution
operator to improve the representation capability with neg-
ligible extra FLOPs. Instead of using a single static convo-
lution kernel per layer, they use the linear combination of
a set of k parallel static kernels {W;,b;}(i = 1,2,...,k),
where the linear scale is dynamically aggregated via a func-
tion of individual inputs. Dynamic convolution [7] utilizes
an attention function to formulate the linear score:
k
W = Z VIV Wi
i=1

. (1)
st. Y om=1, 0<m<1,
=1

where 7, is the attention score of the k-th kernel. Dy-
namic convolution only introduces two negligible addi-
tional computations: 1) Computing the attention scores
mi(t = 1,2,...k). 2) Aggregating parameters based on
attention scores Zle m;(x) * W;. This linear combination
significantly promotes the representation power of dynamic
convolution and improves the performance in mainstream
computer vision tasks.

However, towards the use of k parallel kernels in dy-
namic convolution, Li et al. [34] have proposed that it
lacks compactness, and further utilized a matrix deposition
method to improve this problem. Similarly, our work inves-
tigates the parameter efficiency of dynamic convolution and
utilizes network pruning methods to improve it.

Sparsity Sparsity has been widely studied to compress
deep neural networks in resource-constrained environ-
ments. It can be generally categorized into two groups:
STRUCTURED and UNSTRUCTURED sparsity. Structured
sparsity prunes blocks of sub-networks in a neural network,
while unstructured fine-grained sparsity prunes multiple in-
dividual weights distributed across the whole neural net-
work. Between the two sparsity types, unstructured spar-
sity usually achieves significantly higher compression ratios
while maintaining relatively better performance [15, 17],
which therefore leaves as our default sparsity type.
Unstructured sparsity usually detects unimportant pa-
rameters and utilizes a threshold to prune them. On the one
hand, many previous works compute the threshold based
on different importance-based criteria, including magnitude
[13,17,56], Hessian-based heuristics [32, 33] and connec-
tion sensitivity [31,37]. On the other hand, sparse training

Figure 1. Illustration of convolution kernel generation process for Dynamic Convolution (Left) and our proposed Sparse Dynamic Convo-

lution architecture (Right).

4

T w M /4

N/

(a) Dynamic Convolution.

with differential thresholds has also been widely explored.
Kusupati et al. [30] and Manessi et al. [40] propose to learn
layer-wise thresholds automatically using a soft threshold-
ing operator or a close variant of it. As the learning-based
thresholds contribute to the minimization of task-specific
loss, the differential thresholds-based sparse method [30]
contributes to high performance. Besides, sparsity learned
during training with approximate Lg-norm regulation has
also been used in several works [2, 35], because it con-
trols the overall sparsity directly. To make the Ly-norm of
thresholds differentiable, Louizos et al. [35] set a collection
of non-negative stochastic gates to determine the weights to
be pruned, while Azarian et al. [2] propose an approximate
form of Ly-norm to estimate the gradient. Considering both
performance and controllability, we adopt a threshold-based
Ly-norm in our sparse method.

3. Methodology

In this section, we first present our motivation for spar-
sity in dynamic convolution, then illustrate our efficient
architecture, namely Sparse Dynamic Convolution (SD-
CONV).

3.1. Motivation

In conventional dynamic convolution, each convolu-
tional layer prepares k parallel kernels to aggregate the dy-
namic kernel, leading to a nearly k£ times larger model and
potential parameter redundancy. For example, the total pa-
rameters of dynamic ResNet-50 (DY-ResNet-50) are about
100.9M (with 4 kernels) compared to about 23.5M for static
ResNet-50. For this phenomenon, we raise two questions:
(1) Is it necessary to pay the cost of enormous parameters
and computations, e.g. 329% in DY-ResNet-50, to aggre-
gate the dynamic kernels? (2) Is it necessary to deploy all
of these parameters to maintain the slight performance im-
provement, e.g. 1.1% in DY-ResNet-50?

To answer these questions, we turn to analyze the pre-
trained DY-ResNet-50 [19] model from the view of network
pruning. Specifically, we prune out 50% parameters of it

%ﬂ Kernel

Input '::.f."‘z‘. =0
CR 3
X K0 =—O=>-0—
VXN

(b) Sparse Dynamic Convolution.

Figure 2. The scaled layer-wise mean and variance values of the
aggregated kernel weights of ResNet-50. “Vanilla” and “Pruned”
denote dynamic convolution networks before and after pruning, re-
spectively. The mean and variance values keep nearly unchanged
after pruning 50% parameters.

---- Vanilla —— Pruned

0.25

0.154

0.05 1

Mean

—0.05 1 === 277N

-0.15

0.50
0.40 A\
0.30 1
0.20

=

Variance

0.10 A

0.00

T T T T

10 20 30 40 50
Layers

with the lowest magnitude on CIFAR-100 dataset' [29]. We
measure the mean and variance values of the parameters in
aggregated kernels as the proxy of the dynamic property:
given different input samples, each dynamic convolution
layer aggregates the computational kernel dynamically.By
iterating over the entire validation dataset, we compute the
layer-wise mean and variance of parameters in the aggre-
gated kernel, which is shown in Figure 2. Clearly, The
change curves of the vanilla and the pruned networks al-
most coincide, with only some small divergences in the up-
per layers. Therefore, network pruning has little impact on
the numeric features of the dynamic property.

We also conduct a preliminary experiment to investigate
the performance gap caused by network pruning on CIFAR-
100 using ResNet [19] as backbones. We can see from

Uhttps://github.com/weiaicunzai/pytorch-cifar100

Table 1. Preliminary results for network pruning in dynamic con-
volution (DY-Conv). After pruning 50% parameters “w/ Pruned”,
dynamic convolutions still maintain comparable performance and
the advantage over static convolutions “Static”. * indicates the
dynamic models with the best performance, the fewest parame-
ters, and the fewest FLOPs (“Static” models are excluded).

Depth Method Param. FLOPs Top-1 (%)
Static 0.3M 29.9M 66.0
ResNet-10 DY-Conv 1.2M 34.8M 68.9
w/ Pruned >*0.6M *27.1M 68.1(-0.8)
Static 0.7M 35.6M 67.6
ResNet-18 DY-Conv 2.8M 43.4M 72.4
w/ Pruned >*1.4M *31.9M 71.9(-0.5)
Static 1.5M 122.3M 72.2
ResNet-50 DY-Conv 6.2M 143.4M 75.2

w/ Pruned *3.3M *108.5M 74.6(-0.6)

results in Table | that pruned networks still maintain al-
most equally competitive performance: DY-ResNet fami-
lies (with dynamic convolution layers) only encounter less
than 1% of performance drop and still outperform static net-
works by more than 2% in accuracy. The above observa-
tions motivate us to explore effective and efficient sparse
dynamic convolution structures.

3.2. Sparse Dynamic Convolution

In this section, we propose Sparse Dynamic Convolu-
tion, which utilizes parallel sparse kernels to aggregate dy-
namic kernels. We use binary masks M to sparsify the ker-
nels by pruning out unimportant parameters. Generally, a
binary mask is a 0/1 matrix indexing the pruned weights in
the parallel kernels. To make the binary mask trainable, we
define a magnitude score S = ||| and a threshold 7. The
mask is then rounded to 1 if the score is greater than the
threshold, and vice versa, given by

1, ifS; >
A @
0, otherwise

The major challenge for training binary masks is that Eq. (2)
is non-differentiable, impeding the calculation of gradients
and blocking the updating process. To solve this prob-
lem, Piggyback [39] utilizes the Straight-Through Estima-
tor (STE) [3] (where the gradient is directly passed to its
input % = 1) to enable gradient estimation so that the
gradient descent can update parameters.

According to Zhou et al. [55], the values of M are not
restricted in binary values 0/1 strictly, which may cause an
unstable training process and accuracy drop. Inspired by
Yang et al. [53], we adopt the softmax function to approx-
imate M into binary values 0/1 for better gradient calcula-
tion:

Figure 3. Effect of the hyperparameter 7" on the binary function
Eq. (3 and 4). It is easily observed that this hyperparameter con-
tributes to the sharpness. By decreasing 7', we observe that output
values gradually follow an approximate 0/1 distribution.

T=1/64

0.8

0.6

0.4+

024

0.0

-02 00 02
T=1/1024

0.8 | 0.8
06 06
04 044

02 1 I 0.2

0.0 ! 0.0
-0.4 -0.2 0.0 02 04 -0.4 -0.2 00 02 04

1 =0(S—7), 3)

M= exp(¢1/T) , (4)
exp(¢1/T) + exp(o/T)

where o (-) is the sigmoid function and 7 denotes the thresh-
old. 19 = 1 — 1)y is the complement of ;, M is the gen-
erated mask following an approximate 0/1 distribution. T’
is the hyperparameter controlling the sharpness of the func-
tion. For example, T' = ﬁ encourages the output to be
either 0 or 1, which is shown in Figure 3. Then we trans-
form M into binary values M using STE to generate and

update the binary masks:

M =round(M), VM = VM.)

By utilizing binary masks to k kernels, we transform the
dynamic convolution into sparse dynamic convolution. In
this layer, we first sparsify the k parallel static convolution
kernels W; (i = 1,2,...,k) and then combine them dy-
namically, given by

Wi=M,oW, W=>Y mW,. (6)
Here, W; and W denote the sparsified parameters of the

static kernel and the aggregated sparse kernel, respectively.

3.3. Loss Function

The binary mask M is determined by the magnitude of
parameters W and the threshold 7. In general situations, 7
is a hyperparameter as the threshold that controls the global

sparsity. A naive way to set the threshold is to maintain the
uniform sparsity of all layers. However, many experiments
have indicated that setting multiple thresholds to control the
layer-wise non-uniform sparsity performs much better [2,

,35]. Existing methods to acquire layer-wise sparsity are
often dependent on hyperparameters and require iterative
trials [13].

To address this problem, we propose a learning-based
strategy to obtain layer-wise thresholds. Specifically, we
first transform 7 into learnable parameters and utilize it to
generate differential masks:

OM _ OM OM 0y .

or M Oy OT ™
The gradient backpropagated to M indicates two direc-
tions: contributing to the performance improvement and
constraining the overall sparsity. To constrain the spar-
sity, Lo-norm regularization has been widely researched in
model sparsity [2, 35], for it directly regulates the overall
parameter budget. Therefore, given the overall sparse level
s, the non-zero ratio of overall parametersis s = 1 — s. We
resort to Lo-norm penalty L£4(7,s) to constrain the layer-
wise non-uniform sparsity as followed:

Ly(7,5) =ReLU N, - (IMY]|o —5)), (8)
l

where L, is the regulation loss that controls the global
sparsity, IV; is the number of parameters in the ¢-th layer,
[| M (l)||0 is the Ly norm of the mask M in the [-th layer.
Note that we use the ReLLU function to restrict the global
sparsity under the setting value, this loss term only works
when the network is denser than expected. Formally, we
define our loss function £ as followed:

L=Lc(y, f(@,W,T)) + ALs(7,5) + X |[[W][2, (9)

where we represent our networks as f and the ground truth
label as y. L. is the standard loss function, e.g., cross-
entropy in image classification. ||WW||2 is the Lo weight
regularization loss and A, is the weight decay rate. Ag is
a hyperparameter that determines the pruning speed.

3.4. Optimization Policy

We train the sparse dynamic convolution following an it-
erative pruning process [| 1, 13]. Notably, considering the
time-consuming training process of dynamic networks, we
restrain the total steps consistent with vanilla dynamic con-
volution and equally divide the total steps into n+ 1 phases.
Given the sparse level s and pruning iterations n, in the first
n phases, we prune s percent of the parameters at the end
of each phase and retrain the network in the next phase. The
whole training policy is shown in Algorithm 1.

Algorithm 1: Sparse Dynamic Convolution

Input: Sparsity s, Total Steps 1", Pruning Iterations n,
Dynamic Convolution Network f.
Output: Sparse Dynamic Network f;.
1: Initialize 5 = 1 — s, 50 = 0, At = 2.
2: fort =1toT do
3: Compute loss £ = L, + AsLs(7, 5) + A |[W]]a.
4: Update parameters Wy < W, — UWﬁ~
5. Update thresholds 7441 < 7¢ — 77 g—f.
6: if tmod At =0 then
7 Update variable 5,1 = § It
8: else
9 Pass variable 51 = S;.
10. end if
11: end for

4. Experiment

In this section, we provide comprehensive experiments
on both large-scale image recognition datasets and down-
stream tasks with different CNN architectures to validate
the effectiveness of SD-Conv. Specifically, we compare
the performance of sparse dynamic convolution with other
convolution architectures, and further analyze the design of
sparse dynamic convolution from the perspective of sparsity
and reduced FLOPs.

4.1. Image Classification on ImageNet

Our main experiments are implemented on the ImageNet
dataset [8], which is one of the most challenging image clas-
sification datasets with 1,000 classes, including 1,281,167
images for training and 50,000 images for validation.

CNN Backbones. We use ResNet [19] and Mo-
bileNetV2 [48] families for experiments, covering both
light-weight CNN architectures and larger ones. Specif-
ically, we choose ResNet-10, ResNet-18, ResNet-50 and
MobileNetV2 (1.0x,0.75x,0.5x) as the backbones.

Experimental Setup. We validate the effectiveness of
our method by replacing dynamic convolution for all con-
volution layers except the first layer. Each layer has k = 4
experts with the reduce ratio as 16 for the attention block
in dynamic convolution [7]. We use an SGD optimizer
[47] with 0.9 momentum, following cosine learning rate
scheduling and warmup strategy. The learning rate rises
to the max learning rate linearly in the first 10 epochs and
is scheduled to arrive at zero within a single cosine cycle.

When generating binary masks, we set constant 7' = ﬁ

to ensure M follows approximately 0/1 binary values. The
scale factor Ay of sparse penalty L4(7,s) is fixed as 0.01.
We follow Zhou et al. [7]’s temperature annealing strategy
to avoid the unstable output values of the softmax func-
tion in the first epoch. We train the ResNet models for

Table 2. Comparison for MobileNetV2 and ResNet between Sparse Dynamic Convolution and baselines, including static convolution,
Condconv [52] and DY-Conv [7]. * indicates the dynamic model with the fewest parameters or the fewest FLOPs (static models are not

included). The best performance is bold.

Width Method Param. FLOPs Top-1 (%) Depth Method Param. FLOPs Top-1 (%)
Static 3.5M 300.0M 72.0 Static 5.2M 0.89G 63.4
<1.0 CondConv 27.5M 329.0M 74.6 ResNet-10 CondConv 36.7M 0.92G 66.8
’ DY-Conv 11.8M 312.9M 75.2 DY-Conv 18.6M 091G 67.5
SD-Conv *x7.7M *261.9M 75.3 SD-Conv *10.4M *0.73G 67.9
Static 2.6M 209.1M 69.3 Static 11.1M 1.81G 70.4
<075 CondConv 17.5M 233.9M 71.8 ResNet-18 CondConv 81.4M 1.89G 72.0
’ DY-Conv 7.6M 220.1M 72.8 DY-Conv 42.7M 1.85G 72.7
SD-Conv *5.0M *171.8M 73.2 SD-Conv *232M *1.51G 73.3
Static 2.0M 97.0M 65.4 Static 23.5M 3.8G 76.2
<05 CondConv 15.5M 113.0M 68.4 ResNet-50 CondConv 129.9M 4.0G 76.8
’ DY-Conv 4.4M 101.4M 69.9) DY-Conv 100.9M 4.0G 77.3
SD-Conv *3.1M *81.5M 70.3 SD-Conv *54.0M *3.4G 77.4

(a) MobileNetV2 (b) ResNet

100 epochs, and the max learning rate is 0.1. For the Mo-
bilenetV2 models, we train them for 300 epochs, and the
max learning rate is 0.05. The weight decay is 4e-5 for all
models.

Main Results. Table 2a and 2b show the comparison
between SD-Conv and other convolution architectures in
two CNN architectures (ResNet and MobilenetV2). Our
baselines include the static convolution, CondConv [52]
and DY-Conv [7]. We set s = 50% to make the overall
sparsity over 50%. As shown, sparse dynamic convolution
achieves significant performance improvement with a much
smaller model size compared to vanilla dynamic convolu-
tion. For ResNet-18, sparse dynamic convolution has only
54.3% of the parameters of vanilla dynamic convolution.
For MobilenetV2-1.0, our method only requires 53.5% of
the parameters of dynamic convolution to achieve the same
level of accuracy. The most prominent advantage of sparse
dynamic convolution is its low computational cost. Owing
to the sparse computational kernel W, our method requires
much fewer FLOPs in the convolution operation that acts as
the dominant part of the overall FLOPs. The computational
cost of our method is even less than that of static convolu-
tion, while all the other dynamic networks introduce extra
computational costs. For example, sparse dynamic convo-
lution only has 87.3% of FLOPs of static convolution in
MobilenetV2-1.0.

Robustness. Traditional network structures are robust
to the images perturbed with small Gaussian noise, while
networks pruned with random masks can even have higher
robustness than normal ones [38]. To check whether SD-
Conv also enjoys such property or even has better robust-
ness in this scenario, we also consider the model’s en-
durance of noise attack. We conduct an robustness evalu-

Table 3. The robustness evaluation based on random noise attack.
Setting different standard variance o, we evaluate the performance
of different models. The best performance is bold.

Model Option 0.05 0.10 0.15 0.20
Static 682 654 584 542
ResNet-50 DY-Conv 68.7 66.1 59.2 554
SD-Conv 69.1 665 59.5 55.9
Static 60.7 539 498 45.1
ResNet-18 DY-Conv 61.1 54.8 504 463

SD-Conv 613 552 505 46.7

ation on ImageNet for ResNet-50 [19]. Inspired by Luo et
al. ’s work [38], we feed input images with Gaussian noises
z~N (0, 02) to networks. Table 3 shows the robustness
evaluation on random noise attack, we set the sparse ratio
s as 20% and 80% separately for our model. Disturbed by
the same intensity of noise, we can see that our networks
have the highest accuracy and gain up to 0.5% improvement
compared to dynamic architectures.

4.2. Transferring to Downstream Tasks

Network architectures measured against ImageNet [8]
have fueled much progress in computer vision researches
across a broad array of problems, including transferring to
new datasets [9,49], object detection [24], image segmenta-
tion [18] and perceptual metrics of images [27]. Many pre-
vious works have proved that better network architectures
learn better features to be transferred across vision-based
tasks [22,49]. Therefore, we further evaluate the effective-
ness of our network on downstream vision tasks, including
CIFAR-10 [29], CIFAR-100 [29], Oxford-IIIT Pets [43],

Figure 4. Transferability comparison between Static, Dynamic, and our proposed SD-Conv from pretrained ResNet to different downstream
tasks. We report two finetuning approaches: linear finetuning and full finetuning.

Linear Finetuning

Full Finetuning

100.0 100.0
95.0 1 9504 H -
=N H = =N
90.0 - 90.04 = - - N
Q N\ H Q) H H H =
S gso0{ F = - S g50{ H - = =
> = = = > = = = = =
Q - - = Q - - = N H -
o 800 - - - O 8007 H - - - - =
3 H H = 3 H H = H H =
O 750 = i\ = = S 7504 H = = = = =
< = H = = < : = = = = - -
c = = = = c = = = = = =
2 7001 BN BN E g 2 7001 BN HN H SN BN B
kY H H H H 3 H H H H H H
= 6501 H - - H = 6501 H - H - - -
© - H H H © - - H - H -
> - = - = > - - = - - -
ool BN HN H . i N o001 BN HN H N HN E
H H H N H i H H H H H H
55.01 [= = § = N § 55.01 [= = = = =
H H H N H § § H H H H H H
ool AN HN B N 2 N ER 9N HN H 9N HN H
’ CIFAR CIFAR Pets Birds Food Flower Car Sun CIFAR CIFAR Pets Birds Food Flower Car
10 100 101 397 10 100 101
E== Static Dynamic XY Sparse Dynamic

Birdsnap [4], Food-101 [5], Oxford 102 Flowers [42], Stan-
ford Cars [28], SUN397 [50]. These tasks span several do-
mains, difficulties, and data sizes.

We transfer all parameters of the upstream model except
the last (fully connected) layer, which is adjusted to the
number of classes in the downstream task, using Kaiming
uniform initialization [20]. We finetune the pretrained Ima-
geNet model following two strategies, linear finetuning and
full finetuning. For linear finetuning, we only train the lin-
ear classifier “on the top” of a fixed representation on down-
stream tasks, while we re-initialize the final layer and train
the whole model for full finetuning. For both strategies, we
take top-1 classification accuracy as the metric to compare
different structures, which is shown in Figure 4. The results
clearly show that the sparse dynamic convolution achieves
consistent improvement compared to dynamic convolution
on downstream tasks, suggesting that pruning redundant in-
formation in the weights is beneficial to dynamic convolu-
tion architectures in transfer settings.

4.3. Further Analysis

Further Increased Sparsity Can Still Maintain Superior
Performance. To further explore the impact of sparsity,
we conduct an ablation study by investigating a series of
sparse ratios (from 20% to 80%). Figure 5 shows the result
of the ablation study on ImageNet classification [8] experi-
ments for ResNet [19] in different depth, where we directly
report the classification accuracy. For ResNet models with
different depths, we can observe a consistent phenomenon
that SD-Conv performs stably under different degrees of
network pruning. At low sparse ratios (e.g. s < 40%),
pruning out some unimportant parameters can lead to higher
performance. When further increasing the sparse ratios, e.g.

Figure 5. The ablation study on sparsity for ResNet. Dotted line
represents the performance of static convolution.

EFHHE ResNet10 RXX ResNet18 ResNet50

80.0

72.0

Accuracy (%)
3
o

»
b
o

60.0

Sparsity (%)

60% and 80%, sparse dynamic convolution networks still
maintain a significant performance advantage over static
convolution networks. Considering the competitive perfor-
mance, network pruning is an efficient way to simplify and
promote dynamic convolution.

Reduced FLOPs Come from the Sparse Aggregated
Kernel. As shown in Table 2a and Table 2b, the FLOPs of
sparse dynamic convolution networks are even lower than
static convolution. According to our observation, the re-
duced FLOPs come from the sparsity in propagated kernels
W. Even so, we have to mention that the sparsity of W
is not definitely dependent on the sparsity of parameter Wj
(j = 1,2,...,k) but lies in the overlap between them: the

Figure 6. The curves of kernel and layer sparsity for ResNet-18.

70.0

—— Layer —— Kernel

60.0 -

Sparsity(%)
8 & 8
o o o

)
4
=}

0.0

0 10 20 30 40 50
Layers

i-th element of W is zero only when all static kernels Wj
(j = 1,2,...,k) have zero elements in the i-th position.
Therefore, other than layer sparsity towards parameters (the
proportion of zero-elements in Wj), we also resort to the
kernel sparsity towards propagated kernels (the proportion
of zero-elements in w). To investigate the distribution of
pruned parameters in propagated kernels, we visualize the
pruned ratio of propagated kernels W and k kernels W, in
Figure 6. We show that the kernel sparsity follows a similar
trend to layer sparsity but maintains relatively smaller val-
ues. Even so, each propagated kernel still maintains a cer-
tain degree of sparsity, and the pruned weights contribute to
the reduced FLOPs compared to dense convolution kernels.

5. Discussion of Masking Strategy

Table 4. Comparison between two different masking strategies.
We use “Diff” to denote the different masking strategy and “Same”
to denote the same masking strategy. * indicates the dynamic
model with the fewest parameters or the fewest FLOPs.

Network Method Param Flops Acc(%)
Static 235M 338G 76.2
DY-Conv 1009M 4.0G 773
ResNet-30 Diff *633M 3.5G 77.4
Same *633M *25G 76.6
Static 35M 3000M 72.0
. DY-Conv 11.IM 3129M 752
MobilenetV2-1.0 b *53M 2719M 75.3
Same *x53M *1923M 74.6

As aforementioned in Section 4.3, the kernel sparsity lies
in the overlap region of k£ masks M; (: = 1,2,...,k) and
is usually lower than the parameter sparse ratio. Only when
M, = My = --- = My, the kernel sparsity can be the
highest and the FLOPs can be minimized, . Therefore, we
evaluate a strategy that directly applies the same mask to

Figure 7. Comparison between two masking strategies. The left
one is the default setting in SD-Conv, which takes k different
masks for each counterpart kernel. On the right, each kernel shares
the same mask.

Different Mask Same Mask

4 w, m w,
00 @0e ©X XO) 0®o0
OO 9M, O @ OM, © O OM, @ O OM,
90® 0®O0 9680 @00
00 @0@ o080 oO®O0
O —O0—0@0O ©O0O0—0—@00
00O C®eo 680 @O0

6o
e0e®
(e]e]e)

the static kernels and then compare it with our proposed
method, as shown in Figure 7. We can see from the numeric
results from Table 4 that utilizing the same mask to k ker-
nels can cause a performance drop though it significantly re-
duces the FLOPs. In contrast, our learning-oriented thresh-
olds lead to different masks among static kernels and obtain
significantly better results. We believe that the sparser ag-
gregated kernels cause the performance drop and there ex-
ists a trade-off between optimal FLOPs and performance in
sparse dynamic convolution.

6. Conclusion

In this work, we systematically re-examine the param-
eter efficiency property of dynamic convolution networks
through the lens of network pruning. Based on our findings,
we propose a plug-in strategy, i.e. Sparse Dynamic Con-
volution, for existing dynamic convolution methods. Our
method improves the performance of dynamic convolution
both in upstream ImageNet classification and a variety of
downstream tasks, with fewer parameters and FLOPs. Our
study empirically indicates the effectiveness of sparsity in
dynamic convolution and informs the potential to further
promote sparse dynamic convolution in view of the trade-
off between performance and FLOPs.

In future work, we would like to investigate the pa-
rameter efficiencies of other neural network models, espe-
cially for scenarios where high efficiency is required, e.g.,
Adapter [2 1], Prompt [54] and the distilled student [46].

Acknowledgements

We are grateful to the anonymous WACYV reviewers and
the area chair for their insightful comments and suggestions.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]
[15]
[16]

(17]

(18]

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learn-
ing and generalization in overparameterized neural networks,
going beyond two layers, 2020. 1

Kambiz Azarian, Yash Bhalgat, Jinwon Lee, and Tijmen
Blankevoort. Learned threshold pruning, 2021. 3, 5

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-
timating or propagating gradients through stochastic neurons
for conditional computation, 2013. 4

Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L
Alexander, David W Jacobs, and Peter N Belhumeur. Bird-
snap: Large-scale fine-grained visual categorization of birds.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2011-2018, 2014. 7

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101-mining discriminative components with random
forests. In European conference on computer vision, pages
446-461. Springer, 2014. 7

Jin Chen, Xijun Wang, Zichao Guo, Xiangyu Zhang, and
Jian Sun. Dynamic region-aware convolution, 2021. 2
Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong
Chen, Lu Yuan, and Zicheng Liu. Dynamic convolution: At-
tention over convolution kernels, 2020. 1, 2, 5, 6

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009. 1, 2,5, 6,7
Nanging Dong and Eric P Xing. Domain adaption in one-
shot learning. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages
573-588. Springer, 2018. 6

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all tickets
winners. In International Conference on Machine Learning,
pages 2943-2952. PMLR, 2020. 1

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all tickets
winners, 2021. 5

Angela Fan, Pierre Stock, Benjamin Graham, Edouard
Grave, Remi Gribonval, Herve Jegou, and Armand Joulin.
Training with quantization noise for extreme model com-
pression, 2021. 1

Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks, 2019. 1,
2,5

Trevor Gale, Erich Elsen, and Sara Hooker.
sparsity in deep neural networks, 2019. 1
Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-
work surgery for efficient dnns, 2016. 2

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks,
2016. 2

Song Han, Jeff Pool, John Tran, and William J. Dally. Learn-
ing both weights and connections for efficient neural net-
works, 2015. 1, 2

Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961-2969, 2017. 6

The state of

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 3, 5, 6,
-

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026-1034, 2015. 7

Shwai He, Liang Ding, Daize Dong, Miao Zhang, and
Dacheng Tao. Sparseadapter: An easy approach for im-
proving the parameter-efficiency of adapters. In Findings of
EMNLP, 2022. 8

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications, 2017.
6

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.
Squeeze-and-excitation networks, 2019. 2

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,
Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-
jna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy
trade-offs for modern convolutional object detectors. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 7310-7311, 2017. 6

Shaoyi Huang, Dongkuan Xu, Ian Yen, Yijue Wang, Sung-
En Chang, Bingbing Li, Shiyang Chen, Mimi Xie, Sanguthe-
var Rajasekaran, Hang Liu, and Caiwen Ding. Sparse pro-
gressive distillation: Resolving overfitting under pretrain-
and-finetune paradigm. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 190-200, Dublin, Ireland,
May 2022. Association for Computational Linguistics. 1
Eugenia lofinova, Alexandra Peste, Mark Kurtz, and Dan Al-
istarh. How well do sparse imagenet models transfer? In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12266-12276, 2022. 1
Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694-711.
Springer, 2016. 6

Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei.
Collecting a large-scale dataset of fine-grained cars. 2013. 7
Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 3, 6

Aditya Kusupati, Vivek Ramanujan, Raghav Somani,
Mitchell Wortsman, Prateek Jain, Sham Kakade, and Ali
Farhadi. Soft threshold weight reparameterization for learn-
able sparsity, 2020. 1, 3, 5

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S.
Torr. Snip: Single-shot network pruning based on connection
sensitivity, 2019. 2

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets, 2017.
1,2

Li Li, Zhu Li, Yue Li, Birendra Kathariya, and Shuvra Bhat-
tacharyya. Incremental deep neural network pruning based

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

on hessian approximation. In 2019 Data Compression Con-
ference (DCC), pages 590-590. IEEE, 2019. 1, 2

Yunsheng Li, Yinpeng Chen, Xiyang Dai, Mengchen Liu,
Dongdong Chen, Ye Yu, Lu Yuan, Zicheng Liu, Mei Chen,
and Nuno Vasconcelos. Revisiting dynamic convolution via
matrix decomposition, 2021. 1, 2

Christos Louizos, Max Welling, and Diederik P. Kingma.
Learning sparse neural networks through [y regularization,
2018. 3,5

Zhou Lu, Hongming Pu, Feicheng Wang, Zhigiang Hu, and
Liwei Wang. The expressive power of neural networks: A
view from the width. Advances in neural information pro-
cessing systems, 30,2017. 1

Jian-Hao Luo and Jianxin Wu. Neural network pruning with
residual-connections and limited-data, 2020. 2

Tiange Luo, Tianle Cai, Mengxiao Zhang, Siyu Chen, and
Liwei Wang. Random mask: Towards robust convolutional
neural networks. arXiv preprint, 2020. 6

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learn-
ing to mask weights, 2018. 4

Franco Manessi, Alessandro Rozza, Simone Bianco, Paolo
Napoletano, and Raimondo Schettini. Automated pruning
for deep neural network compression. In 2018 24th Interna-
tional conference on pattern recognition (ICPR), pages 657—
664. IEEE, 2018. 3

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do
wide and deep networks learn the same things? uncover-
ing how neural network representations vary with width and
depth. arXiv preprint arXiv:2010.15327, 2020. 1
Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722-729. IEEE, 2008. 7

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
CV Jawahar. Cats and dogs. In 2012 IEEE conference on
computer vision and pattern recognition, pages 3498-3505.
IEEE, 2012. 6

Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou
Huang. Collaborative channel pruning for deep networks.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, edi-
tors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 5113-5122. PMLR, 09-15 Jun
2019. 1

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli,
and Jascha Sohl-Dickstein. On the expressive power of deep
neural networks. In international conference on machine
learning, pages 2847-2854. PMLR, 2017. 1

Jun Rao, Xv Meng, Liang Ding, Shuhan Qi, and Dacheng
Tao. Parameter-efficient and student-friendly knowledge dis-
tillation. ArXiv, abs/2205.15308, 2022. 8

Sebastian Ruder. An overview of gradient descent optimiza-
tion algorithms. arXiv preprint arXiv:1609.04747, 2016. 5
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks, 2019. 5

[49]

(501

[51]

(52]

(53]

[54]

[55]

[56]

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,
and Stefan Carlsson. Cnn features off-the-shelf: an astound-
ing baseline for recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition work-
shops, pages 806-813, 2014. 6

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In 2010 IEEE computer so-
ciety conference on computer vision and pattern recognition,
pages 3485-3492. IEEE, 2010. 7

Qi Xu, Ming Zhang, Zonghua Gu, and Gang Pan. Overfit-
ting remedy by sparsifying regularization on fully-connected
layers of cnns. Neurocomputing, 328:69-74, 2019. Chinese
Conference on Computer Vision 2017. 1

Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan
Ngiam. Condconv: Conditionally parameterized convolu-
tions for efficient inference, 2020. 2, 6

Li Yang, Zhezhi He, Junshan Zhang, and Deliang Fan. Ksm:
Fast multiple task adaption via kernel-wise soft mask learn-
ing, 2020. 4

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. Panda: Prompt transfer meets knowl-
edge distillation for efficient model adaptation. ArXiv,
abs/2208.10160, 2022. 8

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie
Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learn-
ing n:m fine-grained structured sparse neural networks from
scratch, 2021. 4

Michael Zhu and Suyog Gupta. To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression, 2017.
1,2

	. Introduction
	. Related Work
	. Methodology
	. Motivation
	. Sparse Dynamic Convolution
	. Loss Function
	. Optimization Policy

	. Experiment
	. Image Classification on ImageNet
	. Transferring to Downstream Tasks
	. Further Analysis

	. Discussion of Masking Strategy
	. Conclusion

