
Cross-feature Contrastive Loss for Decentralized Deep Learning on
Heterogeneous Data

Sai Aparna Aketi
Purdue University

USA
saketi@purdue.edu

Kaushik Roy
Purdue University

USA
kaushik@purdue.edu

Abstract

The current state-of-the-art decentralized learning algo-
rithms mostly assume the data distribution to be Indepen-
dent and Identically Distributed (IID). However, in prac-
tical scenarios, the distributed datasets can have signifi-
cantly heterogeneous data distributions across the agents.
In this work, we present a novel approach for decentralized
learning on heterogeneous data, where data-free knowledge
distillation through contrastive loss on cross-features is uti-
lized to improve performance. Cross-features for a pair of
neighboring agents are the features (i.e., last hidden layer
activations) obtained from the data of an agent with respect
to the model parameters of the other agent. We demon-
strate the effectiveness of the proposed technique through
an exhaustive set of experiments on various Computer Vi-
sion datasets (CIFAR-10, CIFAR-100, Fashion MNIST, Im-
agenette, and ImageNet), model architectures, and net-
work topologies. Our experiments show that the proposed
method achieves superior performance (0.2− 4% improve-
ment in test accuracy) compared to other existing tech-
niques for decentralized learning on heterogeneous data.

1. Introduction

Every day, substantial volumes of data are generated
across the globe, offering the potential to train powerful
deep-learning models. Compiling such data for central-
ized processing is impractical due to communication con-
straints and privacy concerns. To address this issue, a new
interest in developing distributed learning algorithms [1]
has emerged. Federated learning (FL) or centralized dis-
tributed learning [17] is a popular setting in the distributed
machine learning paradigm. In this setting, the training
data is kept locally at the edge devices and a global shared
model is learned by aggregating the locally computed up-
dates through a coordinating central server. Such a setup
requires frequent communication with a central server. This

becomes a potential bottleneck [11] and has led to advance-
ments in decentralized machine learning.

Decentralized learning, a subset of distributed optimiza-
tion, focuses on learning from data distributed across mul-
tiple agents without the need for a central server. It of-
fers many advantages over the traditional centralized ap-
proach in core aspects such as data privacy, fault tolerance,
and scalability [26]. Research has shown that decentral-
ized learning algorithms can perform comparable to cen-
tralized algorithms on benchmark vision datasets [22]. One
of the key assumptions to achieve state-of-the-art perfor-
mance by the decentralized algorithms is that the data is
independently and identically distributed (IID) across the
agents. In particular, the data is assumed to be distributed
in a uniform and random manner across the agents. This
assumption does not hold in most real-world settings where
the data distributions across the agents are significantly dif-
ferent (non-IID/heterogeneous) [13].

The effect of heterogeneous data in a peer-to-peer de-
centralized setup is a relatively under-studied problem and
an active area of research. Note that, we mainly focus
on a common type of non-IID data, widely used in prior
works [13, 23]: a skewed distribution of data labels across
agents. Recently, several methods were proposed to bridge
the performance gap between IID and non-IID data for a de-
centralized setup. Most of these works either make algorith-
mic changes to track global information [2,15,23,29,30] or
utilize extra communication rounds [3,10] to obtain second-
order gradient information. In this work, we explore an or-
thogonal direction of using a data-free knowledge distilla-
tion approach to handle heterogeneous data in decentralized
setups.

Knowledge distillation methods have been well explored
in federated learning (FL) setups with a central server for
heterogeneous data [6, 21, 24, 27, 34]. However, these ap-
proaches leverage the central server and/or need public
dataset access and thus, are not transferable to decentralized
setups. In this paper, we propose Cross-feature Contrastive
Loss (CCL) that improves the performance of decentral-

1

ar
X

iv
:2

31
0.

15
89

0v
3

 [
cs

.L
G

]
 5

 D
ec

 2
02

3

𝝓(𝒙𝒊)

C
l
a
s
s
i
f
i
e
r

i

𝒛𝒊𝒊

𝒅𝒊

L𝒄𝒆

𝒚𝒊

𝒐𝒊

𝑑𝑖: 𝐷𝑎𝑡𝑎 𝑦𝑖: 𝑇𝑎𝑟𝑔𝑒𝑡𝑠 𝑜𝑖: 𝑂𝑢𝑡𝑝𝑢𝑡𝑠 𝑧𝑖𝑖: 𝐿𝑜𝑐𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

Agent 𝑖

(a) Cross-Entropy Loss (Lce)

𝝓(𝒙𝒊)
𝒛𝒊𝒊

𝒅𝒊

L𝑚𝑣

𝑧𝑖𝑖: Local features 𝑧𝑗𝑖: Model-Variant Cross-features

Agent 𝑖

𝝓(𝒙𝒋)

Agent 𝑗

𝒛𝒋𝒊

(b) Model-Variant Contrastive Loss (Lmv)

𝝓(𝒙𝒊)
𝒛𝒊𝒊

𝒅𝒊(𝐜)

L𝑑𝑣

𝑧𝑖𝑖: Local features 𝑧𝑖𝑗: Data-Variant Cross-features

Agent 𝑖

𝒛𝒊𝒋
𝝓(𝒙𝒊)

Agent 𝑖

𝒅𝒋(𝐜)

ത𝒛(𝒄)

+Avg

(c) Data-Variant Contrastive Loss (Ldv)

Figure 1. Illustrating different loss components used in the proposed Cross-features Contrastive Loss. This illustration describes the loss
components with respect to agent i and assumes that it has only one neighbor j. The Data-variant Contrastive Loss is only shown for a
particular class c and the same rule will be applied to all the classes in parallel. z̄ is computed at agent j and then communicated to agent i.

ized training on heterogeneous data when used along with
cross-entropy loss (Lce) at each agent. In particular, at each
agent, we introduce two additional contrastive loss terms
on cross-features - (a) model-variant contrastive loss (Lmv)
and (b) data-variant contrastive loss (Ldv). Cross-features
for a pair of neighboring agents are the features (i.e., last
hidden layer activations) obtained from the data of an agent
with respect to the model parameters of the other agent. We
define two types of cross-features, namely model-variant
cross-features and data-variant cross-features. Note that we
use features as synonymous to the last hidden layer acti-
vations. Model-variant cross-features are the features ob-
tained from the received neighbors’ model with respect to
the local dataset. These cross-features are computed locally
at each agent after receiving the neighbors’ model parame-
ters. Communicating the neighbors’ model parameters is
a necessary step in any gossip-based decentralized algo-
rithm [22]. Data-variant cross-features are the features ob-
tained from the local model with respect to its neighbors’
datasets. These cross-features are obtained through an ad-
ditional round of communication.

The Lmv loss term minimizes the L2 distance between
the local features and model-variant cross-features of the
local data at each agent. Whereas Ldv minimizes the L2

distance between the local- and data variant cross-feature
representations of the same class. Figure. 1 provides an
illustration of the loss terms introduced by the proposed
framework. We validate the performance of the proposed
framework through an exhaustive set of experiments on var-
ious vision datasets, model architectures, and graph topolo-
gies. We show that the proposed framework achieves su-
perior performance on heterogeneous data compared to the
current state-of-the-art method. We also report the commu-
nication and compute overheads required for proposed CCL
as compared to D-PSGD.

Contributions: In summary, we make the following
contributions.

• We present a novel data-free knowledge distillation-
based loss called Cross-feature Contrastive Loss
(CCL) for decentralized machine learning on hetero-
geneous data.

• Through an exhaustive set of experiments, we show
the advantages of our framework against the current
state-of-the-art methods.

• We also report the communication and compute over-
heads incurred by the proposed framework.

2. Background

In this section, we provide the background on decen-
tralized learning algorithms with peer-to-peer connections.
Figure. 2 illustrates a decentralized setup with 5 agents con-
nected in a ring topology.

Private
Data 𝑫𝟑

𝒘
𝟓
𝟏

Private
Data 𝑫𝟓

Private
Data 𝑫𝟏

Private
Data 𝑫𝟒

Ring Topology

Private
Data 𝑫𝟐

Agent 1

𝒙𝟏
𝒘𝟐𝟏

𝒘𝟏𝟐
Agent 2

𝒙𝟐

Agent 3

𝒙𝟑

Agent 4

𝒙𝟒

Agent 5

𝒙𝟓

𝒘
𝟑
𝟐𝒘

𝟐
𝟑

𝒘
𝟏
𝟓

Figure 2. Decentralized training setup with 5 agents connected in
a ring topology. Each agent has its own private dataset and a local
model.

2

The main goal of decentralized machine learning is to
learn a global model using the knowledge extracted from
the locally generated and stored data samples across n edge
devices/agents while maintaining privacy constraints. In
particular, we solve the optimization problem of minimiz-
ing global loss function f(x) distributed across n agents as
given in equation. 1. Note that fi is a local loss function
(for example, cross-entropy loss Lce) defined in terms of
the data sampled (di) from the local dataset Di at agent i
with model parameters xi.

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x),

and fi(x) = Edi∈Di
[Fi(x; di)] ∀i

(1)

This is typically achieved by combining stochastic gradi-
ent descent [7] with global consensus-based gossip aver-
aging [32]. The communication topology in this setup is
modeled as a graph G = ([n], E) with edges {i, j} ∈ E
if and only if agents i and j are connected by a communi-
cation link exchanging the messages directly. We represent
Ni as the neighbors of i including itself. It is assumed that
the graph G is strongly connected with self-loops i.e., there
is a path from every agent to every other agent. The ad-
jacency matrix of the graph G is referred to as a mixing
matrix W where wij is the weight associated with the edge
{i, j}. Note that, weight 0 indicates the absence of a direct
edge between the agents. We assume that the mixing matrix
is doubly stochastic and symmetric, similar to all previous
works in decentralized learning [22, 23]. Further, the initial
models and all the hyperparameters are synchronized at the
beginning of the training.

Algorithm 1 Decentralized Learning with DSGDm [22]
Input: Each agent i ∈ [1, N] initializes model weights
x
(0)
i , step size η, momentum coefficient β, and mixing

matrix W = [wij]i,j∈[1,N].

Each agent simultaneously implements the TRAIN() proce-
dure
1. procedure TRAIN()
2. for k=0, 1, . . . ,K − 1 do
3. dki ∼ Di

4. gki = ∇xFi(d
k
i ;x

k
i)

5. mk
i = βm

(k−1)
i + gki

6. x
k+ 1

2
i = xk

i − ηmk
i

7. SENDRECEIVE(xk+ 1
2

i)

8. x
(k+1)
i =

∑
j∈Ni

wijx
k+ 1

2
j // gossip averaging

9. return

Algorithm. 1 describes the flow of Decentralized
Stochastic Gradient Descent with momentum (DSGDm).

There are three main stages in any traditional decentral-
ized learning method - (a) Local update, (b) Communica-
tion, and (c) Gossip averaging. At every iteration, each
agent computes the gradients using local data and updates
its model parameters as shown in line 6 of Alg. 1. Then
these updated model parameters are communicated to the
neighbors as shown in line 7 of Alg. 1. Finally, in the gos-
sip averaging step, the local model parameters are averaged
with the received model parameters of the neighbors using
the mixing weights (shown in line 8 of Alg. 1). The con-
vergence of the DSGDm algorithm assumes the data distri-
bution across the agents to be Independent and Identically
Distributed (IID).

3. Related Work
Decentralized Parallel Stochastic Gradient Descent

(DSGD) [22] is the first work to show that decentralized
algorithms can converge at the same rate as their central-
ized counterparts [8]. DSGD algorithm combines Stochas-
tic Gradient Descent (SGD) with a gossip averaging algo-
rithm [32]. A momentum version of DSGD referred to
as Decentralized Momentum Stochastic Gradient Descent
(DSGDm) was proposed in [5]. Further, Stochastic Gradi-
ent Push (SGP) [4] extends the scope of DSGD to directed
and time-varying graphs. Recently, a unified framework for
analyzing gossip-based decentralized SGD methods and the
best-known convergence guarantees was presented in [16].
However, all of these above-mentioned algorithms assume
the data distribution to be IID.

One of the core challenges in decentralized learning
is tackling data that is not identically distributed among
agents. A wide range of algorithms were proposed in the
literature to deal with the heterogeneous data. The Meth-
ods such as Gradient Tracking [15], and Momentum Track-
ing [29] track the global gradient and use it for the local
update. This reduces variation in the local gradients across
the agents and hence is more robust to heterogeneous data.
Similarly, CGA [10] and NGC [3] also improve the per-
formance by reducing the variation local gradient by uti-
lizing the cross-gradient information. However, all these
techniques incur 2× communication overhead. The au-
thors in [23] introduce Quasi-Global Momentum (QGM),
a decentralized learning method that mimics the global syn-
chronization of momentum buffer to mitigate the difficulties
of decentralized learning on heterogeneous data. Recently,
RelaySGD was presented in [30] that replaces the gossip av-
eraging step with RelaySum [33]. RelaySGD improves the
performance of heterogeneous data by utilizing the delayed
information in the RelaySum step. However, this technique
only works on a spanning tree and the improvements do not
scale well with the graph size.

Knowledge distillation methods are well established for
heterogeneous data in federated learning setups with a cen-

3

tral server. However, there are only a few methods [20, 27]
that explore knowledge distillation for decentralized learn-
ing on heterogeneous data. Decentralized federated learn-
ing via mutual knowledge transfer (Def-KT) [20] replaces
gossip averaging with mutual knowledge transfer-based
model fusion. In the Def-KT method, only a subset of
agents are trained at a time while the other agents participate
in model fusion. This deviates from the standard decen-
tralized setup we use where all agents are trained parallely.
In-Distribution Knowledge Distribution (IDKD) proposed
in [27] uses a public dataset and an Out-Of-Distribution de-
tector to homogenize the data across decentralized agents.
Orthogonal to these methods, we explore data-free knowl-
edge distillation across agents through the proposed Cross-
feature Contrastive Loss. We compare the proposed CCL
method with QGM [23] and RelaySGD [30], the current
state-of-the-art methods in decentralized learning on hetero-
geneous data that do not incur any communication overhead
or public dataset access.

4. Cross-feature Contrastive Loss
We propose the Cross-feature Contrastive Loss (CCL)

which aims to improve the performance of decentralized
learning on heterogeneous data. CCL introduces the con-
cept of cross-features.

Algorithm 2 Decentralized Learning with CCL
Input: Each agent i ∈ [1, n] initializes model weights
x
(0)
i , step size η, momentum coefficient β, averaging rate

γ, contrastive loss coefficients λm, λd, mixing matrix
W = [wij]i,j∈[1,n], number of classes C, Ni represents
neighbors of i including itself.

Each agent simultaneously implements TRAIN() procedure
1. procedure TRAIN()
2. for k = 0, 1, . . . ,K − 1 do
3. SENDRECEIVE(xi

k)
4. dki ∼ Di

5. for each neighbor j ∈ Ni do
6. zkji = ϕ(xk

i ; d
k
i)

7. Compute z̄kji(c) i.e., the class-wise sum
8. SENDRECEIVE({z̄kji(c), count(c)}Cc=1)
9. end
10. z̄k(c) = 1

|c|
∑

j z̄
k
ij(c) ∀ c ∈ [1, C]

11. CCLi = λdLdv(z
k
ii, z̄

k) + λmLmv(z
k
ii, {zji}∀j)

12. gki = ∇x[Lce(x
k
i , d

k
i) + CCLi]

13. mk
i = βm̂

(k−1)
i + gki

14. x
(k+1)
i = (

∑
j∈Ni

wijx
k
j)− ηmk

i

15. m̂k
i = βm̂

(k−1)
i + (1− β)

xk
i −x

(k+1)
i

η
16. end
17. return

Cross-features (zij): For an agent i with model param-
eters xi connected to neighbor j that has local dataset Dj ,
the cross-features are the last layer hidden representation
obtained from the model parameters xi, evaluated on mini-
batch dj sampled from dataset Dj .

zij = ϕ(xi; dj) (2)

Note that ϕ represents the neural network up to the last
hidden layer (excluding the classifier) and all the defini-
tions are provided with respect to an agent i. zii repre-
sents the local feature representation i.e., ϕ(xi, di). We de-
fine two types of cross-features, namely model-variant and
data-variant cross-features. Model-variant cross-features
({zji|j ∈ Ni}) are the features obtained from the received
neighbors’ model xj with respect to the local dataset di.
These cross-features are computed locally at each agent
after receiving the neighbors’ model parameters. Data-
variant cross-features ({zij |j ∈ Ni}) are the features ob-
tained from the local model xi with respect to its neigh-
bors’ datasets dj . These cross-features are received through
an additional communication round.

Inspired by knowledge distillation methods, we intro-
duce two different contrastive loss terms on cross-features.
(a) Model-variant contrastive loss (Lmv): At each agent
i, Lmv minimizes the L2 distance between the local feature
representation zii and the model-variant cross-features zji
for each data-point q ∈ di.

Lmv(zii, {zji}∀j) =
∑
j∈Ni

1

|di|
∑
q∈di

||zqii − zqji||
2
2 (3)

The model-variant contrastive loss ensures that the model
parameters on the neighboring agents are similar by enforc-
ing the models to have similar representations for a given
input sample. This reduces the variation in model parame-
ters across the agents caused by the data heterogeneity.
(b) Data-variant contrastive loss (Ldv): To compute this
loss, we first generate the neighborhood’s representation
z̄(c) for each class c ∈ [1, C] using the data-variant cross-
features zij’s as shown in Equation. 4. Now at every agent
i, Ldv minimizes the L2 distance between the local repre-
sentation zii and the neighborhood’s representation of the
same class.

z̄(c) =
1

|c|
∑
j∈Ni

∑
q∈dj

zqij1c(z
q
ij) ∀ c ∈ [1, C]

Ldv(zii, z̄) =
1

|di|
∑
q∈di

C∑
c=1

||zqii − z̄(c)||22 ∗ 1c(z
q
ii)

(4)

Here |c| represents the total number of samples in the set
{zij |j ∈ Ni} that belongs to class c and |di| is the mini-
batch size. 1c(z) is an indicator function that outputs 1 if z

4

belongs to class c. Since Ldv(zii, z̄) only uses the averaged
representation of data-variant cross-features for each class,
we sum these cross-features class-wise and communicate
this sum along with the class count to the respective neigh-
bors. The data-variant contrastive loss ensures that the fea-
ture representations of a particular class are similar across
the agents reducing the disparities caused due to data het-
erogeneity.

Algorithm. 2 presents the decentralized learning algo-
rithm with the proposed CCL. Each agent minimizes the
contrastive loss terms along with the traditional cross-
entropy loss as shown in Equation. 5. λm and λd are the
hyper-parameters that weigh the model-variant and data-
variant contrastive loss respectively.

Li = Lce(xi, di) + λmLmv(zii, {zji}∀j) + λdLdv(zii, z̄)
(5)

It has been shown in [23] that quasi-global momentum
works better than local momentum for decentralized learn-
ing with heterogeneous data. Hence, we employ quasi-
global momentum with the proposed loss as described in
Algorithm. 2.

5. Experiments
In this section, we analyze the performance of the pro-

posed Cross-feature Contrastive Loss and compare it with
the baselines DSGDm-N [22], RelaySGD [30], and the
current state-of-the-art QG-DSGDm-N [23]. The source
code is available at https://github.com/aparna-
aketi/Cross_feature_Contrastive_Loss

5.1. Experimental Setup

The efficiency of the proposed algorithm is demonstrated
through experiments on a diverse set of datasets, model ar-
chitectures, graph topologies, and graph sizes. We present
the analysis on – (a) Datasets: CIFAR-10 [18], CIFAR-
100 [18], Fashion MNIST [31], Imagenette [14], and Ima-
geNet [9]. (b) Model architectures: ResNet-20, ResNet-
18 [12], LeNet-5 [19] and, MobileNet-V2 [28]. All the
models except LeNet-5 use Evonorm [25] as the activation-
normalization layer as it is shown to be better suited for
decentralized learning on heterogeneous data [23]. LeNet-5
has no normalization layers. (c) Graph topologies: Ring
graph with 2 peers per agent, Dyck graph with 3 peers per
agent, and Torus graph with 4 peers per agent (refer Fig-
ure 3). (d) Number of agents: 8 to 40 agents.

For the decentralized setup, we use an undirected ring,
undirected Dyck graph, and undirected torus graph topolo-
gies with a uniform mixing matrix. The undirected ring
topology for any graph size has 3 peers per agent includ-
ing itself and each edge has a weight of 1

3 . The undirected
Dyck topology with 32 agents has 4 peers per agent includ-
ing itself and each edge has a weight of 1

4 . The undirected

Figure 3. Ring (left), Dyck (center), and Torus (right).

torus topology with 32 agents has 5 peers per agent includ-
ing itself and each edge has a weight of 1

5 . RelaySGD base-
line only works on the spanning trees. Therefore, for a fair
comparison, we use an undirected chain topology (spanning
tree of ring topology) for all the RelaySGD experiments.
We use the Dirichlet distribution to generate disjoint non-
IID data across the agents similar to [23]. The partitioned
data across the agents is fixed, non-overlapping, and never
shuffled across agents during the training. The degree of
heterogeneity is regulated by the value of α – the smaller
the α, the larger the non-IIDness across the agents.

The initial learning rate is either set to 0.1 (CIFAR-10,
CIFAR-100) or 0.01 (Fashion MNIST, Imagenette) and is
decayed by a factor of 10 after 50% and 75% of the train-
ing. We use a weight decay of 1e−4 and a mini-batch size
of 32 per agent in all the experiments. We use the Nes-
terov version of the Quasi-Global Momentum with a mo-
mentum coefficient of 0.9. The stopping criteria is a fixed
number of epochs. The experiments on CIFAR-10 are run
for 200 epochs, CIFAR-100 and Imagenette for 100 epochs,
and Fashion MNIST for 50 epochs. Note, DSGDm-N indi-
cates Decentralized Stochastic Gradient Descent with Nes-
terov momentum, QG-DSGDm-N and the proposed CCL
uses a DSGD optimizer with Nesterov version of Quasi-
Global Momentum. DSGDm-N, QG-DSGDm-N, and Re-
laySGD utilized the cross-entropy loss whereas our frame-
work uses the proposed Cross-feature Contrastive Loss
along with the cross-entropy loss. We use grid search on
the set {1, 0.1, 0.01, 0.001} to obtain the hyper-parameters
λm, λd for CCL. We report the test accuracy of the con-
sensus model averaged over three randomly chosen seeds.
All our experiments were conducted on a system with an
NVIDIA A40 card with 4 GPUs. A detailed description of
the setup and hyperparameters for each experiment is pre-
sented in Appendix. A.1.

5.2. Results

We evaluate the effectiveness of the Cross-feature Con-
trastive Loss through an exhaustive set of experiments. We
show that the proposed loss terms improve the accuracy as
compared to simple cross-entropy loss.

Table. 1 presents the average test accuracy for training

5

https://github.com/aparna-aketi/Cross_feature_Contrastive_Loss
https://github.com/aparna-aketi/Cross_feature_Contrastive_Loss

Table 1. Test accuracy of different decentralized algorithms eval-
uated on CIFAR-10, distributed with different degrees of hetero-
geneity (non-IID) trained on ResNet-20 over ring topologies. The
results are averaged across all agents over three seeds where the
standard deviation is indicated. We also include the results of the
IID baseline as DSGDm-N (IID) where the local data is randomly
partitioned independent of α.

Agents (n) Method
ResNet-20

α = 0.1 α = 0.01

16

DSGDm-N (IID) 89.61± 0.43
DSGDm-N [22] 80.60± 0.50 58.78± 9.63
RelaySGD [30] 73.81± 1.97 34.33± 2.42

QG-DSGDm-N [23] 85.95± 1.64 77.16± 7.02
CCL (ours) 86.63± 0.52 81.29± 0.36

32
DSGDm-N (IID) 88.13± 0.32
DSGDm-N [22] 76.46± 1.32 53.08± 5.12
RelaySGD [30] 72.22± 2.58 38.16± 1.34

QG-DSGDm-N [23] 84.91± 0.56 75.70± 0.80
CCL (ours) 85.25± 0.52 77.60± 1.58

ResNet-20 architecture on the CIFAR-10 dataset with vary-
ing degrees of heterogeneity over the ring topology of 16
and 32 agents. We observe that CCL outperforms QG-
DSGDm-N for all models, graph sizes, and degree of het-
erogeneity with a significant performance gain varying from
0.34− 4.13%. We also notice that the proposed framework
has less variation in accuracy across various initial weight
initialization (seeds) compared to the baselines. In our set-
tings, we find that Relay-SGD with local momentum per-
forms worse than DSGDm-N and doesn’t scale with graph
size. Note that Cross-feature Contrastive Loss is an orthog-
onal technique to RelaySGD and can be used in synergy
with RelaySGD.

Table 2. Test accuracy of CIFAR-10 dataset trained on ResNet-20
over various graph topologies with 32 agents.

Graph Method α = 0.1 α = 0.01

Dyck
DSGDm-N (IID) 88.89± 0.10
QG-DSGDm-N 86.20± 0.38 78.18± 4.01

CCL (ours) 86.78± 0.41 80.63± 1.54

Torus
DSGDm-N (IID) 88.86± 0.31
QG-DSGDm-N 87.75± 0.39 81.74± 0.87

CCL (ours) 88.14± 0.36 82.30± 0.56

To demonstrate the scalability and generalizability of
CCL, We present the results on various graph topologies and
datasets. Firstly, we train the CIFAR-10 dataset on ResNet-
20 over the Dyck and Torus graphs with 32 agents to illus-
trate the impact of connectivity on the proposed framework.
We observe a 0.4 − 2.5% performance gains with vary-
ing connectivity (or spectral gap) as seen in Table. 2. This

shows that the gains from the proposed technique are more
pronounced in graphs with less connectivity such as ring
graphs. We then evaluate CCL on various image datasets
such as Fashion MNIST and Imagenette and on challenging
datasets such as CIFAR-100 and ImageNet. The proposed
CCL outperforms QG-DSGDm-N by 0.2−2.4% across var-
ious datasets as shown in Table. 3. Further, Table. 4 shows
that the proposed method can achieve an average improve-
ment of 1.1% on the large-scale ImageNet dataset.

8 16 24 32 40
Number of agents (n)

65

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

CCL
QG-DSGDm-N

Figure 4. Test accuracy for the CIFAR-10 dataset trained on
ResNet-20 architecture over varying sizes of ring topology with
a skew of α = 0.01.

We then evaluate the scalability in decentralized settings
by training CIFAR-10 on varying the size of the ring topol-
ogy between 8 and 40 as shown in Figure. 4. We ob-
serve that the proposed CCL framework consistently outper-
forms the QG-DSGDm-N baseline over varying graph sizes
by an average improvement of 2%. In summary, the pro-
posed Cross-feature Contrastive Loss makes the decentral-
ized training more robust to heterogeneity in the data distri-
bution and has superior performance to all the comparison
methods with an average improvement of 1.3%. Additional
results are presented in Appendix. A.2.

5.3. Analysis

In this section, we analyze the various aspects of the pro-
posed CCL terms such as the effect of the contrastive loss
on IID vs. non-IID data, the choice of the loss function, and
the contribution of each loss term.

The proposed CCL framework minimizes three different
loss functions namely Lce, Lmv , and Ldv where as the base-
line methods (DSGDm-N, QG-DGSDm-N) only focus on
Lce. We hypothesize that the cross-entropy loss Lce alone
does not capture the data heterogeneity across the agents.
To address this we add two different contrastive loss terms
explicitly representing the data skew. Figure. 5 measures

6

Table 3. Test accuracy of different decentralized algorithms evaluated on various datasets, distributed with different degrees of heterogene-
ity over 16 agents ring topology with 16 agents.

Method
Fashion MNIST (LeNet-5) CIFAR-100 (ResNet-20) Imagenette (MobileNet-V2)

α = 0.1 α = 0.01 α = 0.1 α = 0.01 α = 0.1 α = 0.01

DSGDm-N (IID) 90.95± 0.09 59.72± 1.00 74.17± 0.83
QG-DSGDm-N 88.92± 0.50 87.15± 0.64 52.33± 3.59 44.12± 6.85 65.94± 1.17 51.47± 2.67

CCL (ours) 90.21± 0.34 87.42± 0.78 54.20± 0.86 46.49± 4.19 66.14± 0.84 52.87± 5.15

0 25 50 75 100 125 150 175 200
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cr
os

s E
nt

ro
py

 T
ra

in
in

g
Lo

ss QG-DSGDm-N
CCL

(a) Cross-Entropy Training Loss (Lce)

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
od

el
-v

ar
ai

nt
 C

on
tra

st
iv

e
Lo

ss QG-DSGDm-N
CCL

(b) Model-Variant Contrastive Loss (Lmv)

0 25 50 75 100 125 150 175 200
Epoch

0.04

0.06

0.08

0.10

0.12

Da
ta

-v
ar

ai
nt

 C
on

tra
st

iv
e

Lo
ss QG-DSGDm-N

CCL

(c) Data-Variant Contrastive Loss (Ldv)

Figure 5. Comparing various training loss terms for IID (dashed lines) and non-IID (solid lines) partitions of CIFAR-10 trained on ResNet-
20 over a ring topology of 16 agents. We use α = 10 for IID data and α = 0.1 for non-IID data.

Table 4. Test accuracy of ImageNet trained on ResNet-18 archi-
tecture over ring topology with 16 agents.

Graph Method α = 1 α = 0.1

Ring
DSGDm-N (IID) 65.62± 0.03
QG-DSGDm-N 64.09± 1.49 58.11± 3.81

CCL (ours) 64.64± 1.09 59.82± 1.75

the different training losses for both IID and non-IID distri-
bution of the CIFAR-10 dataset. We observe that the train-
ing cross-entropy loss (Fig. 5a) for IID and non-IID data
converges to zero even though there is a huge gap in the
validation loss. However, Fig. 5b shows that the model-
variation contrastive loss for the baseline is much higher
in non-IID settings compared to IID and hence is a good
measure of data-heterogeneity. On the other hand, data-
variant contrastive loss measures the variation in class rep-
resentations across agents. Fig. 5c shows that this variation
is relatively stable throughout the training process for QG-
DSGDm-N with IID Data. However, for QG-DSGDm-N
with the non-IID setting, a significant increase in the varia-
tion of class representations across agents is evident. Note
that the absolute value of the data-variant contrastive loss
for the non-IID setting is lower than the IID setting be-
cause of limited shared class samples among neighboring
agents (say 6 out of 32 in a mini-batch). The proposed

CCL framework explicitly minimizes the model-variant and
data-variant contrastive loss. Fig. 5b, 5c show that the pro-
posed framework reduces the model variance and stabilizes
the variance in class representations across agents resulting
in better performance on heterogeneous data.

Table 5. Test accuracy of CIFAR-10 dataset trained with different
contrastive loss functions on ResNet-20 architecture over a ring
topology.

Loss function Agents α = 0.1 α = 0.01

L1 Loss
16

85.76± 1.74 80.43± 2.70
MSE Loss 86.16± 0.67 81.29± 0.36

Cosine Loss 86.02± 0.78 82.36± 0.93

L1 Loss
32

85.76± 0.32 76.13± 2.59
MSE Loss 85.25± 0.52 77.60± 1.58

Cosine Loss 85.71± 0.27 75.71± 3.73

Cross-feature Contrastive Loss reduces the similarity be-
tween local feature representations and cross-feature repre-
sentations. The similarity between the two representations
can be determined using various measures. We explore
three different similarity measures (or the loss functions) for
the CCL namely L1 loss, Mean Square Error (MSE) loss,
and Cosine loss during the training phase. L1 loss measures
the L1 distance between the local and cross-features, MSE
loss measures the L2 distance, and Cosine loss measures

7

the cosine distance. We observe that on average MSE loss
provides better improvements as shown in Table. 5.

Table 6. Test accuracy of CIFAR-10 dataset trained with different
components of contrastive loss on ResNet-20 over a ring topology.

Lce Lmv Ldv α = 0.1 α = 0.01

✓ x x 85.95± 1.64 77.16± 7.02
✓ ✓ x 86.63± 0.52 80.55± 1.61
✓ x ✓ 85.67± 1.58 77.78± 4.01
✓ ✓ ✓ 86.16± 0.67 81.29± 0.36

Cross-feature Contrastive Loss introduces two loss terms
namely model-variant contrastive loss and data-variant con-
trastive loss. We evaluate the contribution of each of these
loss terms to the improved accuracy in Table. 6. For lower
skew (α = 0.1), we observe that the accuracy improve-
ments can be mostly attributed to the addition of model-
variant contrastive loss (Lmv). Even in the case of higher
skew (α = 0.01), the improvement can be majorly at-
tributed to the model-variant contrastive loss. However, the
maximum average test accuracy is obtained by adding both
data-variant and model-variant contrastive loss terms.

6. Discussion and Limitations
The proposed Cross-feature Contrastive Loss has two

potential limitations – (a) Compute overhead of the model-
variant cross-features and (b) Communication overhead of
the data-variant cross-features. Each agent has to com-
pute model-variant cross-features at every iteration. This
requires every agent to perform p additional forward passes
where p is the number of peers/neighbors per agent. As-
sume that cf is the compute required for the forward pass.
Now, the compute overhead can be given as O(p ∗ cf).
Quantitatively, we measure the compute overhead as the
fraction of additional compute required for the model-
variant cross-features computation (Equation. 6).

Compute overhead =
Compute for cross-features

Total compute
(6)

Table. 7 presents the compute overhead for various settings.
We observe that for a ring topology, the compute overhead
is around 35 − 40%. This overhead shoots up to 57% for a
torus graph. Note that the compute overhead depends on the
number of peers per agent rather than the total graph size.

Every agent communicates the class-wise sum of data-
variant cross-features and class count along with the model
parameters to each of their neighbors. The overhead is from
the communication of data-variant cross-features. For ex-
ample, for a dataset with C classes and r is the size of a
cross-feature, every agent communicates C cross-features
of size r (one for each class) and a vector of size C

Table 7. Compute overhead incurred per agent due to Cross-
feature Contrastive Loss.

Dataset Model Peers
Compute
overhead

Fashion-MNIST LeNet-5 2 0.351
CIFAR-10 ResNet-20 2 0.397
CIFAR-10 ResNet-20 3 0.496
CIFAR-10 ResNet-20 4 0.567
CIFAR-100 ResNet-20 2 0.397
ImageNette MobileNet-V2 2 0.397

indicating the number of samples per class in the mini-
batch. Thus, the communication overhead can be given
as O(p ∗ C ∗ (r + 1)). This overhead is negligible com-
pared to the communication of model parameters. Table. 8
compares the communication cost per iteration of CCL with
QG-DSGDm-N in MegaBytes (MB) for training various
datasets over a 16-agents ring topology. We observe that
the communication overhead is around 0.2% for CIFAR-10,
2.3% for CIFAR-100, 1.4% for Fashion-MNIST, and 0.6%
for ImageNette. This shows that the communication over-
head incurred by the proposed framework is insignificant.

Table 8. Communication cost per agent per iteration over a ring
graph of 16 agents.

Dataset Model Method
Comm. Cost
(MB)

Fashion-MNIST LeNet-5
QG-DSGDm-N 0.471 (1×)

CCL 0.477 (1.013×)

CIFAR-10 ResNet-20
QG-DSGDm-N 2.079 (1×)

CCL 2.084 (1.002×)

CIFAR-100 ResNet-20
QG-DSGDm-N 2.123 (1×)

CCL 2.173 (1.023×)

ImageNette MobileNet-V2
QG-DSGDm-N 17.52 (1×)

CCL 17.62 (1.006×)

Further, a minor limitation of the proposed CCL is that it
adds two additional hyper-parameters λm, λd. These hyper-
parameters need to be tuned similarly to the learning rate.
We used a grid search to find these hyperparameters. We
observed that these hyperparameters typically take a value
of 0.1 or 0.01. We consider the exploration of the compute
efficient CCL and adaptive CCL as potential future research
directions.

7. Conclusion

Supporting decentralized training on heterogeneous data
is a critical factor for machine learning applications to ef-
fectively harness the vast amounts of user-generated private

8

data. In this paper, we propose a novel Cross-feature Con-
trastive Loss which is better suited for decentralized learn-
ing on heterogeneous data. In particular, minimizing pro-
posed contrastive loss terms increases the similarity of lo-
cal feature representations with the model-variant and data-
variant cross-features. We evaluate the CCL with Quasi-
Global Momentum through an exhaustive set of experi-
ments on various datasets, model architectures, and graph
topologies. Our experiments confirm the superior perfor-
mance of the Cross-feature Contrastive Loss compared to
existing state-of-the-art methods for decentralized learning
on heterogeneous data.

Acknowledgements
This work was supported in part by, the Center for the

Co-Design of Cognitive Systems (COCOSYS), a DARPA-
sponsored JUMP center, the Semiconductor Research Cor-
poration (SRC), and the National Science Foundation.

References
[1] Alekh Agarwal and John C Duchi. Distributed delayed

stochastic optimization. Advances in neural information pro-
cessing systems, 24, 2011. 1

[2] Sai Aparna Aketi, Abolfazl Hashemi, and Kaushik Roy.
Global update tracking: A decentralized learning algorithm
for heterogeneous data. arXiv preprint arXiv:2305.04792,
2023. 1

[3] Sai Aparna Aketi, Sangamesh Kodge, and Kaushik Roy.
Neighborhood gradient clustering: An efficient decentralized
learning method for non-iid data distributions. arXiv preprint
arXiv:2209.14390, 2022. 1, 3

[4] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike
Rabbat. Stochastic gradient push for distributed deep learn-
ing. In International Conference on Machine Learning,
pages 344–353. PMLR, 2019. 3

[5] Aditya Balu, Zhanhong Jiang, Sin Yong Tan, Chinmay
Hedge, Young M Lee, and Soumik Sarkar. Decentral-
ized deep learning using momentum-accelerated consensus.
In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
3675–3679. IEEE, 2021. 3

[6] Frédéric Berdoz, Abhishek Singh, Martin Jaggi, and Ramesh
Raskar. Scalable collaborative learning via representation
sharing. arXiv preprint arXiv:2211.10943, 2022. 1

[7] Léon Bottou. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010, pages
177–186. Springer, 2010. 3

[8] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, Andrew
Senior, Paul Tucker, Ke Yang, et al. Large scale distributed
deep networks. Advances in neural information processing
systems, 25, 2012. 3

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5, 11

[10] Yasaman Esfandiari, Sin Yong Tan, Zhanhong Jiang, Aditya
Balu, Ethan Herron, Chinmay Hegde, and Soumik Sarkar.
Cross-gradient aggregation for decentralized learning from
non-iid data. In International Conference on Machine Learn-
ing, pages 3036–3046. PMLR, 2021. 1, 3

[11] Arya Ketabchi Haghighat, Varsha Ravichandra-Mouli,
Pranamesh Chakraborty, Yasaman Esfandiari, Saeed Arabi,
and Anuj Sharma. Applications of deep learning in intelli-
gent transportation systems. Journal of Big Data Analytics
in Transportation, 2(2):115–145, 2020. 1

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5, 11

[13] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip
Gibbons. The non-IID data quagmire of decentralized ma-
chine learning. In Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 4387–4398. PMLR, 13–
18 Jul 2020. 1

[14] Hamel Husain. Imagenette - a subset of 10 eas-
ily classified classes from the imagenet dataset.
https://github.com/fastai/imagenette, 2018. 5, 11

[15] Anastasiia Koloskova, Tao Lin, and Sebastian U Stich. An
improved analysis of gradient tracking for decentralized ma-
chine learning. Advances in Neural Information Processing
Systems, 34:11422–11435, 2021. 1, 3

[16] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin
Jaggi, and Sebastian Stich. A unified theory of decentralized
sgd with changing topology and local updates. In Interna-
tional Conference on Machine Learning, pages 5381–5393.
PMLR, 2020. 3

[17] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and
Peter Richtárik. Federated optimization: Distributed ma-
chine learning for on-device intelligence. 2016. 1

[18] Alex Krizhevsky, Vinod Nair, and Geoffrey Hin-
ton. Cifar (canadian institute for advanced research).
http://www.cs.toronto.edu/ kriz/cifar.html, 2014. 5, 11

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
5, 11

[20] Chengxi Li, Gang Li, and Pramod K Varshney. Decentral-
ized federated learning via mutual knowledge transfer. IEEE
Internet of Things Journal, 9(2):1136–1147, 2021. 4

[21] Daliang Li and Junpu Wang. Fedmd: Heterogenous
federated learning via model distillation. arXiv preprint
arXiv:1910.03581, 2019. 1

[22] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei
Zhang, and Ji Liu. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized paral-
lel stochastic gradient descent. Advances in Neural Informa-
tion Processing Systems, 30, 2017. 1, 2, 3, 5, 6

[23] Tao Lin, Sai Praneeth Karimireddy, Sebastian Stich, and
Martin Jaggi. Quasi-global momentum: Accelerating decen-
tralized deep learning on heterogeneous data. In Proceedings

9

of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research,
pages 6654–6665. PMLR, 18–24 Jul 2021. 1, 3, 4, 5, 6

[24] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin
Jaggi. Ensemble distillation for robust model fusion in fed-
erated learning. Advances in Neural Information Processing
Systems, 33:2351–2363, 2020. 1

[25] Hanxiao Liu, Andy Brock, Karen Simonyan, and Quoc Le.
Evolving normalization-activation layers. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, vol-
ume 33, pages 13539–13550. Curran Associates, Inc., 2020.
5

[26] Angelia Nedic. Distributed gradient methods for convex
machine learning problems in networks: Distributed opti-
mization. IEEE Signal Processing Magazine, 37(3):92–101,
2020. 1

[27] Deepak Ravikumar, Gobinda Saha, Sai Aparna Aketi, and
Kaushik Roy. Homogenizing non-iid datasets via in-
distribution knowledge distillation for decentralized learn-
ing. arXiv preprint arXiv:2304.04326, 2023. 1, 4

[28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 5, 11

[29] Yuki Takezawa, Han Bao, Kenta Niwa, Ryoma Sato, and
Makoto Yamada. Momentum tracking: Momentum acceler-
ation for decentralized deep learning on heterogeneous data.
arXiv preprint arXiv:2209.15505, 2022. 1, 3

[30] Thijs Vogels, Lie He, Anastasiia Koloskova, Sai Praneeth
Karimireddy, Tao Lin, Sebastian U Stich, and Martin Jaggi.
Relaysum for decentralized deep learning on heterogeneous
data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems, volume 34, pages 28004–28015.
Curran Associates, Inc., 2021. 1, 3, 4, 5, 6

[31] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
5, 11

[32] Lin Xiao and Stephen Boyd. Fast linear iterations for dis-
tributed averaging. Systems & Control Letters, 53(1):65–78,
2004. 3

[33] Zhaorong Zhang, Kan Xie, Qianqian Cai, and Minyue Fu. A
bp-like distributed algorithm for weighted average consen-
sus. In 2019 12th Asian Control Conference (ASCC), pages
728–733. IEEE, 2019. 3

[34] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free
knowledge distillation for heterogeneous federated learning.
In International Conference on Machine Learning, pages
12878–12889. PMLR, 2021. 1

10

A. Appendix

A.1. Experimental Setup Details

For the decentralized setup, we use an undirected ring,
undirected Dyck graph, and undirected torus graph topolo-
gies with a uniform mixing matrix. The undirected ring
topology for any graph size has 3 peers per agent includ-
ing itself and each edge has a weight of 1

3 . The undirected
Dyck topology with 32 agents has 4 peers per agent includ-
ing itself and each edge has a weight of 1

4 . The undirected
torus topology with 32 agents has 5 peers per agent includ-
ing itself and each edge has a weight of 1

5 . All our exper-
iments were conducted on a system with an NVIDIA A40
card with 4 GPUs. We report the test accuracy of the con-
sensus model averaged over three randomly chosen seeds.
The consensus model is obtained by averaging the model
parameters across all agents using an all-reduce mechanism
at the end of the training.

A.1.1 Datasets

In this section, we give a brief description of the datasets
used in our experiments. We use a diverse set of datasets
each originating from a different distribution of images to
show the generalizability of the proposed techniques.

CIFAR-10: CIFAR-10 [18] is an image classification
dataset with 10 classes. The image samples are colored (3
input channels) and have a resolution of 32× 32. There are
50, 000 training samples with 5000 samples per class and
10, 000 test samples with 1000 samples per class.

CIFAR-100: CIFAR-100 [18] is an image classification
dataset with 100 classes. The image samples are colored
(3 input channels) and have a resolution of 32 × 32. There
are 50, 000 training samples with 500 samples per class and
10, 000 test samples with 100 samples per class. CIFAR-
100 classification is a harder task compared to CIFAR-10 as
it has 100 classes with very few samples per class to learn
from.

Fashion MNIST: Fashion MNIST [31] is an image clas-
sification dataset with 10 classes. The image samples are in
greyscale (1 input channel) and have a resolution of 28×28.
There are 60, 000 training samples with 6000 samples per
class and 10, 000 test samples with 1000 samples per class.

Imagenette: Imagenette [14] is a 10-class subset of the
ImageNet dataset. The image samples are colored (3 input
channels) and have a resolution of 224 × 224. There are
9469 training samples with roughly 950 samples per class
and 3925 test samples.

ImageNet: ImageNet dataset [9] spans 1000 object
classes and contains 1,281,167 training images, 50,000 val-
idation images, and 100,000 test images. The image sam-
ples are colored (3 input channels) and have a resolution of
224× 224.

A.1.2 Network Architecture

We replace ReLU+BatchNorm layers of all the model ar-
chitectures with EvoNorm-S0 as it was shown to be better
suited for decentralized learning over non-IID distributions.

ResNet-20: For ResNet-20 [12], we use the standard
architecture with 0.27M trainable parameters except that
BatchNorm+ReLU layers are replaced by EvoNorm-S0.

ResNet-18: For ResNet-18 [12], we use the standard
architecture with 11M trainable parameters except that
BatchNorm+ReLU layers are replaced by EvoNorm-S0.

LeNet-5: For LeNet-5 [19], we use the standard archi-
tecture with 61, 706 trainable parameters.

MobileNet-V2: We use the the standard MobileNet-V2
[28] architecture used for CIFAR dataset with 2.3M param-
eters except that BatchNorm+ReLU layers are replaced by
EvoNorm-S0.

A.1.3 Hyper-parameters

This section presents a detailed description of the hyper-
parameters used in our experiments. All the experiments
were run for three randomly chosen seeds. We decay the
step size by 10x after 50% and 75% of the training, un-
less mentioned otherwise. For all the experiments, we have
used a momentum of 0.9 with Nesterov, a weight decay of
0.0001, and a mini-batch size of 32 per agent.

Table 9. The value of λm, λv used for training CIFAR-10 with
non-IID data using ResNet-20 architecture presented in Table 1

Agents (n) Method
ResNet-20

α = 0.1 α = 0.01

16 CCL (ours) 0.01, 0.0 0.01, 0.01
32 CCL (ours) 0.1, 0.1 0.1, 0.1

Hyper-parameters for experiments in Table 1: All the
experiments have the stopping criteria set to 200 epochs.
The initial learning rate is set to 0.1. We decay the step
size by 10× in multiple steps at 100th and 150th epoch.
Table 9 presents values of the scaling factor λm, λd used in
the experiments.

Table 10. The value of λm, λv used for training various datasets
with CCL (presented in Table 2).

Dataset α = 0.1 α = 0.01

Fashion MNIST 0.001, 0.001 0.01, 0.01
CIFAR-100 0.1, 0.1 0.1, 0.1
Imagenette 0.001, 0.001 1.0, 1.0

11

0 25 50 75 100 125 150 175 200
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cr
os

s E
nt

ro
py

 T
ra

in
in

g
Lo

ss QG-DSGDm-N
CCL

(a) Cross-Entropy Training Loss (Lce)

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
od

el
-v

ar
ai

nt
 C

on
tra

st
iv

e
Lo

ss QG-DSGDm-N
CCL

(b) Model-Variant Contrastive Loss (Lmv)

0 25 50 75 100 125 150 175 200
Epoch

0.04

0.06

0.08

0.10

0.12

Da
ta

-v
ar

ai
nt

 C
on

tra
st

iv
e

Lo
ss QG-DSGDm-N

CCL

(c) Data-Variant Contrastive Loss (Ldv)

Figure 6. Comparing various training loss terms for IID (dashed lines) and non-IID (solid lines) partitions of CIFAR-10 trained on ResNet-
20 over a ring topology of 16 agents. We use α = 10 for IID data and α = 0.01 for non-IID data.

Hyper-parameters for experiments in Table 2: All the
experiments for CIFAR-100 and ImageNette have the stop-
ping criteria set to 100 epochs and Fashion MNIST exper-
iments have a stopping criteria of 50 epochs. The initial
learning rate is set to 0.1 for CIFAR-100 and 0.01 for Fash-
ion MNIST and Imagenette. Table 10 presents values of the
scaling factor λm, λd used in the experiments.

Hyper-parameters for experiments in Table 3: All the
experiments have the stopping criteria set to 200 epochs.
The initial learning rate is set to 0.1. We decay the step
size by 10× in multiple steps at 100th and 150th epoch.
Table 11 presents values of the scaling factor λm, λd used in
the experiments. All the experiments on the Dyck and Torus
graph use an averaging rate of 0.9 (instead of the default
value of 1.0).

Table 11. The value of λm, λv used for training CIFAR-10
datasets with CCL on ResNet-20 over various graph topologies
(presented in Table 3).

Graph α = 0.1 α = 0.01

Dyck (32 agents) 0.1, 0.1 0.1, 0.1
Torus (32 agents) 0.1, 0.1 0.1, 0.1

A.2. Additional Results

Figure. 6 measures the different training losses for both
IID and non-IID distribution with α = 0.01 of the CIFAR-
10 dataset trained on ResNet-20 architecture. We observe
that the training cross-entropy loss (Fig. 6a) for IID and
non-IID data converges to zero even though there is a
huge gap in the validation loss. However, Fig. 6b shows
that the model-variation contrastive loss for the baseline
is much higher in non-IID settings compared to IID and
hence is a good measure of data-heterogeneity. On the
other hand, data-variant contrastive loss measures the vari-
ation in class representations across agents. Fig. 6c shows

20 32 44 56
Depth of ResNet

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Te
st

 A
cc

ur
ac

y

CCL
QG-DSGDm-N

Figure 7. Test accuracy for the CIFAR-10 dataset trained on
ResNet architecture with varying depth over 16-agent ring topol-
ogy with a skew of α = 0.01.

that this variation is relatively stable throughout the train-
ing process for QG-DSGDm-N (baseline) with IID Data.
However, for QG-DSGDm-N with the non-IID setting, a
significant increase in the variation of class representations
across agents is evident. The proposed CCL framework ex-
plicitly minimizes the model-variant and data-variant con-
trastive loss. Fig. 6b shows that the CCL helps in reducing
the model variance compared to QG-DSGDm-N. Fig. 6c
shows that CCL has a stable variation in class representa-
tions across agents compared to QG-DSGDm-N. This re-
sults in better performance of the proposed Cross-feature
Contrastive Loss for decentralized learning on heteroge-
neous data. Further, we evaluate the proposed CCL on the
varying depth of ResNet architecture with ring topology of
16 agents as shown in Figure. 7. We observe that the pro-
posed CCL framework consistently outperforms the QG-
DSGDm-N baseline over varying graph sizes by an average
improvement of 2.68%.

12

	. Introduction
	. Background
	. Related Work
	. Cross-feature Contrastive Loss
	. Experiments
	. Experimental Setup
	. Results
	. Analysis

	. Discussion and Limitations
	. Conclusion
	. Appendix
	. Experimental Setup Details
	Datasets
	Network Architecture
	Hyper-parameters

	. Additional Results

