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Abstract

Video Panoptic Segmentation (VPS) aims to achieve
comprehensive pixel-level scene understanding by segment-
ing all pixels and associating objects in a video. Current
solutions can be categorized into online and near-online
approaches. Evolving over the time, each category has
its own specialized designs, making it nontrivial to adapt
models between different categories. To alleviate the dis-
crepancy, in this work, we propose a unified approach for
online and near-online VPS. The meta architecture of the
proposed Video-kMaX consists of two components: within-
clip segmenter (for clip-level segmentation) and cross-clip
associater (for association beyond clips). We propose clip-
kMaX (clip k-means mask transformer) and HiLA-MB (Hi-
erarchical Location-Aware Memory Buffer) to instantiate
the segmenter and associater, respectively. Our general
formulation includes the online scenario as a special case
by adopting clip length of one. Without bells and whistles,
Video-kMaX sets a new state-of-the-art on KITTI-STEP and
VIPSeg for video panoptic segmentation, and VSPW for
video semantic segmentation. Code will be made publicly
available.

1. Introduction
Video Panoptic Segmentation (VPS) [20] aims at a holis-

tic video understanding of the scene by unifying two chal-
lenging tasks: semantically segmenting images and associ-
ating segmented regions across all frames in a video [43].
It can benefit various real-world applications, such as au-
tonomous driving, robot visual control, and video editing.

With the rapid growth of interest, there have been sev-
eral methods [20, 44, 33, 21, 25, 59] proposed for VPS.
They can be categorized into online and near-online ap-
proaches, which process the video either frame-by-frame
or clip-by-clip (a clip contains only a few consecutive video
frames). The online approaches, such as VPSNet [20] and
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Figure 1: The meta architecture of Video-kMaX consists of
clip-kMaX for clip-level segmentation and HiLA-MB for
object association. The former groups pixels of the same
object within-clip and the latter leverages appearance and
location features (encoded by box coordinates) for long-
term association across-clips.
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Figure 2: Video-kMaX is a unified approach for online and
near-online video panoptic segmentation, showing state-of-
the-art performance in both scenarios (on KITTI-STEP val
set). The size of the circle reflects the model parameters.

Video K-Net [25], segment each frame sequentially via the
modern image-level segmenter [13, 48, 57], and build an
additional association branch trained to enforce consistent
predictions between frames [51, 25]. On the other hand,
the near-online approaches, such as ViP-DeepLab [33]
and TubeFormer [21], extend the modern image-level seg-
menter [9, 39] to process a clip by designing extra modules
(e.g., next-frame instance segmentation [33] or latent mem-
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ory [21]). The clip-level predictions are then stitched [33]
to form the final video segmentation results. The modules
designed for online or near-online approaches are not only
evolving over time, but also becoming very distinct for each
scenario. Consequently, it is infeasible to easily adapt on-
line models to near-online (and vice versa). Particularly, the
current online methods [20, 25] lack a proper clip-level seg-
menter, while the modern near-online methods [33, 21] fail
to associate objects in an online manner, suffering from the
absence of overlapping frames. The need for this scenario-
specific design results in inefficiencies, as it requires the
utilization of different frameworks for each setting. A nat-
ural question thus emerges: Is it possible to develop a uni-
fied framework for online and near-online VPS without any
scenario-specific design?

To answer the question, we carefully design Video-
kMaX, a simple yet effective approach for both online and
near-online VPS. As drawn in Fig. 1, the meta architecture
of Video-kMaX contains two components: within-clip seg-
menter and cross-clip associater, where the former compo-
nent performs clip-level segmentation and the later one as-
sociates detected objects across clips. The proposed Video-
kMaX is an instantiation of the pipeline by adopting clip-
kMaX (clip k-means mask transformer) for the within-clip
segmenter, and HiLA-MB (Hierarchical Location-Aware
Memory Buffer) for the cross-clip associater.

The proposed clip-kMaX extends the image-level k-
means mask transformer [54] to the clip-level without
adding any extra modules or loss functions. Motivated by
the k-means clustering perspective [53], we consider object
queries as cluster centers, where each query is responsible
for grouping pixels of the same object within a clip together.
Specifically, each object query, when multiplied with the
clip features [36, 41, 39], is learned to yield a tube predic-
tion (i.e., masks of the same object in a clip) [21]. This
learning can be achieved via a surprisingly simple modifica-
tion in the k-means cross-attention module [54] by concate-
nating the clip-level pixel features along the spatial dimen-
sion. As a result, clip-kMaX can be applied to both near-
online and online settings without additional complexities.
We also empirically show that k-means cross-attention is
an effective mechanism for handling the extremely long se-
quence of spatially and temporally flattened clip features.

The proposed HiLA-MB is motivated by the drawbacks
of existing methods through the careful systematical stud-
ies. We observe that the modern VPS methods [20, 33]
could not handle the more challenging setting of long-term
object tracking, since they either associate objects in the
neighboring frames [20] or stitch overlapping frame pre-
dictions [33], making it hard to track objects beyond the
short clip length. One promising solution is to exploit a
memory buffer to propagate the tracking information across
all video clips, which has been proven successful in the re-

cent works [51, 55, 46, 17]. However, surprisingly, we ob-
serve that naı̈vely adopting the memory buffer to VPS leads
to minor improvements or even worse performance. The
setback enforces us to further look into its root case. We
discover that the appearance feature alone [20, 46] is not
sufficient for long-term association in VPS, when the target
object is occluded for a long time; additionally, the mem-
ory buffer approach accumulates many detected objects,
resulting in a huge matching space (between stored and
newly detected objects) and hindering the matching accu-
racy. To resolve the issues, we develop HiLA-MB (Hierar-
chical Location-Aware Memory Buffer), which effectively
incorporates location information to the memory module by
two means. First, when comparing the similarity between
the stored objects in memory and the detected objects in
the current frame, we consider not only their appearance
features (encoded by object queries), but also their loca-
tion features (encoded by normalized bounding box coordi-
nates). Specifically, if the object of interest is not detected
in the current frame but it is stored in the memory (e.g., due
to occlusion), we will “predict” its current location by as-
suming the object is moving at a constant velocity. Second,
we propose a hierarchical matching scheme to effectively
reduce the matching space. We initially exploit the match-
ing results from the Video Stitching [33] strategy, which
associates objects based on their mask IoU in the overlap-
ping frame between clips, effective for short-term associa-
tion. We then associate the objects stored in memory with
the currently detected but unmatched objects, aiming for
long-term association. Thanks to our careful design, the
HiLA-MB improves the long-term association quality both
in near-online and online scenarios with low sensitivity to
the hyper-parameter values.

In summary, we introduce Video-kMaX, a simple and
unified method for online and near-online VPS. Our ap-
proach, consisting of two seamless modules: clip-kMaX
and HiLA-MB, achieves significant performance improve-
ments on two long sequence VPS datasets: KITTI-
STEP [43] and VIPSeg[31]. In particular, as shown
in Fig. 2, our best Video-kMaX outperforms the previ-
ous state-of-the-art online model (Video K-Net [25]) and
near-online model (TubeFormer [21]) by +2.5% STQ and
+4.6% STQ, respectively, on KITTI-STEP val set. We also
show that our Video-kMaX is scalable to another task, video
semantic segmentation with VSPW [32] dataset by outper-
forming the baselines.

2. Related Work
Video Panoptic Segmentation (VPS) Video Panoptic

Segmentation [20] aims to unify video semantic [60, 12, 19,
32] and video instance [38, 51, 1, 18] segmentation. Numer-
ous efforts have been to transform image panoptic segmen-
tation models [23, 22, 49, 52, 26, 8, 40, 39, 27] to the video
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Figure 3: Illustration of clip-kMaX. The proposed clip-kMaX seamlessly converts the image-level segmentation model
kMaX-DeepLab to clip-level without adding extra module. Motivated by the k-means perspective, clip-kMaX considers one
object query as one cluster center, which learns to group together pixels of the same object within a clip. Specifically, each
object query, when multiplied with the clip features, is learned to generate a tube prediction (i.e., masks of the same object
in the clip). This learning can be accomplished by a surprisingly simple change in the k-means cross-attention module by
concatenating the clip-level pixel features along the spatial dimension (i.e., treating the clip-level pixel features with shape
T ×H ×W ×D as one large image-level pixel feature with shape 1× TH ×W ×D), where the input video clip contains
T frames with height H and width W . D is the channel dimension of pixel features, and N is number of cluster centers.

domain. Among them, the online method VPSNet [20]
adopts task-specific prediction heads from instance segmen-
tation [13], semantic segmentation [11], and tracking [51],
and jointly trains them to obtain panoptic video results.
Similarly, the near-online method ViP-DeepLab [33] adds a
next-frame instance segmentation head on top of Panoptic-
DeepLab [9] that provides generic image panoptic segmen-
tation with dual-ASPP [5] semantic segmentation module
and dual-decoder [6] based instance segmentation. More
recent works [21, 59, 25] identifies the limitations of pre-
vious methods that require multiple separate networks and
complex post-processing (e.g., NMS, fusion for tracking).
To address the issues, they design a transformer architec-
ture [3] for end-to-end video panoptic segmentation. How-
ever, all these methods have two fundamental issues. First,
they require specific designs for either online or near-online
scenario, e.g., another association module [20, 25], tem-
poral consistency loss [21, 25], or clip-segmentation mod-
ule [33, 21]. Second, the models could only deal with short-
term association (i.e., either neighboring frames or a clip).
In this regard, we propose a simple unified online and near-
online video panoptic segmentation model for long-term as-
sociation without adding extra scenario-specific designs.

Memory Module for Long-Term Tracking Object
queries from the Transformer decoder [3] have been used
to track objects in multi-object tracking [35, 30, 2, 55, 58],

video instance segmentation [18, 47, 7, 45, 46, 17, 16, 15,
50], and video panoptic segmentation [21, 25, 59]. Some of
them exploit queries for the short-term association [35, 30],
while the others for the long-term association by addition-
ally exploiting the memory buffer [55, 46, 15]. Particularly,
MOTR [55] proposes a set of track queries to model the
tracked objects in the entire video. MeMOT [2] develops a
spatio-temporal memory that stores a long range states of all
tracked objects. MaskTrack R-CNN [51] employs a mem-
ory module to track detected objects. To make the associ-
ation robust to challenging scenarios, such as heavy occlu-
sion, IDOL [46] proposes a temporally weighted softmax
score for object matching. Along the same direction, we
specialize the memory buffer approach for both online and
near-online video panoptic segmentation models, and addi-
tionally develop an efficient hierarchical matching scheme.

3. Method
The meta architecture of Video-kMaX contains two

components: clip-kMaX (clip k-means mask transformer)
for within-clip segmentation (Sec. 3.1) and HiLA-MB (Hi-
erarchical Location-Aware Memory Buffer) for cross-clip
association (Sec. 3.2). We detail them below, starting
from the near-online framework. Our general formula-
tion includes the online scenario by using clip length one
(Sec. 3.3).



3.1. Within-Clip Segmenter: clip-kMaX

We first present the general formulation for image
and video panoptic segmentation, before introducing our
within-clip segmenter clip-kMaX, which performs clip-
level segmentation with a short length T (e.g., T = 2).

General Formulation for Image and Video Re-
cently, image panoptic segmentation has been reformulated
as a simple set prediction powered by Transformer [37].
From the pioneering works (e.g., DETR [3] and MaX-
DeepLab [39]) to the recent state-of-the-art methods (e.g.,
kMaX-DeepLab [54]), panoptic predictions are designed to
match the ground truth masks by segmenting image I ∈
RH×W×3 into a fixed-size set of N class-labeled masks:

{ŷi}Ni=1 = {(m̂i, p̂i(c))}Ni=1, (1)

where m̂i ∈ [0, 1]
H×W and p̂i(c) denote predicted mask

and semantic class probability for the corresponding mask,
respectively. Motivated by this, TubeFormer [21] extends
this formulation into set prediction of class-labeled tubes:
{ŷi}Ni=1 = {(m̂i, p̂i(c))}Ni=1, where m̂i ∈ [0, 1]

T×H×W .
In this setting, N object queries attend to the T ×H ×W
clip features, and predict N tubes. The prediction gener-
alizes well for different values of T , since the positional
embedding is only performed in the frame level, providing
a useful structural prior that the same object in neighbor-
ing frames (assuming slow motion) will still be assigned by
the same object query. Given the generalizability, we are
able to absorb the T -axis into the H-axis before feeding the
clip features to transformer decoder. Specifically, we pro-
pose to relax Eq. (1) into a more general form: {ŷi}Ni=1 =

{(m̂i, p̂i(c))}Ni=1, where m̂i ∈ [0, 1]
S×W , S=TH , and

T ≥1 (i.e., S can change according to the different num-
ber of frames T ). By doing so, it allows us to easily extend
an image panoptic segmentation model to the video domain
(clip-level), as detailed below.

clip-kMax The state-of-the-art image segmentation
model kMaX-DeepLab [54] replaces the cross-attention in
a typical transformer decoder [37] with k-means cross-
attention by taking a cluster-wise argmax as below:

Ĉ = C + argmax
N

(Qc × (Kp)T )× V p, (2)

where C ∈ RN×D refers to N object queries with D chan-
nels. We use superscripts p and c to indicate the feature
projected from the pixel features and object queries, respec-
tively. Qc ∈ RN×D,Kp ∈ RHW×D, V p ∈ RHW×D stand
for the linearly projected features for query, key, and value,
respectively. In this k-means perspective, one object query
is regarded as a cluster center, which learns to group pix-
els of the same object together. Given our previous general
formulation, we can seamlessly extend kMaX-DeepLab to
video clip, forming our clip-kMaX, by simply reshaping the

key and value into Kp ∈ RSW×D and V p ∈ RSW×D

(S = TH and T≥1). The reshaping merges the T -frame
feature to a single-frame feature with large height TH (i.e.,
reshape T × H × W to 1 × TH × W ), which then be-
comes compatible with the image model kMaX-DeepLab.
This is equivalent to performing the k-means clustering for
a video clip with length T , where one query is now learning
to group pixels of the same object in the clip together. We
illustrate clip-kMaX in Fig. 3. Note that kMaX-DeepLab
then becomes a special case of clip-kMaX with T = 1.

Discussion The design of clip-kMaX may look sim-
ple on the surface. However, we made strenuous efforts
in enhancing the conventional cross-attention module for
clip-level mask predictions during its development. When
dealing with the extremely large sequence length of spa-
tially and temporally flattened clip features in a video clip,
the standard cross-attention module is susceptible to learn-
ing, as each object query is required to identify the most
distinguishable pixels among the abundant clip features.
This phenomenon was evident in the poor performance of
the original cross-attention, motivating the prior art Tube-
Former [21] to further employ an additional latent memory
module. To address this challenge, we propose using the
k-means cross-attention [54] approach, which is capable of
handling flattened clip features of any size by performing a
cluster-wise argmax on N cluster centers. We will empiri-
cally prove this in the ablation studies.

Video Stitching (VS) In practice, given the limited
memory, we are only able to perform clip-level inference
(i.e., segmenting a short clip with length T ). To ob-
tain the video-level segmentation, some heuristic designs
are required. One popular approach is Video Stitching
(VS) [33, 21], which propagates object identities between
clips by matching the mask IoU scores in the overlapping
frames. In our framework, we adopt the same video stitch-
ing strategy for our near-online Video-kMaX, but addition-
ally explore memory buffer for long-term association.

3.2. Cross-Clip Associater: HiLA-MB

Our HiLA-MB basically consists of two phases: Encod-
ing Phase to store the previous object features, and Decod-
ing Phase to associate current objects with the objects stored
in the memory buffer. We detail the process below.

Encoding Phase The memory buffer is initially
empty, when a new testing video comes. It encodes features
from all detected objects, while processing frames sequen-
tially. Regarding the object features to be stored, we exploit
the appearance and location properties of each object.

For the appearance feature of object i observed at frame
t, we utilize the query embedding qti ∈ RD (i.e., object
queries from the mask transformer decoder [54]). The
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memory buffer encodes appearance feature q̂ti as follows:

q̂ti =


(1− λ)q̂t−1i + λqti , if i both in memory and frame t,

qti , else if i only in frame t,

q̂t−1i , else if i only in memory,
(3)

where λ is the moving average weight between the stored
appearance feature in memory q̂t−1i and current appearance
feature qti . We set λ to 0.8 as the default value.

Unlike other works [20, 46], we additionally exploit
the location feature of object i observed at frame t, us-
ing its normalized bounding box (inferred from the pre-
dicted mask): bti=[x

tl
i /w, y

tl
i /h, x

br
i /w, y

br
i /h]∈ R4, where

(xtl, ytl) and (xbr, ybr) are the x-y coordinates of top-left
and bottom-right corners, and w and h denote the bounding
box width and height, respectively. The memory buffer then
encodes the location features as follows:

b̂ti =

{
bti, if i in frame t,

b̂t−1i + (b̂t−1i − b̂t−2i ), else if i only in memory.
(4)

As shown in the equations, if an object is detected, the mem-
ory buffer will use its latest normalized bounding box infor-
mation. If the object i is not detected but it is stored in the
memory (e.g., due to occlusion), we will ”predict” its cur-
rent location by assuming the object’s moving velocity is

constant, i.e., its location is shifted by (b̂t−1i − b̂t−2i ) from
its previous stored location b̂t−1i .

Finally, the memory buffer stores both the appearance
and location features (q̂i, b̂i) for all M objects detected un-
til the current frame. In practice, we adopt the memory
refreshing strategy [46], where the old objects, whose last
appeared frame is τ frame behind the current frame, are re-
moved from the memory buffer. We empirically choose the
optimal value for τ in our experiments.

Decoding Phase To specialize the memory buffer ap-
proach in our framework, we initially conduct the Video
Stitching (VS) for short-term association between clips. Af-
terwards, we associate the objects stored in memory with
the currently detected but unmatched objects, aiming for
long-term association. This hierarchical matching mech-
anism forms our proposed Hierarchical Location-Aware
Memory Buffer (HiLA-MB). Specifically, we compute the
similarity function f(i, j) between the currently unmatched
object i (after VS) and the encoded object j in the memory
as follows:

f(i, j) = e−‖bi−b̂j‖
2/T · cos(qi, q̂j). (5)

We compute the negative L2 distance between two normal-
ized bounding boxes, weighted by a temperature T for scal-
ing the values between location and appearance similarity.
The appearance similarity is measured by the cosine dis-



tance. Then, we obtain a similarity matrix S ∈ RM×N

between M objects in memory and N detected objects in
the current frame. To find the association, we perform Hun-
garian matching [24] on S. Additionally, to filter out false
associations, we only consider the matching with similarity
value larger than a confidence threshold α. The unmatched
objects in current frame are considered as new objects. The
proposed HiLA-MB is illustrated in Fig. 4.

Discussion Our proposed HiLA-MB is partially in-
spired by the success of IDOL [46] in video instance seg-
mentation, and memory buffer has been proven effective in
several recent works [51, 55, 2]. However, there are two
critical issues, if one naı̈vely applies their memory buffer
approach to our framework (we name this method as naı̈ve
Memory Buffer (naı̈ve-MB) for our baseline). First, the lo-
cation feature is not exploited, but only the appearance fea-
ture. In a dynamic scene, object location plays an impor-
tant role. The appearance feature becomes less reliable if
the target object has been occluded for a long time. Sec-
ond, the memory size M keeps growing as time goes by.
Even though this issue is slightly alleviated by the mem-
ory refreshing strategy, it still results in a large matching
space between the stored M objects in the memory and the
currently detected N objects, which subsequently makes
the one-to-one matching harder. To overcome the issues,
our HiLA-MB proposes a novel formulation to incorpo-
rate the location features (Eq. (4) and Eq. (5)), and addi-
tionally augments the matching accuracy by performing the
Video Stitching (VS) in the beginning of decoding phase,
which effectively further reduces the matching space and
improves the matching accuracy, as demonstrated in our ab-
lation studies.

3.3. Online Video Panoptic Segmentation

The meta architecture of Video-kMaX enables a gen-
eral framework for both online and near-online VPS. When
processing a clip of length one, our model performs online
VPS. Specifically, the model is trained frame-by-frame and
evaluated sequentially with the assistance of clip-kMaX’s
general formulation. Unlike the near-online setting, we skip
the Video Stitching, which becomes infeasible in the online
framework. Afterwards, we apply our HiLA-MB without
any further modification.

4. Experimental Results
We conduct experiments on two long sequences Video

Panoptic Segmentation datasets: KITTI-STEP [43] and
VIPSeg [31]. Furthermore, we evaluate our method on a
Video Semantic Segmentation (VSS) dataset: VSPW [32].

4.1. Datasets

KITTI-STEP [43] is a Video Panoptic Segmentation
(VPS) dataset that contains long video sequences with av-

method backbone SQ AQ STQ
online methods
Video K-Net [25] ResNet50 71.0 70.0 71.0
Video K-Net [25] Swin-L 75.0 73.0 74.0
Video-kMaX (online) ResNet50 75.0 72.0 73.5
Video-kMaX (online) ConvNeXt-L 77.2 75.7 76.5
near-online methods
Motion-DeepLab [43] ResNet50 67.0 51.0 58.0
TubeFormer [21] Axial-ResNet50-B1 78.1 68.6 73.2
TubeFormer [21] Axial-ResNet50-B3 78.3 70.0 74.3
Video-kMaX (near-online) ResNet50 74.2 74.2 74.2
Video-kMaX (near-online) Axial-ResNet50-B1 75.8 76.3 76.0
Video-kMaX (near-online) ConvNeXt-L 79.0 78.8 78.9

(a) KITTI-STEP val set.
method SQ AQ STQ
Motion-DeepLab [43] 59.8 45.6 52.2
Video K-Net [25] 65.0 60.0 63.0
TubeFormer [21] 70.3 60.6 65.3
UW IPL/ETRI AIRL [56]† 64.0 71.3 67.6
Video-kMaX (near-online) 69.8 67.2 68.5

(b) KITTI-STEP test set. †: ICCV 2021 challenge winning entry.

Table 1: [VPS] KITTI-STEP val and test set results.

erage track length 51 frames and maximum 643 frames,
presenting a challenging scenario for long-term association.
It contains 19 semantic classes, similar to Cityscapes [10],
while only two classes (‘pedestrians’ and ‘cars’) come with
tracking IDs. We adopt the Segmentation and Tracking
Quality (STQ) as a metric for evaluation.

VIPSeg [31] is a new large-scale Video Panoptic Seg-
mentation (VPS) benchmark providing in-the-wild real-
world scenarios with 232 scenes and 124 classes, Among
them, 58 classes are annotated with tracking IDs. The aver-
age sequence length is 24 frames per video. We adopt the
STQ and VPQ [20] metric for evaluation.

VSPW [32] is a recent large-scale Video Semantic Seg-
mentation (VSS) dataset with 124 semantic classes. VSPW
adopts mIoU as the evaluation metric.

4.2. Implementation Details

The proposed Video-kMaX is a unified approach for on-
line and near-online VPS. For the near-online setting, we
employ a clip length of two with one overlapping frame be-
tween clips. For the online setting, we set clip length to one
and remove the video stitching strategy in the pipeline.

We employ two common backbones for both online
and near-online settings: ResNet50 [14] and ConvNeXt-
L [29]. We also experiment with Axial-ResNet50-B1 [40]
backbone to fairly compare with TubeFormer [21]. If not
specified, we default to use ResNet50 for ablation studies.
Our Video-kMaX is built with the official code-base [42].
Closely following the prior works [43, 21], both the near-
online and online models employ a specific pre-training
protocol for KITTI-STEP, VIPSeg and VSPW. They all
commonly require ImageNet [34] pretrained checkpoint.



method backbone SQ AQ STQ VPQ
online methods
VPSNet-FuseTrack [20] ResNet50 - - 20.8 17.0
VPSNet-SiamTrack [44] ResNet50 - - 21.1 17.2
Video K-Net [25] (arXiv version) ResNet50 - - 33.1 26.1
Video K-Net [25] (arXiv version) Swin-base - - 46.3 39.8
Video-kMaX (online) ResNet50 46.3 32.4 38.7 36.8
Video-kMaX (online) ConvNeXt-L 60.7 40.2 49.4 49.4
near-online methods
ViP-DeepLab [33] ResNet50 - - 22.0 16.0
Clip-PanoFCN [31] ResNet50 - - 31.5 22.9
TubeFormer [21] (arXiv version) Axial-ResNet50-B1 50.3 31.6 39.8 29.2
TubeFormer [21] (arXiv version) Axial-ResNet50-B3 53.0 32.5 41.5 31.2
Video-kMaX (near-online) ResNet50 45.1 35.3 39.9 38.2
Video-kMaX (near-online) Axial-ResNet50-B1 55.6 37.8 45.8 46.7
Video-kMaX (near-online) ConvNeXt-L 61.4 43.5 51.7 51.9

(a) VIPSeg val set.
method STQ VPQ
Clip-PanoFCN [31] 25.0 22.9
TubeFormer [21] (arXiv version) 38.6 26.8
Video-kMaX (near-online) 47.1 45.0

(b) VIPSeg test set in the latest test server.

Table 2: [VPS] VIPSeg val and test set results.

method backbone mIoU VC8 VC16
TCB [32] ResNet101 37.8 87.9 84.0
TubeFormer [21] Axial-ResNet50-B1 58.0 90.1 86.8
TubeFormer [21] Axial-ResNet50-B4 63.2 92.1 88.0
Video-kMaX (online) ResNet50 44.3 86.0 81.4
Video-kMaX (online) Axial-ResNet50-B1 59.8 89.2 85.6
Video-kMaX (online) ConvNeXt-L 63.6 91.8 88.6

(a) VSPW val set.
method mIoU VC8 VC16
TCB [32] 32.6 79.5 73.2
TubeFormer [21] (arxiv version) 53.0 90.2 86.4
Video-kMaX (online) 54.9 91.6 88.6

(b) VSPW test set.

Table 3: [VSS] VSPW val and test set results.

VIPSeg and VSPW further require pre-training models on
COCO [28]. For KITTI-STEP, Cityscapes [10] is addi-
tionally adopted as a pre-training dataset since they share
a similar driving scene and class category. We note that our
best backbone ConvNeXt-L [29] on KITTI-STEP uses both
COCO [28] and Cityscapes [10] for pre-training.

4.3. Main Results

[VPS] KITTI-STEP Tab. 1 summarizes our perfor-
mance on the KITTI-STEP val and test sets. On the val-
idation set (Tab. 1 (a)), we compare methods in the two
categories: online and near-online methods. In the online
setting, when using the standard ResNet50 [14], our Video-
kMaX (online) outperforms Video K-Net [25] by +2.5%
STQ. To further push the envelope, our model, equipped
with the modern backbone ConvNeXt-L [29], achieves the
new state-of-the-art with 76.5% STQ. In the near-online set-
ting, when using ResNet50, our Video-kMaX (near-online)
significantly surpasses Motion-DeepLab [43] by +16.2%

STQ. When employing Axial-ResNet50-B1 [40] back-
bone, Video-kMaX (near-online) also outperforms Tube-
Former [21] by +2.8% STQ. Finally, Video-kMaX (near-
online) with ConvNeXt-L further sets a new state-of-the-art
performance with 78.9% STQ, significantly outperforming
current best result (TubeFormer with Axial-ResNet50-B3)
by +4.6% STQ. We observe the same trend on the test set
(Tab. 1 (b)), where our model reaches 68.5% STQ, signifi-
cantly outperforming the prior arts TubeFormer [21], Video
K-Net [25], and Motion-DeepLab [43] by +3.2%, +5.5%,
and +16.3% STQ, respectively. Remarkably, our extremely
simple model even outperforms the ICCV 2021 Challenge
winning entry, UW IPL/ETRI AIRL [56] by +0.9% STQ,
which exploits pseudo labels [61, 4] and adopts an exceed-
ingly complicated system that not only consists of separate
tracking, detection, and segmentation modules, but also re-
quires 3D object and depth information.

[VPS] VIPSeg Tab. 2 (a) summarizes the results on
the VIPSeg val set. In the online setting, our Video-kMaX
(online) with ResNet50 attains 38.7% STQ / 36.8% VPQ,
significantly outperforming the prior art Video K-Net by
+5.6% STQ / +10.7% VPQ. Using the ConvNeXt-L back-
bone, our model advances the new state-of-the-art to 49.4%
STQ / 49.4% VPQ. In the near-online setting, when using
ResNet50, our Video-kMaX (near-online) surpasses Clip-
PanoFCN [31] by +8.4% STQ / +15.3% VPQ. When us-
ing Axial-ResNet50-B1, Video-kMaX (near-online) outper-
forms TubeFormer [21] by +6.0% STQ / +17.5% VPQ.
Our best setting with ConvNeXt-L backbone further ad-
vances the state-of-the-art to 51.7% STQ / 51.9% VPQ,
outperforming TubeFormer with Axial-ResNet50-B3 by
+10.2% STQ / +20.7% VPQ. We also show the effec-
tiveness of Video-kMaX (near-online) on VIPSeg test set
in Tab. 2 (b), where Video-kMaX also sets a new state-of-
the-art, outperforming TubeFormer [21] by +8.5% STQ /
+18.2% VPQ.

[VSS] VSPW Tab. 3 shows VSPW val and test set
results. Our Video-kMaX (online) outperforms Tube-
Former [21] both in mIoU and VC metrics [32].

4.4. Ablation Studies

Comparison with Normal Cross-Attention As dis-
cussed in Sec. 3.1, we deliberately design our clip-kMaX
with the k-means cross-attention [54], which we empiri-
cally found to be very effective for handling the extremely
large sequence of spatially and temporally flattened clip
features. We now elaborate on the experiments and par-
ticularly compare with the normal (i.e., original) cross-
attention [37] as well as the advanced latent memory cross-
attention [21] (i.e., the cross-attention mechanism used in
TubeFormer [21], which adopts latent memory to facilitate
attention learning between video frames).

Tab. 4 summarizes our findings. To ensure the fairness,



backbone method STQ

Axial-ResNet50-B1

normal cross-attention (baseline) 68.4
latent memory cross-attention 70.0
k-means cross-attention (clip-kMaX) 73.9
+ HiLA-MB 74.7

Table 4: Comparison with normal cross-attention. The
k-means cross-attention adopted by our proposed clip-
kMaX achieves the best STQ than the normal cross-
attention and latent memory cross-attention, demonstrating
the effectiveness of k-means cross-attention in video under-
standing task.

we employ the same backbone Axial-ResNet50-B1 [40]
that has been pretrained on ImageNet-1K and Cityscapes.
The baseline, employing the normal cross-attention module,
yields the performance of 68.4% STQ. The performance
can be further improved by 1.6% STQ, if we adopt the la-
tent memory [21] in the cross-attention module. By con-
trast, our clip-kMaX, adopting the k-means cross-attention
mechanism, attains 73.9% STQ, significantly outperform-
ing the conventional cross-attention and latent memory
cross-attention by +5.5% and +3.9% STQ, respectively.
The remarkable improvement is attributed to the effective-
ness of k-means cross-attention that performs the cluster-
wise argmax on cluster centers, while the normal cross-
attention is performed w.r.t. the enormous long sequence of
spatially and temporally flattened clip features, where each
object query has difficulty in identifying the most distin-
guishable features among the abundant pixels. Our results
suggest that using k-means cross-attention can reduce the
ambiguity in cross-attention between queries and large flat-
tened clip features, resulting in a higher quality of video
panoptic segmentation results. Additionally, we show that
our proposed HiLA-MB is complementary to clip-kMaX,
which sets the best STQ performance (74.7% STQ).

Association Modules Our proposed HiLA-MB ex-
ploits (1) Video Stitching (VS), (2) appearance feature,
and (3) location feature, to perform the object association.
In Tab. 5, we carefully study the effect of each feature in
HiLA-MB under both near-online and online settings . In
the near-online setting (Tab. 5 (a)), when using these three
features individually, we discover that both VS and loca-
tion feature are equally more effective than appearance fea-
ture. We note that when using only the appearance, the
method becomes the naı̈ve-MB approach, used by other
works [46, 17]. Combining all of them leads to our best
final setting, while taking out the location feature will de-
grade the AQ performance most. This study demonstrates
that our proposed location feature is the most effective fea-
ture among them. In the online setting, since the VS strat-
egy becomes infeasible, we only experiment with the ap-
pearance and location features. As shown in Tab. 5 (b),

association features
method video-stitching appearance location AQ

X 72.3
X 71.4

X 72.3
Video-kMaX X X 73.8
(near-online) X X 72.1

X X 73.6
X X X 74.2

(a) Near-online setting using clip-based trained models.
association features

method backbone appearance location AQ

ResNet50

10.0
X 33.8

X 72.0
Video-kMaX X X 66.4
(online)

ConvNeXt-L

10.4
X 61.6

X 74.0
X X 75.7

(b) Online setting using image-based trained models.

Table 5: Ablation study on different association features,
including the Video Stitching strategy, appearance feature,
and location feature, on KITTI-STEP val set. We note that
employing different association features will only affect the
association quality (AQ). Our final HiLA-MB setting is la-
beled with brown color, while video-stitching and naı̈ve-
MB baselines are denoted in blue and red, respectively.

memory

size of matching space S (i.e., M ×N )

τ = 1000
τ = best

(naı̈ve-MB: τ = 1,
HiLA-MB: τ = 10)

average max average max
naı̈ve-MB 67.1 336 25.1 196
HiLA-MB 19.7 94 2.8 24

Table 6: Quantitative analysis on matching space size be-
tween naı̈ve-MB and our HiLA-MB. The size of matching
space S could help us understand the difficulty of matching
M objects in the memory with the detected N objects in
the current frame. τ is the hyper-parameter to refresh out
the old objects. We consider two cases, where τ = 1000
to mimic the case where we barely remove the old objects,
and τ = best uses the best hyper-parameter value for each
setting.

the pure image-based model, which does not exploit any
association feature, attains the worst performance. Inter-
estingly, we notice that the appearance feature learned by
the ResNet50 [14] is less effective than ConvNeXt-L [29].
When the appearance feature is less effective (e.g., when us-
ing ResNet50), it is better to just use the location feature for
association. On the other hand, when the appearance feature
is sufficiently informative (e.g., when using ConvNeXt-L),
the best performance is obtained by using both appearance
and location features.

Analysis on Memory Matching Space As discussed
in Sec. 3.2, we address the limitations of the previous mem-



hyper-parameter set [τ / α] row-wise
AQ (%) [1 / 0.6] [3 / 0.6] [10 / 0.6] [20 / 0.6] (mean / std)
naı̈ve-MB 69.5 67.1 54.3 47.4 59.6 / 10.5
HiLA-MB 72.7 73.0 73.9 73.7 73.3 / 0.6

[1 / 0.7] [3 / 0.7] [10 / 0.7] [20 / 0.7]
naı̈ve-MB 69.9 68.8 57.4 50.7 61.7 / 9.3
HiLA-MB 72.8 73.4 74.2 74.2 73.6 / 0.7

[1 / 0.8] [3 / 0.8] [10 / 0.8] [20 / 0.8]
naı̈ve-MB 71.4 71.3 64.9 59.5 66.8 / 5.7
HiLA-MB 72.6 73.2 73.6 73.6 73.3 / 0.5

69.7 / 1.0 68.0 / 2.1 55.8 / 5.5 49.1 / 6.3 61.5 / 5.8column-wise
(mean / std) 72.7 / 0.1 73.2 / 0.2 74.1 / 0.3 74.0 / 0.3 73.4 / 0.4

VS naı̈ve-MB HiLA-MB

55

60

65

70

Table 7: Ablation study on stability of Video-kMaX using different memory-related hyper-parameter sets (τ for
memory-refreshing and α for confidence threshold) on KITTI-STEP val set. We vary τ ∈ {1, 3, 10, 20} (different
columns in the table) and α ∈ {0.6, 0.7, 0.8} (different rows in the table). We compute the mean and standard deviation
column-wise (fixed τ and varied α), row-wise (varied τ and fixed α), and table-wise (varied τ and α). We plot the mean and
standard deviation for the whole table on the right. The proposed HiLA-MB is more robust to the hyper-parameter values
than the naı̈ve-MB approach. Our final HiLA-MB setting and the naı̈ve-MB baseline are labeled with brown and red color,
respectively.

ory buffer approach [46], referred as naı̈ve-MB. One of
the limitations of naı̈ve-MB is the huge matching space in
memory decoding, which increases the difficulty of match-
ing and thus results in low association quality. From
that perspective, we empirically prove that our hierarchi-
cal matching scheme, HiLA-MB, can effectively reduce the
matching space size as shown in Tab. 6. To do so, we calcu-
late the size of the similarity matrix S (i.e., M ×N , where
there are M objects in the memory and N detected objects
in the current frame) to quantitatively measure the match-
ing space size. We note that modern approaches [46] adopt
a memory refreshing strategy, where the old objects stored
in the memory will be removed if they are τ -frame older
than the current frame, which, to some degree, alleviates
the issue of large matching space. However, we will show
that using the memory refreshing strategy alone is not suf-
ficient to reduce the matching space size. We compare the
matching space between naı̈ve-MB and our HiLA-MB un-
der two cases of τ , which is the hyper-parameter to refresh
out the old objects in the memory, affecting the matching
space size. In the first case, we set τ to 1000, which mimics
the ideal scenario, where we have a very large memory and
the old objects are barely removed, aiming to exclude the ef-
fect of refreshing strategy and focus on the memory buffer
approach itself. As shown in the table, we can observe
that HiLA-MB can greatly improve the matching space ef-
ficiency by a healthy margin (i.e., 3.4× smaller and 3.6×
smaller in average and max values, respectively). In the
second case, τ is set to be the optimal value for each mem-
ory buffer approach (i.e., 1 for naı̈ve-MB and 10 for HiLA-
MB). As shown in the table, the memory refreshing strat-
egy effectively reduces the matching space size for naı̈ve-
MB. However, our HiLA-MB still outperforms naı̈ve-MB
by achieving 9.1× and 8.2× more efficient matching space

method T AQ STQ

Video-kMaX (near-online)
0.5 73.95 74.10
1.0 74.22 74.23
1.5 74.30 74.27

Table 8: Ablation study on temperature T , which scales
the values between location and appearance features. Our
final setting is labeled with brown color. In this table, we
show results up to two decimal points to more clearly see
the robustness to T .

in average and max value, respectively.
Memory-related Hyper-parameters Our proposed

memory module HiLA-MB contains two hyper-parameters:
τ (for refreshing old objects in the memory buffer) and α
(confidence threshold for matching). In Tab. 7, we ablate
their effects on our HiLA-MB and the baseline naı̈ve-MB.
As shown in the table, our HiLA-MB not only performs
better, but also is more robust to the hyper-parameter values
than naı̈ve-MB. More concretely, when computing the mean
and standard deviation (std) for the obtained AQ w.r.t. dif-
ferent τ and α, our HiLA-MB achieves a mean of 73.4 and a
std of 0.4, while the baseline naı̈ve-MB attains a lower mean
of 61.5 and a higher std of 5.8. We think the robustness
of HiLA-MB could be attributed to its efficient hierarchi-
cal matching scheme, which avoids the ambiguity caused
by the large matching space.

Feature-related Hyper-parameter We adopt a tem-
perature T to scale the values between the location and ap-
pearance features (see Eq. (5)). As shown in Tab. 8, our
model is robust to the different values of T . We thus de-
fault its value to 1 for simplicity. Additionally, as shown
in Tab. 9, our model is also robust to the different values of
λ, which balances the weight between the stored appearance



(a) TubeFormer (b) clip-kMaX (c) clip-kMaX + different memory buffer scheme

naive-MB

HiLA-MB

Figure 5: Visualization results on KITTI-STEP val set. The proposed within-clip segmenter, clip-kMaX, segments objects
in a clip better than the state-of-art TubeFormer ((a) vs. (b)). In (c), the proposed cross-clip associater, HiLA-MB (Hierar-
chical Location-Aware Memory Buffer), associates occluded objects better than the baseline naı̈ve-MB, which exploits only
appearance features.

(a) naive-MB (b) HiLA-MB

Figure 6: Visualization results on VIPSeg val set. The baseline naı̈ve-MB, only exploiting the appearance feature, fails
to associate the same person, as neighboring people have similar appearance features. On the other hand, our HiLA-MB,
exploiting both appearance and location features, successfully associates the same person.

method λ AQ STQ

Video-kMaX (near-online)

0.0 73.34 73.80
0.5 74.19 74.21
0.7 74.22 74.23
0.8 74.22 74.23
0.9 74.22 74.23
1.0 74.18 74.21

Table 9: Additional analysis on moving average weight λ,
which balances the stored appearance feature in the memory
and current appearance feature. Our final setting is labeled
with brown color. In this table, we show results up to two
decimal points to more clearly see the robustness to λ.

feature in memory and the current one (see Eq. (3)).

4.5. Visualization Analysis

Qualitative Results We visualize results in Fig. 5 for
KITTI-STEP. clip-kMaX performs better than the state-of-
the-art TubeFormer [21] for consistent segmentation be-
tween frames in a clip. The proposed HiLA-MB enables
long-term association, successfully re-identifying the oc-
cluded car object (ID 214), while the baseline naı̈ve-MB
fails, since it only exploits the appearance feature. Addi-

tionally, we show some visualization results in Fig. 6 for
VIPSeg, where the baseline naı̈ve-MB fails to associate per-
sons in a crowd, since they have similar appearance fea-
tures. On the other hand, our HiLA-MB correctly associates
the same person by effectively exploiting both the appear-
ance and location features. Finally, our Video-kMaX (con-
sisting of clip-kMaX and HiLA-MB) demonstrates more
clear and consistent video results than the baselines as pro-
vided in https://youtu.be/gK3bUCNnvGA.

Structural Prior Learned by Queries We observe
that the object queries learned by our Video-kMaX demon-
strate a structural prior that a particular query will respond
to objects around a specific location on the image plane. To
visualize the structural prior, for each query, we compute
the mean location center of all its segmented objects in the
whole KITTI-STEP validation set, and show the scatter plot
in Fig. 8. As shown in the figure, each object query is re-
sponsible to segment objects around a specific location on
the image plane. Interestingly, the object queries are scat-
tered mostly along a vertical and a horizontal line, showing
the property of ego-centric car in KITTI-STEP, where the
street-view images are collected by a driving car.

Failure Case and Limitation We analyze the failure
mode of our Video-kMaX in Fig. 7. The first row and sec-

https://youtu.be/gK3bUCNnvGA


ID: 99
ID: 99

ID: 107
ID: 108

Predicted 

bbox of ID 99

Predicted 

bbox of ID 99

Figure 7: Failure case on VIPSeg val set. The target object is initially assigned with ID 99. Its ID switches to 107 and 108
in frame 3 and frame 4, respectively. Our method fails to track the target object, because it is heavily occluded and moves at
a large random pace, making both appearance and location features unreliable.

Width

Height

Figure 8: Query visualization on KITTI-STEP val set. We
use Video-kMaX with Axial-ResNet50-B1 backbone that is
trained on KITTI-STEP and then plot the location of aver-
aged mask center (including all stuff and things) predicted
by each query.

ond row are video frames and corresponding video panop-
tic results with our Video-kMaX, respectively. We observe
that a person initially assigned with ID number 99 until
frame 2 is re-assigned with different ID numbers, i.e., 107
(in frame 3) and 108 (in frame 4). The ID switch could
be attributed to two reasons. First, the appearance feature
of the occluded person (i.e., person ID 107 in frame 3) is
not reliable, as most of its discriminative appearance re-
gions are occluded. Second, the target object demonstrates
a large random movement, violating our slow linear motion
assumption encoded by the location feature.

5. Conclusion
In this work, we proposed Video-kMaX, a unified frame-

work for online and near-online Video Panoptic Segmen-
tation (VPS) model with two modules: clip-kMaX and
HiLA-MB. The clip-kMaX utilizes object queries as clus-
ter centers to group pixels of the same object within a clip,

while the HiLA-MB is a novel and robust memory module
for both short- and long-term association with a hierarchi-
cal matching scheme. The effectiveness of our approach
is demonstrated on the KITTI-STEP, VIPSeg and VSPW
datasets. We hope our study will inspire more future re-
search on a unified framework for online and near-online
VPS.

References

[1] Gedas Bertasius and Lorenzo Torresani. Classifying, seg-
menting, and tracking object instances in video with mask
propagation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020.

[2] Jiarui Cai, Mingze Xu, Wei Li, Yuanjun Xiong, Wei Xia,
Zhuowen Tu, and Stefano Soatto. Memot: Multi-object
tracking with memory. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8090–8100, 2022.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Proceedings of the
European Conference on Computer Vision, pages 213–229.
Springer, 2020.

[4] Liang-Chieh Chen, Raphael Gontijo Lopes, Bowen Cheng,
Maxwell D Collins, Ekin D Cubuk, Barret Zoph, Hartwig
Adam, and Jonathon Shlens. Naive-Student: Leveraging
Semi-Supervised Learning in Video Sequences for Urban
Scene Segmentation. In Proceedings of the European Con-
ference on Computer Vision, 2020.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(4):834–848, 2017.

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In



Proceedings of the European Conference on Computer Vi-
sion, pages 801–818, 2018.

[7] Bowen Cheng, Anwesa Choudhuri, Ishan Misra,
Alexander Kirillov, Rohit Girdhar, and Alexander G
Schwing. Mask2former for video instance segmentation.
arXiv:2112.10764, 2021.

[8] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,
Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-DeepLab. In ICCV COCO + Mapillary Joint
Recognition Challenge Workshop, 2019.

[9] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,
Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.
Panoptic-DeepLab: A simple, strong, and fast baseline
for bottom-up panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3213–3223, 2016.

[11] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of IEEE International Conference
on Computer Vision, 2017.

[12] Raghudeep Gadde, Varun Jampani, and Peter V Gehler. Se-
mantic video CNNs through representation warping. In Pro-
ceedings of IEEE International Conference on Computer Vi-
sion, 2017.

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of IEEE International
Conference on Computer Vision, 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[15] Miran Heo, Sukjun Hwang, Jeongseok Hyun, Hanjung Kim,
Seoung Wug Oh, Joon-Young Lee, and Seon Joo Kim.
A generalized framework for video instance segmentation.
arXiv preprint arXiv:2211.08834, 2022.

[16] Miran Heo, Sukjun Hwang, Seoung Wug Oh, Joon-Young
Lee, and Seon Joo Kim. Vita: Video instance segmentation
via object token association. arXiv:2206.04403, 2022.

[17] De-An Huang, Zhiding Yu, and Anima Anandkumar. Min-
vis: A minimal video instance segmentation framework
without video-based training. Advances in Neural Informa-
tion Processing Systems, 2022.

[18] Sukjun Hwang, Miran Heo, Seoung Wug Oh, and Seon Joo
Kim. Video instance segmentation using inter-frame com-
munication transformers. Advances in Neural Information
Processing Systems, 2021.

[19] Samvit Jain, Xin Wang, and Joseph E Gonzalez. Accel: A
corrective fusion network for efficient semantic segmenta-
tion on video. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019.

[20] Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So
Kweon. Video panoptic segmentation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9859–9868, 2020.

[21] Dahun Kim, Jun Xie, Huiyu Wang, Siyuan Qiao, Qihang Yu,
Hong-Seok Kim, Hartwig Adam, In So Kweon, and Liang-
Chieh Chen. Tubeformer-deeplab: Video mask transformer.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13914–13924, 2022.

[22] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollár. Panoptic feature pyramid networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2019.

[23] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten
Rother, and Piotr Dollár. Panoptic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2019.

[24] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955.

[25] Xiangtai Li, Wenwei Zhang, Jiangmiao Pang, Kai Chen,
Guangliang Cheng, Yunhai Tong, and Chen Change Loy.
Video k-net: A simple, strong, and unified baseline for video
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 18847–
18857, 2022.

[26] Yanwei Li, Xinze Chen, Zheng Zhu, Lingxi Xie, Guan
Huang, Dalong Du, and Xingang Wang. Attention-guided
unified network for panoptic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2019.

[27] Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Liwei Wang,
Zeming Li, Jian Sun, and Jiaya Jia. Fully convolutional
networks for panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Proceedings of the European Conference on Computer Vi-
sion, 2014.

[29] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976–11986,
2022.

[30] Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and
Christoph Feichtenhofer. Trackformer: Multi-object track-
ing with transformers. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8844–8854, 2022.

[31] Jiaxu Miao, Xiaohan Wang, Yu Wu, Wei Li, Xu Zhang, Yun-
chao Wei, and Yi Yang. Large-scale video panoptic seg-
mentation in the wild: A benchmark. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2022.

[32] Jiaxu Miao, Yunchao Wei, Yu Wu, Chen Liang, Guangrui Li,
and Yi Yang. Vspw: A large-scale dataset for video scene
parsing in the wild. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2021.



[33] Siyuan Qiao, Yukun Zhu, Hartwig Adam, Alan Yuille, and
Liang-Chieh Chen. Vip-deeplab: Learning visual perception
with depth-aware video panoptic segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015.

[35] Peize Sun, Jinkun Cao, Yi Jiang, Rufeng Zhang, Enze
Xie, Zehuan Yuan, Changhu Wang, and Ping Luo.
Transtrack: Multiple object tracking with transformer.
arXiv:2012.15460, 2020.

[36] Zhi Tian, Chunhua Shen, and Hao Chen. Conditional con-
volutions for instance segmentation. In Proceedings of the
European Conference on Computer Vision, 2020.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems, 30, 2017.

[38] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon
Luiten, Berin Balachandar Gnana Sekar, Andreas Geiger,
and Bastian Leibe. Mots: Multi-object tracking and seg-
mentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019.

[39] Huiyu Wang, Yukun Zhu, Hartwig Adam, Alan Yuille, and
Liang-Chieh Chen. Max-deeplab: End-to-end panoptic
segmentation with mask transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5463–5474, 2021.

[40] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,
Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-
alone axial-attention for panoptic segmentation. In Proceed-
ings of the European Conference on Computer Vision, 2020.

[41] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. Solov2: Dynamic and fast instance segmentation.
Advances in Neural information processing systems, 2020.

[42] Mark Weber, Huiyu Wang, Siyuan Qiao, Jun Xie, Maxwell D
Collins, Yukun Zhu, Liangzhe Yuan, Dahun Kim, Qihang
Yu, Daniel Cremers, et al. Deeplab2: A tensorflow library
for deep labeling. arXiv preprint arXiv:2106.09748, 2021.

[43] Mark Weber, Jun Xie, Maxwell Collins, Yukun Zhu,
Paul Voigtlaender, Hartwig Adam, Bradley Green, Andreas
Geiger, Bastian Leibe, Daniel Cremers, Aljosa Osep, Laura
Leal-Taixe, and Liang-Chieh Chen. Step: Segmenting and
tracking every pixel. Neural Information Processing Systems
(NeurIPS) Track on Datasets and Benchmarks, 2021.

[44] Sanghyun Woo, Dahun Kim, Joon-Young Lee, and In So
Kweon. Learning to associate every segment for video
panoptic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2705–2714, 2021.

[45] Junfeng Wu, Yi Jiang, Song Bai, Wenqing Zhang, and Xiang
Bai. Seqformer: Sequential transformer for video instance
segmentation. In Proceedings of the European Conference
on Computer Vision, pages 553–569. Springer, 2022.

[46] Junfeng Wu, Qihao Liu, Yi Jiang, Song Bai, Alan Yuille, and
Xiang Bai. In defense of online models for video instance
segmentation. In Proceedings of the European Conference
on Computer Vision, pages 588–605. Springer, 2022.

[47] Jialian Wu, Sudhir Yarram, Hui Liang, Tian Lan, Junsong
Yuan, Jayan Eledath, and Gerard Medioni. Efficient video
instance segmentation via tracklet query and proposal. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 959–968, 2022.

[48] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu,
Min Bai, and Raquel Urtasun Ersin Yumer. Upsnet: A
unified panoptic segmentation network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.

[49] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu,
Min Bai, Ersin Yumer, and Raquel Urtasun. UPSNet: A
unified panoptic segmentation network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.

[50] Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Zehuan Yuan,
Ping Luo, and Huchuan Lu. Universal instance perception as
object discovery and retrieval. In CVPR, 2023.

[51] Linjie Yang, Yuchen Fan, and Ning Xu. Video Instance Seg-
mentation. In Proceedings of IEEE International Conference
on Computer Vision, 2019.

[52] Tien-Ju Yang, Maxwell D Collins, Yukun Zhu, Jyh-Jing
Hwang, Ting Liu, Xiao Zhang, Vivienne Sze, George Pa-
pandreou, and Liang-Chieh Chen. DeeperLab: Single-shot
image parser. arXiv:1902.05093, 2019.

[53] Qihang Yu, Huiyu Wang, Dahun Kim, Siyuan Qiao,
Maxwell Collins, Yukun Zhu, Hartwig Adam, Alan Yuille,
and Liang-Chieh Chen. Cmt-deeplab: Clustering mask
transformers for panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

[54] Qihang Yu, Huiyu Wang, Siyuan Qiao, Maxwell Collins,
Yukun Zhu, Hartwig Adam, Alan Yuille, and Liang-Chieh
Chen. k-means Mask Transformer. In Proceedings of the
European Conference on Computer Vision, pages 288–307.
Springer, 2022.

[55] Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang, Xi-
angyu Zhang, and Yichen Wei. Motr: End-to-end multiple-
object tracking with transformer. In Proceedings of the
European Conference on Computer Vision, pages 659–675.
Springer, 2022.

[56] Haotian Zhang, Yizhou Wang, Zhongyu Jiang, Cheng-Yen
Yang, Jie Mei, Jiarui Cai, Jenq-Neng Hwang, Kwang-Ju
Kim, and Pyong-Kun Kim. U3D-MOLTS: Unified 3D
Monocular Object Localization, Tracking and Segmenta-
tion. In ICCV Segmenting and Tracking Every Point and
Pixel: 6th Workshop on Benchmarking Multi-Target Track-
ing, 2021.

[57] Wenwei Zhang, Jiangmiao Pang, Kai Chen, and
Chen Change Loy. K-net: Towards unified image seg-
mentation. Advances in Neural Information Processing
Systems, 34:10326–10338, 2021.

[58] Zelin Zhao, Ze Wu, Yueqing Zhuang, Boxun Li, and Jiaya
Jia. Tracking objects as pixel-wise distributions. In Proceed-



ings of the European Conference on Computer Vision, pages
76–94. Springer, 2022.

[59] Yi Zhou, Hui Zhang, Hana Lee, Shuyang Sun, Pingjun
Li, Yangguang Zhu, ByungIn Yoo, Xiaojuan Qi, and Jae-
Joon Han. Slot-vps: Object-centric representation learn-
ing for video panoptic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3093–3103, 2022.

[60] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen
Wei. Deep feature flow for video recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2017.

[61] Yi Zhu, Karan Sapra, Fitsum A Reda, Kevin J Shih, Shawn
Newsam, Andrew Tao, and Bryan Catanzaro. Improving se-
mantic segmentation via video propagation and label relax-
ation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2019.


