arXiv:2309.14117v1 [cs.CV] 25 Sep 2023

Small Objects Matters in Weakly-supervised Semantic Segmentation

Cheolhyun Mun*{
Samsung Research
Seoul, Korea

cheolhyunmun@yonsei.ac.kr

Junsuk Choe
Sogang University
Seoul, Korea

jschoel@sogang.ac.kr

Abstract

Weakly-supervised semantic segmentation (WSSS) per-
forms pixel-wise classification given only image-level la-
bels for training. Despite the difficulty of this task, the re-
search community has achieved promising results over the
last five years. Still, current WSSS literature misses the de-
tailed sense of how well the methods perform on different
sizes of objects. Thus we propose a novel evaluation met-
ric to provide a comprehensive assessment across differ-
ent object sizes and collect a size-balanced evaluation set
to complement PASCAL VOC. With these two gadgets, we
reveal that the existing WSSS methods struggle in captur-
ing small objects. Furthermore, we propose a size-balanced
cross-entropy loss coupled with a proper training strategy.
It generally improves existing WSSS methods as validated
upon ten baselines on three different datasets.

1. Introduction

Recently, weakly-supervised learning (WSL) has been
attracting attention because of its low-cost annotation.
Among many tasks, weakly-supervised semantic segmen-
tation (WSSS) methods learn to predict semantic segmenta-
tion masks given only weak labels such as image-level class
labels for training.

To solve this problem, existing WSSS techniques gen-
erate pseudo segmentation masks from a classification net-
work and then train a fully-supervised semantic segmenta-
tion model such as DeepLabV2 [4]. To improve WSSS per-
formances, most existing methods have focused on produc-
ing more accurate pseudo labels. With this strategy, WSSS
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performances have been greatly improved in the last five
years [1,26,29,30,35,38,42,43,45,50].

However, we lack a detailed sense of performance: do

methods with high mloU always better capture all the de-
tails? Interestingly, we observe that some methods with
lower mloU better capture small objects than others. Al-
though it is undoubtedly important that the segmentation
model also correctly captures small objects, this limitation
has not been well studied yet in WSSS literature. How does
each method behave in different types of environments? To
answer this question, we address the limitations of the con-
ventional metric, the dataset, and the training objective, and
propose a complement thereby we anticipate WSSS tech-
niques to become more complete and applicable to different
needs.
Conventional metric (mIoU) and its pitfall. mToU is
mean of per-class IoUs where IoU is the intersection-over-
union of the segmented objects. While an IoU is depicted
with one predicted segment and one ground-truth segment,
it pre-accumulates all predicted pixels and all ground-truth
pixels in the entire dataset (Fig. 2 (a)). mIoU has widely
been used to measure the performance of different models
in semantic segmentation.

Despite of its usefulness in measuring the overall accu-
racy of segmentation predictions, mIoU does not account
for the comprehensiveness of the predictions. As illustrated
in Fig. 1 (a), Prediction I and Prediction 2 have the same
IoU score since they miss the same number of pixels. How-
ever, in Prediction 1, the red cross marks indicate a com-
plete failure in object segmentation, while Prediction 2 can
be considered as minor errors.

Conventional dataset. The PASCAL VOC 2012 [13] is the
representative benchmark for WSSS. The problem is, how-
ever, the evaluation set of VOC has an imbalanced distri-
bution in terms of object-size. Fig. 1 (b) shows the over-



Ground Truth Prediction 1 Prediction 2

Large object

Small object

loU 100%

Prediction 1 & 2 have same loU (90%)
(a) Large object domination problem in mloU
120 ¥

g 100 N\ ‘ —o—Small —=—Medium Large
=
E 80
S 60
8
E ® e
< 2 FewsampleS | Ty o

0 oo :

1 3 5 7 9 11 13 15 17 19

Class index ordered by number of instances
(b) Imbalance problem in PASCAL VOC validation set

Figure 1. Problems of conventional metric and dataset. (a) Predic-
tion 1 and 2 show the prediction for different cases which result
in the same IoU scores. (b) Some classes of PASCAL VOC val-
idation set suffer from a lack of small-sized objects. We sort the
number of instances in descending order for each class per each
size.

all distribution for 20 classes of the VOC validation set per
each size'. Many classes fall short in the number of small
objects. Even with an ideal metric, we will never know how
methods perform on small objects with few samples such as
small birds. Besides, we note that MS COCO [33], another
popular benchmark with 80 classes for WSSS, also suffers
from imbalanced distribution. More information of dataset
distribution is in the supplementary material.

Training objective. Pixel-wise cross-entropy considers all
individual pixels equally important by averaging. Thus the
networks will consider small objects less important and lean
toward large objects with many pixels. While the fully-
supervised semantic segmentation methods have some rem-
edy [12,34], WSSS literature has paid less attention to this

TFollowing MS COCO, we regard an instance as small if total number
of pixels< 32 X 32, medium if the total number of pixels< 96 x 96, and
large for the rest.
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Figure 2. Visual comparison of the computing process of IoU. for
mIoU and IoU. for IA-mIoU regarding a class ¢

problem. Existing works mostly focus on producing better
pseudo masks to train the main segmentation network with
the same pixel-wise cross-entropy.

QOur solutions. In this paper, we suggest a way to ad-
dress the above three limitations. First, we introduce a
new evaluation metric for semantic segmentation, instance-
aware mean intersection-over-union (IA-mIoU). It is im-
portant to accurately capture objects of all sizes to im-
prove IA-mIoU. Next, we propose an evaluation dataset
balanced in terms of object-size, PASCAL-B, which con-
tains almost the same number of instances for each size,
namely, large, medium, and small. With our new bench-
mark and evaluation metric, we can correctly measure the
performances of existing WSSS models in terms of object
size. Specifically, we re-evaluate ten state-of-the-art meth-
ods [1,26,29,30,35,38,42,43,45,50] and observe interesting
results; all evaluated methods struggle in capturing small
objects. Lastly, we propose a new loss function paired with
a training strategy for segmentation models to balance the
objective. Thorough experiments on three datasets demon-
strate that our method achieves comprehensive performance
boost on ten existing WSSS methods. We believe that it will
serve as a strong baseline to start with toward more com-
prehensive performance. The code and the dataset will be
publicly available for research community.

2. Instance-aware mloU

In this section, we explain how our metric addresses
the limitations of mIoU. Then, we compare mIoU and our
instance-aware mloU (IA-mIoU) with the results of sev-
eral corner cases.

2.1. Definition of IA-mIoU.

In Fig. 2 (a), we visualize the way of calculating IoU, of
a class ¢, for mIoU. First, [oU. unions all pixels of ground-
truth (GT,) and prediction (Pr.) respectively, and then cal-
culates the intersection of them. During the process, it does
not consider which instance each pixel belongs to. As a re-
sult, mIoU inherently does not provide a detailed sense of
performance but provides coarse judgment.

To reflect the different importance of pixels, we sug-
gest measuring the performance of each instance individ-
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Figure 3. Two cases for assigning predictions to the correspond-
ing ground-truth instances. Pixels in color are the prediction and
boxes with red lines are ground-truth instances. (a) When there is
a one-to-one correspondence between prediction and ground-truth
instance, each prediction is assigned to the corresponding ground-
truth instance. (b) When there is a one-to-many correspondence
between prediction and ground-truth instances, non-overlapping
regions in step 2 (orange pixels with check pattern) distribute to
each instance based on the ratio of blue and yellow pixels with dot
pattern.

ually. We first split predictions and ground-truths of class ¢
into different instances i.e., Pr. 1, Pr. 2, GT. 1 and GT 5 as
shown in Fig. 2 (b). Then, we compute IoU scores IoU, ;
for each instance ¢ and average them to obtain IoU, that is
instance-aware IoU score of the class c:
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where T is the total number of instances of the class
c. Finally, we average the per-instance IoUs to compute
instance-aware mloU (IA-mIoU):
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The following subsection describes how to split the predic-
tions and ground-truths, and how to assign prediction in-
stances to ground-truth instances.

2.2. Splitting and assigning instances

Although we introduced the concept of instance, it does
not exist in the segmentation task. Hence, we assume that
the ground-truth segmentation masks can be either split
into connected components (blobs) or split by additional in-
stance annotation when available for evaluation. Please note
that we introduce the instance labels only for more precise
evaluation, not for training.

To fully utilize the instance masks for evaluation, we also
have to split the predicted segments into blobs and assign
them to overlapping ground-truth instances. There are three
types of predictions for the model: 1) one prediction cov-
ers one object, 2) one prediction covers multiple objects
simultaneously, and 3) prediction fails to cover any target
instances. We consider only the first two cases because the
last case has no overlapping region between prediction and
ground-truth’

The procedure is illustrated in Fig. 3. Both cases start
from drawing contour lines from prediction for class ¢ (Pr.)
to get connected components (Pr. ;). The next step, how-
ever, is different for case I and case 2 since the former is
a one-to-one correspondence relationship between Pr. ; and
GT, ; and the latter is one-to-many.

For the case 1, each connected component is assigned
to overlapping target instance in the second step (Pr.; —
GT, 1 and Pr.» — GT.2). Then, we can calculate the IoU
per instance. On the other hand, for the case 2, we have
to split the connected component into multiple parts since
it overlaps with multiple target instances. In other words,
we have to distribute the non-overlapped area to each in-
stances. To do this, we apply weighted clustering algorithm
that if cluster (i.e., target instance) has more overlapped
pixels than others, it takes larger unassigned regions. It has
following advantages: 1) it does not favor or damage par-
ticular instances, 2) it is invariant to locations of the chosen
pixels, and 3) it is less bias on the object size.

This algorithm is implemented by adding two steps. We
first assign the intersecting regions to the corresponding tar-
get instances and compute the ratio of the overlapping area
(i.e., GT,1 NPreq : GTe2 NPre; = 16 : &) in the sec-
ond step. In the final step, we distribute the remaining unas-
signed area to each target instance according to the ratio.
The way of distribution of pixels can be not unique, but we
focus on reasonable distributions of pixels based on instance
size. For the multiple predictions and ground-truths, we
would perform the same assignment process for each pre-
diction and its corresponding ground-truth instances. This
approach enables instance-aware metric in semantic seg-
mentation tasks, even when the model does not provide
instance-level predictions. In the next subsection, we de-
sign corner cases to compare the tendencies of mIoU and
IA-mIoU clearly.

2.3. Sensitivity analysis on corner cases.

We design four corner cases in Fig. 4. We first set up
small and large instances in an image, and then gradually
expand the predictions to cover the assigned ground-truth
instances. The outcomes show the limitation of mIoU more
clearly: the prediction on a large object dominates the over-

_ TFalse positives in a class ¢ do not contribute to ToU,. but they decrease
IOUbewkground .
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Figure 4. Sensitivity to the size of instances on corner cases. We plot the behavior of mIoU and IA-mIoU as the prediction gradually grow
to fill the ground-truth instance L (or S1,2,3). Empty squares are uncovered ground-truth instances and sky blue squares are predictions.
Gradual increase of the predictions is marked with orange dashed arrows.

Size of instances
L

»
<

Scores

0 20 40 60 80 100 120 140
Number of excluded instances

== MioU mm |A-mloU

Figure 5. Corner case with real data. mIoU declines quickly as the
size of instances gets larger while IA-mIoU drops consistently.

all performance. The mIoU scores of case A and C increase
exponentially with the improvement of prediction on a large
object. On the contrary, the performances for case B and D
barely change even though the predictions on small objects
improve. Unlike the mIoU, our metric IA-mIoU steadily
increases as the predictions fill the target instances regard-
less of the instance size. Furthermore, since we split the in-
stances, we acquire more detailed sense of the performance
according to their sizes (i.e., measuring only specific size
of objects).

In addition, Fig. 5 plots the behavior of mIoU and

IA-mIoU in dog class of the PASCAL VOC 2012 dataset.
Starting from the perfect score, i.e., the prediction equals
the ground-truth, we remove one instance at a time from the
prediction starting with the smallest and progressing to the
largest. ITA-mIoU drops consistently, while mIoU barely
decreases for small instances and rapidly decreases for large
instances. We draw the red dashes in Fig. 5 to distinguish
the size of instances more clearly.

We hope that it would be beneficial for the community by
providing a new comprehensive evaluation metric that can
measure the semantic segmentation performance on small
objects accurately.

3. Dataset analysis and construction

Imbalanced evaluation dataset may cripple the reliabil-
ity of an evaluation protocol because the performance will
vary due to the lack of samples. We believe that any ob-
jects with various sizes should not be undervalued because
of their small number.

To tackle the imbalanced dataset issue, we suggest a
new balanced benchmark dataset for evaluation. We con-
struct PASCAL-B by collecting images and annotations
from LVIS [17] and MS COCO [33] datasets which in-
cludes at least one of 20 categories’ of the PASCAL VOC
classes. Then, we converted the annotations which do not

TFrom MS COCO, we only collected images of “potted-plant” since
LVIS does not have it.
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Figure 6. The distribution of validation set for each dataset: (a)
PASCAL VOC and (b) PASCAL-B. We draw the mean (i.e., the
triangle in yellow) and the variance over classes for each size of
instances (¢.e., small, medium, and large). The point in gray indi-
cates the number of instances for each class. On the top of each
figure, we report the ratio of each size of instances to the total
number of instances.

belong to the 20 categories of the PASCAL VOC dataset
into the background class. Among the remaining images,
a few images have wrong annotations. Therefore, two com-
puter vision experts (authors of this paper) manually filtered
out such images for two weeks. Then, we randomly sam-
pled images to ensure the balance over classes and object
size distribution. In the end, PASCAL-B consists of 1,137
images with 20 classes. We give some representative images
of the PASCAL-B dataset in the supplementary material.

As illustrated in Fig. 6 (b), our dataset is much more bal-
anced in terms of classes and object-size distribution. Com-
pared to PASCAL VOC, our PASCAL-B has fewer out-
liers, i.e., points in gray, and they do not have extremely
large values. Also, PASCAL-B keeps a similar number of
instances for each size while PSACAL VOC has more large
or small instances. In summary, a primary motivation for
creating PASCAL-B was to address the issue of imbalanced
evaluation datasets commonly encountered in semantic seg-
mentation task. Existing benchmarks suffer from disparities
in class or object size distributions, leading to skewed per-
formance evaluations. PASCAL-B addresses this concern
by meticulously constructing a dataset that features bal-
anced classes and object sizes. Instead of replacing estab-
lished benchmarks such as ADE20K [49], COCO [33], or
Cityscapes [7], PASCAL-B complements them by offering
an alternative approach to assessment. For more details re-
garding the dataset, please refer to the supplementary mate-
rial.

4. Methods
4.1. Evaluated WSSS methods

We evaluate ten existing methods under various weak-
levels of supervision: bounding box supervision (i.e.,

Figure 7. Example connected components for the loss function.
1. 1, is the k-th connected components for c-th class in an image.

BANA [29] and BBAM [35]), saliency supervision (i.e.,
RCA [50], EDAM [42] and NS-ROM [45]), natural lan-
guage supervision (i.e., CLIM [43]), and image supervision
(i.e., AMN [30], RIB [26], CDA [38], and IRN [1]). These
methods follow the two-stage training pipeline of WSSS.
In the first stage, they generate the pseudo masks by their
methods. Then, they train a semantic segmentation network
with the pseudo masks from the first stage. All the above
methods except BANA [35] only focus on stage 1 to pro-
duce the high-quality masks by refining the initial seed to
improve the performance. A more detailed explanation for
the above methods is in the supplementary material.

4.2. Proposed loss function and training strategy

To address the limitation of pixel-wise cross-entropy
(CE) loss in Sec. 1, we propose a new loss function for a
model to have the capacity of capturing small objects. We
first give weights to each pixel according to the size of the
object when computing the loss. Since the instance ground-
truth masks are not available for training, we find all con-
nected components for each class from pseudo ground-truth
masks as in Fig. 7. Then, we get weight w, , corresponding
to a pixel (z,y) as follows:

1, if (z,y) € background,

w = K
,y {min(ﬂ i Se )7

e otherwise
c,n

3

where S ;, is the number of pixels in its connected com-
ponent I, ;,, while n is the index number of instance which
pixel (z,y) is included. K is the number of instances with
c-th class in an image. Through Eq. 3, we assign a larger
weight to the pixels of the relatively small instance while
preventing the value of weight from getting excessively
large by setting up the upper limit 7. Finally, we multiply
weights to cross-entropy loss as in Eq. 4 and we call this
loss function L, as size-weighted cross-entropy loss.

cC H W

Lgyw = *ﬁ Z Z Z Yc,gc,ywm,ylofl(pc,zyy)’ “

c=1z=1y=1



where H and W is the height and width of images, respec-
tively, and p.. ; ,, is the probability to predict the class of the
pixel (z,y) as c.

Even though L,,, can improve the ability of the model
to catch small objects, there is a side effect that the model
fails to learn extremely large instances with L, during the
whole training process. Therefore, we apply a new train-
ing strategy that adds a regularization term to Eq. 4 by in-
troducing elastic weight consolidation (EWC) [11]. EWC
helps model to learn new tasks continually while preserv-
ing the information of previous tasks. Following the strat-
egy of EWC, we also divide the training into two tasks.
We first train a model using pixel-wise cross-entropy loss
which is more beneficial to learn the large object as we ana-
lyze in Sec. 1, and call this task as task A. During the train-
ing for task A, model updates the importance of parameters
in Fisher information matrix. Then, for the new task, the
model is fine-tuned by L, and EWC helps to regularize
the important parameter for the previous fask A based on
the matrix. Thus, our final loss function L, size-balanced
cross-entropy loss, is defined as:

A .
Lap = Law + > 5 Fil0: = 03,)%, 5)

where 6; and 6 ; are i-th parameter for present task and
task A, respectively. A controls the importance of regu-
larization and F; is the importance of parameter ¢ in the
Fisher information matrix. With L, a model can learn the
new information for task B (i.e., learning small objects)
while maintaining the previous information from task A
(i.e., learning large objects).

5. Experiments
5.1. Experimental setting

Dataset. We evaluate each method on three datasets: PAS-
CAL VOC [13], PASCAL-B, and MS COCO [33]. PAS-
CAL VOC and PASCAL-B share the same training set
though PASCAL-B is only designed for validation rather
than training. PASCAL VOC and PASCAL-B consist of a
similar number of images, 1,449 and 1,137, respectively.
Evaluation metric. We use mIoU and IA-mIoU to com-
pare the performance of methods. Since our IA-mIoU can
measure the small-sized instance only, we provide the TAg
for the detailed performance of small objects.
Implementation detail. We generate pseudo masks for the
segmentation networks using the official codes and strictly
follow the setting provided in each paper [1, 26,29, 30, 35,
,42,43,45,50]. Then, we use DeeplabV2 with ResNet-
101 [4] as segmentation networks. For more detail, please
see the supplementary material. All the experiments were

Method Sup. | mIoU | IA-mIoU IAg
IRN* T 64.8 56.0 17.5
CDA* T 66.6 57.2 15.8
AMN* T 69.4 58.4 15.9

CLIM* I,L | 689 57.4 14.0
RCAT 7,8 70.4 60.7 232

EDAMT 7,8 70.7 60.7 21.3

NS-ROMT | Z,8 | 704 60.2 19.3

BANAT Z,B | 726 59.6 14.7

BBAM* I,B | 727 60.5 14.7

Table 1. Experimental results for PASCAL VOC. % and t indicate
that the segmentation model utilizes the ImageNet and COCO pre-
trained model respectively. Z, S, £ and B denotes the degree of
supervision. Z: image-level supervision, £: natural language su-
pervision, S: saliency supervision, and B: bounding box supervi-
sion.

Method Sup. | mIoU | IA-mIoU IAg
DeepLabV2* F 55.4 335 12.9
RIB* T 44.6 29.2 11.4
IRN* T 39.7 25.8 9.4

Table 2. Experimental results for MS COCO.

done by one GeForce RTX 3090 GPU for PASCAL VOC
and two RTX 3090 GPUs for MS COCO.

5.2. Quantitative results

We evaluate nine baseline methods on PASCAL VOC
and PASCAL-B, and three baseline methods on MS COCO.
Furthermore, we demonstrate that our size-balanced cross-
entropy loss function on the baseline methods results in bet-
ter segmentation performance when compared to using the
conventional cross-entropy (CE) loss.

mIoU vs. IA—-mIoU. Table | compares the performances
inmIoU and IA-mIoU on the PASCAL VOC dataset. Al-
though the recent WSSS methods make impressive perfor-
mance in the mIoU metric, we observe that the detailed
scores measured by TA-mIoU are quite different. It is note-

Method Sup. | mIoU | IA-mIoU IAg
IRN* z 56.1 41.0 15.8
CDA* z 575 414 134
AMN* z 58.5 41.1 13.9

CLIM* I,L | 587 402 12.2
RCA* 7,5 | 60.8 455 18.4

EDAMT 7,8 60.4 452 19.4

NS-ROMT | Z,8 | 589 43.6 16.2

BANAT Z,B | 619 41.1 14.0

BBAM* Z,B | 60.1 40.9 143

Table 3. Experimental results for PASCAL-B.



worthy that all WSSS methods get badly lower scores for
small objects (IAg) compared to overall scores. It indicates
that WSSS methods struggle to capture the small instances
accurately as we mentioned in Sec. 1.

In particular, state-of-the-art techniques in terms of
mIoU encounter more difficulty in capturing small objects
compared to other methods. Consequently, they get lower
IA-mIoU while getting the highest mIoU, since IA-mIoU
reflects the scores of each instance equally but mIoU rela-
tively neglects the small objects. This indicates mIoU fails
to catch the detailed sense of performance on different sizes
of objects.

We do the same experiments on the MS COCO dataset
in Table 2. According to the result of these experiments, we
further demonstrate that existing WSSS methods struggle
with small objects and it has been overlooked with mIoU.

PASCAL VOC vs. PASCAL-B. Table 3 compares the
performances of models on our newly proposed benchmark,
PASCAL-B. The models in Table 3 use the same checkpoint
from Table 1 which are trained using the PASCAL VOC
training set.

We argue that evaluating methods using imbalanced
datasets can lead to biased scores, even with our proposed
metric. To better evaluate the ability of models, it is essen-
tial to have a sufficient number of samples for evaluation
per object-size and per class. However, the imbalance in the
PASCAL VOC dataset makes it difficult to validate mod-
els since some classes have no small-sized objects, or there
are only a few samples available. This lack of data for cer-
tain classes limits the opportunities for models to be evalu-
ated on their performance, leading to potential biases in the
evaluation process. On the other hand, we address this is-
sue by constructing PASCAL-B which includes a sufficient
number of samples for each object-size while keeping a bal-
anced distribution across classes.

In this manner, the results in Table 3 with PASCAL-B
provide better comprehensive assessment of WSSS meth-
ods compared to the scores in Table 1. When comparing
the results of both tables, we observe that ranking order of
WSSS methods is barely changed for mIoU and IA-mIoU
in Table 1 (Spearman’s rho: 0.79). On the other hand, it has
totally changed in Table 3 with PASCAL-B dataset (Spear-
man’s rho: 0.38), which indicates that TA-mTIoU scores
with PASCAL-B evaluates the performance of models dif-
ferently. We believe that the fundamental reason for this
phenomenon lies in the discrepancy of distributions in terms
of instance sizes between the two datasets. This suggests
that TA-mIoU and PASCAL-B are both necessary to prop-
erly evaluate per-size performances.

CE loss vs. Size-balanced CE loss. Lastly, we verify the
effectiveness of our proposed method, size-balanced cross-
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Figure 8. Comparison of experimental results when applying CE
loss (red bar) and Size-balanced CE loss (blue bar). We mark the
increment above the bar (number with green color.)

entropy loss function. As shown in Fig. 8, our method suc-
cessfully boosts the performances for all models across
three datasets. In particular, it enhances the ability of mod-
els to capture small instances. Across all datasets, we ob-
serve an increase of IAg scores ranging from 1.0 to 8.9. The
changes of mloU values, however, are relatively negligi-
ble, since the increase in performance of catching small in-
stances has a little impact on mloU as we explained in Sec. 2
(Out of 21 experiments, 18 have shown slight improvements
in mIoU). In the supplementary material, we analyze qual-
itatively the experimental results according to the usage of
our proposed loss function and provide more detailed values
of performance gain.

5.3. Ablation study

In this subsection, we demonstrate the effectiveness of
each component of our loss function on the PASCAL VOC
dataset with mIoU and IA-mIoU. In Table 4, we use a
fully-supervised method, DeepLabV2 [4] as our baseline
model to observe performance gains by adding our com-
ponents to the baseline.

Method mIoU | IA-mIoU IAg
DeepLabV2 77.8 65.8 18.8
with L gy, 71.5 68.7 23.0
with L, 78.4 69.5 24.4

Table 4. Ablation study on each component of our loss function.
Lgp: Add regularization to L., using EWC.



Applying only the size-weighted cross-entropy loss
function L, is powerful enough to gain notable improve-
ments on small instances (IAg) and IA-mIoU increases
by 2.9 points. However, mIoU becomes slightly worse than
the baseline. In other words, L, alone does not ensure
the same performance on the largest instances. Ly, fur-
ther boosts performance in all aspects by facilitating ad-
ditional objective, covering small instances, while main-
taining the previous objective, covering relatively large in-
stances. Again, TA-mIoU enables detailed analyses by
splitting the instances. In short, introducing the size-
balanced cross-entropy loss improves the performance on
small instances and pairing EWC training strategy preserves
the performance on large instances, resulting in overall im-
provement in both mIoU and IA-mIoU.

6. Related Work
6.1. Weakly-supervised semantic segmentation

Weakly-supervised semantic segmentation mainly
adopts a two-stage pipeline: pseudo mask generation
and training segmentation network. Most recent methods
utilize Class Activation Maps (CAMs) [48] to generate
a pseudo mask. However, CAMs have limitations in
focusing on the most discriminative regions of the object
or capturing frequently co-occurring background compo-
nents. To solve this problem, lots of techniques have been
proposed: adversarial erasing [0, 18, 25, 32, 40, 41], seed

growing [19, 23, 46], natural language supervision [43],
context decoupling [38] and so on [2, 3,26, 28, 47]. Also,
many methods [14-16, 20, 27, 39, 42, 44, 45] adopt a

saliency supervision to refine the prediction map. It is
usually utilized to enhance the result in a post-processing
step by distinguishing the foreground and background of
the object. Recently, Lee et al. [31] try to make use of a
saliency map during the training phase to maximize its
potential. Besides, there are also some studies using a
bounding box as a supervisory signal [10,21,24,29,35-37]
which is still cheaper than mask annotation. They achieve
notable performance in WSSS since a bounding box label
provides the exact location of all objects additionally.
Our research, however, is interested in getting the better
performance of models by improving the segmentation
network in the second stage. Though few studies propose
methods for segmentation networks, we suggest balanced
training considering the size of instances in WSSS.

6.2. Segmentation metrics

Here we briefly review the metrics for semantic segmen-
tation. Pixel accuracy is the most basic metric for the task.
It measures the accuracy for each class by computing the
ratio of correctly predicted pixels of the class to all pix-
els of that class. The weakness of this metric is it does not

consider false positives. Therefore, mean intersection-over-
union (mIoU) replaces the pixel accuracy for semantic seg-
mentation measures. It assesses the performance of models
by calculating prediction masks intersection ground-truth
masks over prediction masks union ground-truth masks.
The mIoU compensates for the shortcoming of pixel accu-
racy by taking account of false positive. Nonetheless, as we
analyze it in the next section, it still suffers from a size im-
balance problem. Besides, various metrics [5, 8,9, 22] are
also investigated. Cordts et al. [8] point out the inherent
bias of the traditional IoU measure towards larger instances.
They proposed instance-level IoU which focuses on adjust-
ing pixel contributions based on instance sizes and class-
averaged instance sizes, aiming to refine mloU. However,
our metric IA-mloU evaluates each instance individually by
segmenting predictions into instances, providing a compre-
hensive assessment that is not influenced by instance size.

7. Conclusion
7.1. Contributions

In this paper, we focus on the comprehensive assessment
and improvement of weakly-supervised semantic segmenta-
tion (WSSS) by proposing a novel metric, dataset, and loss
function with an appropriate training strategy. First, we un-
cover the overlooked issue related to small-sized instances
due to the conventional metric (mIoU). To address this,
we design the instance-aware mloU (IA-mIoU) to mea-
sure the performance of models more precisely regardless
of object-size. Moreover, we point out the imbalance prob-
lem in benchmarks of WSSS and introduce a well-balanced
dataset for evaluation, PASCAL-B. Lastly, we propose the
size-balanced cross-entropy loss to compensate for the im-
balance problem of pixel-wise cross-entropy loss. We show
the effectiveness of our loss function on ten WSSS methods
over three datasets measured by mIoU and IA-mIoU.

7.2. Limitations

Our findings can be applied to fully-supervised semantic
segmentation methods. However, due to limited computing
power, we were unable to utilize more recent FSSS mod-
els and evaluate them with datasets such as ADE20K [49]
and Cityscapes [7]. Nevertheless, we hope that our study
can serve as inspiration for other researchers who have the
necessary resources to explore these avenues further.
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(Supplementary materials) Small Objects Matters in Weakly-supervised
Semantic Segmentation

We provide the following supplementary materials in
this appendix:

¢ In Sec. 1, we illustrate the distribution of each dataset
(i.e., PASCAL VOC, MS COCO, and PASCAL-B)
and the procedure of building PASCAL-B dataset thor-
oughly.

* In Sec. 2, we briefly explain each models which used
for evaluation.

* In Sec. 3, we describe the implementation detail of
each method we use.

* In Sec. 4, we give a concise explanation of elastic
weight consolidation [4].

* In Sec. 5, we demonstrate the effectiveness of our pro-
posed metric, dataset, and loss function with fully-
supervised methods.

* In Sec. 6, we provide the qualitative results of each
method on three datasets: PASCAL VOC, MS COCO,
and PASCAL-B.

1. Dataset details
1.1. Number of instances per class per size

Fig. 1 shows the per-class per-size distribution of vali-
dation set for each dataset in detail. As shown in Fig. 1(a),
PASCAL VOC 2012 [5] suffers from an imbalance prob-
lem in terms of class and size of instances. In particular,
it has too many instances for the person class (i.e., 15th
class) compared to the other classes. Some classes even
do not have small instances. For PASCAL VOC, large in-
stances account for 50% of the total number of instances
while small instances only take 18.2%.

Secondly, MS COCO [10] also has a serious class imbal-
ance problem with some categories (Fig. 1(b)). Addition-
ally, it has imbalanced distribution in terms of instance size
though the amount is less than PASCAL VOC. As in Ta-
ble 1, the number of small instances makes up about 43.7%
of the total instances while that of large instances is only
24.3%.
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Figure 1. Dataset distribution. We plot the number of instances of
each class by size.

Different from these two datasets, PASCAL-B is the
more balanced dataset. Fig. | (c) illustrates that our dataset
alleviates the problems of class and size imbalance. In other
words, PASCAL-B does not have the case that a specific
class has too many instances and it has similar number of
instances for all sizes as shown in Table 1.

1.2. Process of constructing new dataset

Firstly, we collected images from the LVIS [6] which
includes at least one of 20 categories of the PASCAL
VOC classes. However, since potted plant class does
not exist in the LVIS dataset, we collected images with
potted plant class from MS COCO [10]. Then, we



Instance size PASCAL VOC MS COCO PASCAL-B
Large 1,668 (49.0%) 65,407 (24.3%) 1,283 (32.1%)
Medium 1,118 (32.8%) 86,469 (32.1%) 1,468 (36.7 %)
Small 621 (18.2%) 117,789 (43.7%) 1,245 (31.2%)
Total 3,407 269,665 3,996

Table 1. The number of instances by size for each dataset.

Improper
Annotation

Improper

Image Annotation

Figure 2. Example images with improper annotations. Red bound-
ing boxes indicate missing annotations.

converted the annotations which do not belong to the 20
categories of the PASCAL VOC dataset into background
class. After finishing the above process, 35,242 images re-
main. Among the remaining images, a few images have im-
proper annotation as shown in Fig. 2. Therefore, two com-
puter vision experts (authors of this paper) manually filtered
out such images for two weeks and we had 15,263 images
left. Finally, we randomly sampled images to ensure the
balance over classes and object size distribution and con-
structed PASCAL-B which consists of 1,137 images with
20 classes. We give some sample images for the PASCAL-
B dataset in Fig. 3.

2. Description for evaluated methods

We choose several methods with different weak-level su-

pervision to validate the comprehensiveness of our metric
and method.
Bounding box supervision: BBAM and BANA BBAM [§]
utilizes the existing object detector Faster R-CNN [14] to
highlight the regions where the detector concentrate on.
They call these highlighted maps a bounding box attribu-
tion map. Then, they expand their bounding box attribution
map by introducing a perturbation method. It distinguishes
a small subset of the input image that leads to the same pre-
diction as to the original image. Using perturbation meth-
ods, they try to diminish the useless information (i.e., back-
ground) for the detector.
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In BANA [12], Oh et al. find that the background re-
gions around the bounding box are consistent. Based on the
observation, they effectively distinguish the foreground and
background regions in a bounding box by computing the
cosine similarity between features in the bounding box and
out of it. Additionally, they try to reduce the effect of noisy
labels by utilizing the distances between CNN features and
classifier weights.

Saliency supervision: EDAM, NS-ROM and RCA
EDAM [17] separates the class-specific information from
the whole activation map by applying L2-normalization
along the channel dimension. Then it utilizes a self-attention
mechanism to highlight similar regions among the series of
class-specific activation maps. In the end, it enhances the
results by using refined saliency maps with the threshold
according to the value of the activation map.

NS-ROM [19] exploits the objects in non-salient regions.
Therefore, they introduce a graph-based global reasoning
unit to make the model learn global relations. Also, they
filter out the background regions using saliency supervi-
sion, while capturing the objects outside the saliency map
using class activation maps (CAMs). Finally, they enrich
their pseudo masks by setting more ignore pixels to gener-
ate new pseudo masks after training the segmentation net-
work. Then they train another segmentation network using
new pseudo masks.

RCA [21] bridges the gap between image-level seman-
tic information and pixel-level object regions by regional
semantic contrast and aggregation. Regional semantic con-
trast leverages a memory bank to enforce the embedding of
the pseudo region to get close to memory embedding of the
same category while pushing away from other categories.
Also, they utilize a non-parametric attention module called
semantic aggregation. It aggregates memory representations
for each image and mines inter-image context to capture
more informative dataset-level semantics.

Natural Language Supervision: CLIM CLIM [I8]
is built upon Contrastive Language-Image Pre-training
(CLIP) [13]. Firstly, it additionally defines background
classes for each image. Then, CLIM utilizes initial CAM to
generate foreground masked-out image I and background
masked-out image /5. Lastly, using CLIP, it calculates the
cosine similarity between these images and corresponding
text category labels. For I, the similarity with a ground-
truth label is maximized to gradually expand the activations
for the whole foreground objects, while the similarity with
the corresponding background label is minimized to decou-
ple the foreground from the background. On the other hand,
for Ip, the similarity with a ground-truth label is minimized
to recover more probable foreground contents.

Image supervision: IRN, CDA, AMN and RIB IRN [!]
predicts a displacement of each pixel pointing to the cen-
troid to get the class agnostic map based on the rough se-



Annotation

Figure 3. Sample image of PASCAL-B.

mantic segmentation map from CAMs. By incorporating
CAMs with a class-agnostic map, it obtains instance-wise
CAMs and refines the prediction map by the random-walk
algorithm.

CDA [16] is proposed to tackle the co-occurrence con-
text information problem for WSSS. It first cuts some sim-
ple object instances using predicted segmentation masks by
the trained network. Then it augments original images by
pasting the obtained instances, and re-train the network with
those augmented images.

The authors of AMN [9] raise an issue that global thresh-
olding for CAM can lead to low-quality pseudo mask. To
address this problem, they introduce new training objec-
tives which apply per-pixel classification and label condi-
tioning. Per-pixel classification makes discriminative part
be reduced while expanding the non-discriminative part.
Additionally, label conditioning is used to decrease the ac-
tivation of non-target classes.

In RIB [7], Lee et al. argue that CAMs focus on the dis-
criminative part because of the information bottleneck prob-
lem. The information bottleneck problem is that the only
information highly related to tasks remains when the infor-
mation goes backward of a layer in the network. According
to the other works related to information bottleneck theory,
it becomes worse with double-sided saturating activation
functions such as softmax. Inspired by this, they propose
to fine-tune the model with a one-sided saturating function
to alleviate information bottleneck while expanding CAMs
with global non-discriminative region pooling.
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3. Implementation detail

All the experiment results of baseline methods [I, 7—
, 12,1619, 21] are reproduced by the official code, and
we strictly follow the hyper-parameter settings provided by
each paper. For the MS COCO dataset, we refer to the set-
tings of RIB [7]. We set 7 = 5 for L4, and A = 500 for
L, in all cases. For balanced training with our loss func-
tion, we train the segmentation networks for 30k iterations
for the PASCAL VOC dataset. We use pixel-wise cross-
entropy loss for the first 20k, 15k, and 25k iterations, then
fine-tune them with L, until the end of training models for
BANA [12], EDAM [17], and others [1,9,16,18,19,21], re-
spectively. For the MS COCO dataset, the number of train-
ing iterations is 100k. We train the segmentation network
with pixel-wise cross-entropy loss for the first 40K itera-
tions, then fine-tune the network with L, for the remaining
iterations. Note that we do not change all the other hyper-
parameters of each baseline model.
All the experiments were done by one GeForce RTX
3090 GPU for PASCAL VOC and two RTX 3090 GPUs for
MS COCO, which take 11 hours and 53 hours, respectively.

4. Elastic weight consolidation

Elastic Weight Consolidation (EWC) [4] is a technique
for continual learning problem which tries to make the
model learn various tasks. EWC aims to find the optimal
point for the model to be optimized with several tasks. To
achieve this goal, EWC constrains the parameters of the



model which have a high correlation with the past training
data. In other words, EWC suppresses the change of param-
eters based on its importance for the previous task. The loss
function for EWC is defined as:

>\ *
Ltotal = Lnow + Z EFZ(HZ - OA,i)2a (1)

where A controls the importance of the previous task. It
means that as the value of A gets larger, it suppresses the
updates of parameters more. F; shows the importance of -
th parameter for the previous task. It indicates the corre-
lation of parameters with past training data. In [4], it uti-
lizes the diagonal elements of the Fisher information ma-
trix. Lastly, (0; — 07 ;) is the change of parameter between
present model (¢.e., 6;) and previous model (i.e., 92,1‘)-

5. Extension to fully-supervised methods

In main paper, we demonstrate our evaluation metric,
dataset, and loss function for weakly-supervised methods.
However, they also can be applied in a fully-supervised
manner. Table 2 reports the accuracy of fully-supervised
methods [2,3,11,15,20] in terms of mIoU and IA-mIoU.
It shows the same tendency as the experiment results of
weakly-supervised methods except that the performances
are generally more increased than the weakly-supervised
methods when using our loss function.

Dataset PASCAL VOC
Method mIoU IA-mIoU IAg
FCN[11] 67.8 (+0.8)  59.8 (+4.9) 17.1 (+7.9)
PSP [20] 76.7 (+0.6) 652 (+5.4) 22.1(+13.2)
DeepLabV1 [2] | 769 (+2.0)  65.6 (+6.4) 18.9 (+13.8))
DeepLabV2 [3] | 77.8 (+0.6)  65.8 (+3.7) 18.8 (+5.6)
Segmentor [15] 79.9 (+0.6)  69.5 (+5.2)  24.1 (+16.7))
Dataset PASCAL B
Method mIoU IA-mIoU IAg
FCN [11] 56.6 (+1.2)  40.3 (+5.0) 10.1 (+5.5)
PSP [20] 63.3 (+0.1)  42.4(+4.9) 13.4 (+6.3)
DeepLabV1 [2] | 65.7 (+1.3)  45.4(+5.8) 13.3 (+7.1)
DeepLabV2 [3] 66.6 (+1.3) 46.2 (+3.2) 15.6 (+4.2)
Segmentor [15] | 67.9(—0.2) 45.9 (+4.9) 13.1 (+7.6)

Table 2. Experimental results of fully-supervised method for PAS-
CAL VOC and PASCAL-B.

6. Qualitative result

We show the visualization of prediction maps for each
method [1,3,7-9,12,16—19,21] on three datasets: PASCAL
VOC (from Fig. 4 to Fig. 13), MS COCO (from Fig. 14
to Fig. 16), and PASCAL-B (from Fig. 17 to Fig. 26). Each
figure shows that models with our loss function catch the
objects more clearly including small-sized ones since our
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loss aims to constrain the network to be trained in balance
considering the size of instances.
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Figure 4. Visualization of BBAM on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 5. Visualization of BANA on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 6. Visualization of EDAM on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 7. Visualization of NS-ROM on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 8. Visualization of RCA on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 9. Visualization of CLIM on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 10. Visualization of IRN on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 11. Visualization of CDA on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 12. Visualization of AMN on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 13. Visualization of DeepLab V2 on PASCAL VOC. Our loss function successfully fine-tunes baseline model to improve the ability
of capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 14. Visualization of DeepLab V2 on MS COCO. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 15. Visualization of IRN on MS COCO. Our loss function successfully fine-tunes baseline model to improve the ability of capturing
objects including small-sized ones which is expressed by red bounding boxes.
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Figure 16. Visualization of RIB on MS COCO. Our loss function successfully fine-tunes baseline model to improve the ability of capturing
objects including small-sized ones which is expressed by red bounding boxes.
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Figure 17. Visualization of BBAM on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 18. Visualization of BANA on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 19. Visualization of EDAM on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 20. Visualization of NS-ROM on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 21. Visualization of RCA on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of capturing
objects including small-sized ones which is expressed by red bounding boxes.
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Figure 22. Visualization of CLIM on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.

\
J

Image

Ground
Truth

Baseline

Baseline
+0urs

Figure 23. Visualization of IRN on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of capturing
objects including small-sized ones which is expressed by red bounding boxes.
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Figure 24. Visualization of CDA on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of capturing
objects including small-sized ones which is expressed by red bounding boxes.
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Figure 25. Visualization of AMN on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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Figure 26. Visualization of DeepLab V2 on PASCAL-B. Our loss function successfully fine-tunes baseline model to improve the ability of
capturing objects including small-sized ones which is expressed by red bounding boxes.
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