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Abstract

Room layout estimation predicts layouts from a single
panorama. It requires datasets with large-scale and di-
verse room shapes to well train the models. However, there
are significant imbalances in real-world datasets includ-
ing the dimensions of layout complexity, camera locations,
and variation in scene appearance. These issues consid-
erably influence the model training performance. In this
work, we propose imBalance-Aware Room Layout Estima-
tion (iBARLE) framework to address these issues. iBARLE
consists of: (1) Appearance Variation Generation (AVG)
module, which promotes visual appearance domain gener-
alization, (2) Complex Structure Mix-up (CSMix) module,
which enhances generalizability w.r.t. room structure, and
(3) a gradient-based layout objective function, which al-
lows more effective accounting for occlusions in complex
layouts. All modules are jointly trained and help each other
to achieve the best performance. Experiments and ablation
studies based on ZInD [6] dataset illustrate that iBARLE
has state-of-the-art performance compared with other lay-
out estimation baselines.

1. Introduction
With the recent advancements in computer vision re-

lated applications (e.g., AR/VR, virtual touring, and navi-
gation), room layout estimation is receiving a lot of atten-
tion from researchers. Specifically, panorama-based layout
estimation has been a major area of focus due to the in-
creased 360◦ field of view [49]. A great deal of progress
was made on monocular layout estimation based on a single
panorama [38, 48, 39]. Some directly use the equirectangu-
lar panorama [30] while others combine the equirectangular
panorama with its perspective top-down view [42]. A re-
cent trend of papers formulate the problem as a 1-dimension
sequence that represents depth on the horizon line of the
panorama and calculates the room height by the consistency
between the horizon-depth of ceiling and floor boundaries
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Figure 1. Imbalanced and diverse sample distributions such as var-
ious room corner numbers, appearances, Manhattan styles, and
capture locations which downgrade estimation performances.

[41]. Some methods directly predict the room height to
make better geometry awareness of the room layout in the
vertical direction [19].

However, these techniques are less effective for complex
room shapes (e.g., self-occlusion and non-Manhattan) [42].
As a result, the majority of these approaches conform to
the Manhattan World or Atlanta World assumption, as well
as their corresponding post-processing strategies, resulting
in promising performances for simple rooms, while failing
to achieve the same level of performance for complex lay-
outs. For instance, ZInD [6] is a very large-scale indoor
dataset. The performance of most single-panorama layout
estimation solutions degrades in complex room shape sce-
narios. On top of that, there are implicit data imbalance
challenges present in real-world datasets such as different
camera poses, illumination changes, and texture variations
(see Figure 1). As shown in Figure 4, simple rooms with
only four corners take the majority of the dataset while
complex rooms with nine corners make up only 2% of the
dataset. Consequently, models trained on such datasets will
have a tendency to get biased towards the majority.

In this work, we address the data imbalance and appear-
ance variation issues associated with room layout estima-
tion. We specifically design an Appearance Variation Gen-
eralization (AVG) module to overcome appearance varia-
tions that are present in real-world datasets (e.g., pose, tex-
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ture, illumination), a Complex Structure Mix-up (CSMix)
module to handle the long tail imbalanced distribution of
structural complexity of the training and test data, and a
layout gradient-based cost function to better deal with oc-
clusions in complex indoor spaces. The contributions of
our work are listed below:

• To the best of our knowledge, our work is the first to
tackle the data imbalance issue in layout estimation
systematically and based on different sources of bias
in the indoor dataset.

• Our framework, iBARLE, introduces architectural and
training novelties through our proposed Appearance
Variation Generalization (AVG) module, Complex
Structure Mix-up (CSMix) module, and our layout
gradient-based cost function.

• We show iBARLE consistently achieves the state-
of-the-art performance for both simple/conventional
and complex real-world indoor layout estimation tasks
through experiments and ablation studies.

2. Related Work
Indoor Panoramic Layout Estimation. Most panorama-
based indoor layout estimation efforts use simple indoor
room shapes with Manhattan World [5] assumptions and
Atlanta World [34] assumptions and corresponding pose-
processing operations. Specifically, convolutional neural
networks (CNNs) take panorama images as input to extract
visual features which will be used to estimate layout. With
LayoutNet, layout estimation of a cuboid room with Man-
hattan constraints is reconstructed based on images aligned
with vanishing points and detected layout elements such as
corners and boundaries, and the model designed for cuboid
rooms is further extended to predicting Manhattan layouts
in general [51]. In contrast, Dula-Net projects the panorama
images into two different views, equirectangular and per-
spective, to predict the floor and ceiling probability maps
and two-dimensional floor plans [48].

A new dataset containing panoramas of Manhattan-
world room layouts with different numbers of corners is
introduced as Realtor360 to learn more complex room lay-
outs [48]. Moreover, HorizonNet outperforms other strate-
gies by representing a 2D room layout as three 1-D vec-
tors at each image column, and the 1-D sequence vectors
encode the positions of floor-wall and ceiling-wall, and
the existence of wall-wall boundaries [38]. Although the
two improved frameworks LayoutNet v2 and Dula-Net v2
achieve better performance on cuboid datasets, HorizonNet
has been demonstrated to be more effective on the new Mat-
terportLayout dataset for general Manhattan layout estima-
tion tasks [52]. AtlantaNet breaks through the Manhattan
World limitations and projects the original gravity-aligned
panorama images on two horizontal planes to reconstruct
the Atlanta World 3D bounding surfaces of the rooms [30].

HoHoNet is the first work exploring compact latent hori-
zontal features learning for efficient and accurate layout re-
construction and depth estimation equipped with Efficient
Height Compression (EHC) and multi-head self-attention
(MSA) modules [39]. PSMNet is a pioneering end-to-
end joint layout-pose deep architecture for large and com-
plex room layout estimation from a pair of panoramas [42].
LED2-Net goes beyond conventional 3D layout estimation
by predicting depth on the horizon line of the panorama,
and a differentiating depth rendering procedure is proposed
to maximize the 3D geometric information without need-
ing to provide the ground-truth depth [41]. LGT-Net further
extends the LED2-Net with an SWG-Transformer module,
which consists of shifted window blocks and global blocks,
to predict both horizon depth and room height with a pla-
nar geometry aware loss to supervise the estimation of the
planeness of walls and turning of corners [19].

Imbalanced Data Training. Due to the widespread ap-
plication of artificial intelligence systems in our daily lives,
the issue of data imbalance has gained increasing attention
in recent years [27]. Research about imbalance AI seeks
to ensure that AI systems make decisions and predictions
without discriminating against certain groups of data when
making crucial and life-changing decisions. The algorithms
that target bias generally fall into three categories: (1) Pre-
processing methods attempt to remove the underlying dis-
crimination from the data [1, 7]. (2) In-processing tech-
niques seek to modify the learning and training strategies,
either by incorporating changes into the objective function
or imposing a constraint, to eliminate discrimination dur-
ing model training [1, 4]. (3) Post-processing is performed
after training stage if the algorithm treats the AI model as
a black box without modifying the training data or learn-
ing strategies. Specifically, a hold-out set that was not di-
rectly involved in the training process is used during the
post-processing phase to reassign the initial labels assigned
by the black-box model [1, 4].

Domain Generalization. As part of the quest to de-
velop models that can generalize to unknown distribu-
tions, Domain Generalization (DG), which refers to out-of-
distribution generalization, has attracted increasing atten-
tion in recent years [43]. A majority of existing domain gen-
eralization methods can be classified into three types: (1)
Data manipulation focuses on manipulating the inputs in or-
der to assist in the learning of general representations. Data
augmentation [36, 15] and data generalization [31, 24, 32]
are two types of popular techniques in this regard. Addition-
ally, mix-up on the original image-level [44, 45] or feature-
level [50, 47] is a popular and effective technique. (2)
Representation learning [3] consists of two representative
techniques: a). Learning domain-invariant representations
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Figure 2. Framework of iBARLE. There are four core modules: visual feature extractor G(·), transformer-based sequential layout esti-
mation F (·), Appearance Variation Generalization (AVG), and Complex Structure Mix-up (CSMix). AVG enhances the generalization
capability by enhancing invariance to appearance changes. CSMix improves the prediction of complex room shapes by generating more
diverse layouts that improves the balance of the overall sample distributions.

via kernel functions [13, 2], adversarial learning [11, 12],
feature alignment [28, 20, 23], etc.; b). Feature disentan-
glement is the process of distancing features into domain-
shared and/or domain-specific elements to enhance gener-
alization [21, 29, 8]. (3) Learning strategies that promote
generalization employ general strategies such as ensemble
learning [9, 46, 26], meta-learning [10, 37, 33], gradient op-
erations [35, 17], and self-supervised learning [22, 18, 25].
To the best of our knowledge, we are the first to apply the
domain generalization techniques to address the appearance
variation issues associated with room layout estimation.

3. Framework Overview

The iBARLE framework, illustrated in Figure 2, has four
core modules: visual feature extractor G(·), transformer-
based sequential layout estimation module F (·), Appear-
ance Variation Generalization module (AVG), and Complex
Structure Mix-up module (CSMix). The room layout is esti-
mated by predicting the horizon depths and heights of mul-
tiple points sampled from the floor boundary of the polygon
of the panorama image [41, 19]. During the training phase,
the AVG and CSMix modules are used to compensate for
the imbalance in the data; during the test phase, only the
feature extraction and the sequential layout estimation mod-
ule are called to predict the room layout.

4. Proposed Algorithm

In this section, we first go over the overall framework
to predict the room layout based on a single panorama in-
put. We then introduce the two modules, Appearance Vari-
ation Generalization (AVG) and Complex Structure Mix-up
(CSMix). Finally, the gradient-based Corners and Occlu-
sions objective is presented. It improves the efficiency of
the model in detecting visible wall-wall corners and occlu-
sion boundaries in complex spatial arrangements.

4.1. Framework

Reconstructing the 3D indoor layout by predicting the
horizon depth and room height is an effective strategy that
is widely adopted by recent methods [19, 41]. Specifi-
cally, N points P = {pi}Ni=1 with equal longitude inter-
val are sampled from the floor-boundary of the polygon of
the panorama image, where the longitudes of the sampled
points are {θi = 2π( i

N − 0.5)}Ni=1. Then, the coordinate of
the point pi and the corresponding horizon-depth di can be
obtained as:

pi = (xi, yi, zi),

di =
√

x2
i + y2i .

(1)

The sampled points P = {pi}Ni=1 can be converted into
horizon-depth sequence {di}Ni=1. In addition, the height h
of each room is adopted to further supervise the model pre-
diction on the vertical direction.

As illustrated in Figure 2, the visual feature sequence
extracted by the feature extractor G(·) is passed to a se-
quential neural networks F (·) to predict the horizon-depth
d̂ = {d̂i}Ni=1 and room height sequence ĥ = {ĥi}Ni=1,
respectively, through two separate branches in the output
layer. A limitation of prior work is the assumption that the
room height is always the same in the indoor space. Dif-
ferently, we predict ĥi for each sampled point pi ∈ P with
ground-truth height denoted as hi ∈ h, where h = {hi}Ni=1,
which fits the design of our proposed structure variation
generalization module (Introduced in Section 4.3). Our
sequential neural networks is a SWG-Transformer mod-
ule following [19]. The predicted horizon-depth and room
height are supervised by ground-truth formulated as:

Ld =
1

N

N∑
i=1

|di − d̂i|,

Lh =
1

N

N∑
i=1

|hi − ĥi|,

(2)
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Figure 3. Corners and occlusions awareness constraint.

where d̂i and di are the predicted and ground-truth horizon-
depth at point pi, respectively, and ĥi and hi are the room
height prediction and ground-truth, respectively.

4.2. Appearance Variation Generalization (AVG)

Capturing panoramas in different situations (e.g., illumi-
nations, wall/carpet colors, cameras, and textures) would
significantly change the visual appearances of the panorama
images. Inspired by domain generalization problems and
techniques, we propose AVG to disentangle appearance
variations of panoramas during the training. This encour-
ages the model to focus only on the important indoor struc-
tural information for the downstream task and ignore the
rest. Subsequently, the model provides a better generaliza-
tion capacity to novel appearances.

Specifically, the visual features Z extracted from G(·)
are input to an appearance encoder Ev(·) which projects
the visual features into a Normal distribution u ∼ N (0, I),
then a decoder Dv(·) project the latent embeddings u into
the original visual features space as Ẑ by minimizing a reg-
ularized norm-based loss:

Lvar = ∥µ(Z)− µ(Ẑ)∥2 + ∥σ(Z)− σ(Ẑ)∥2. (3)

To further enhance the generalizability of the model to
novel appearance, we randomly sample latent embeddings
u∗ ∼ N (0, I) and project them into the visual features
space as Z∗, which is a novel appearance variation never
observed in the training data. Then, the style information of
the randomly sampled feature Z∗ is transferred to the real
content sample Z via AdaIN [16] strategy as ([50] similar
to style mixup, [25] Feature Stylization):

Z̃ = σ(Z∗)
(Z− µ(Z)

σ(Z)

)
+ µ(Z∗), (4)

where the synthetic sample Z̃ is then input to the following
sequential module to predict the horizon depth and room
height and optimize the model as Eq. (2) since they share the
same content and spatial structure information and layout.

4.3. Complex Structure Mix-up (CSMix)

Another main issue that exists in prior works is over-
fitting to simple room shapes (e.g., Manhattan world or
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Figure 4. Statistics of ZInD dataset split by different attributes.

Atalanta world pre-assumption), and cannot handle minor-
ity and complex room shapes. Thus, in order to enhance
the training data space complexity, some novel and com-
plex samples are synthesized via cross-room, column-based
mix-up strategy. Specifically, for two randomly paired sam-
ples {Zi,Zj}, we randomly exchange columns across these
two samples, which will result in two new samples with
more complex structures. It is noteworthy that the syn-
thesized samples contain more complex layout structures
and also mixed appearance variations due to the cross-room
mix-up. However, to avoid the random mix-up producing
unreasonable noisy samples harming the optimization, a se-
quence of consecutive columns with width 1 <= w <= N
is randomly selected from the two samples and mix-up,
where N is the width, i.e., the number of columns, of the
whole visual feature maps:

Z̄i = Zi[: ci]⊕ Zj [cj : cj + w]⊕ Zi[ci + w :],

Z̄j = Zj [: cj ]⊕ Zj [ci : ci + w]⊕ Zj [cj + w :],
(5)

where ⊕(·, ·) is concatenation operation, and 1 <= ci <=
N − w and 1 <= cj <= N − w are randomly sampled
points or columns start indices for Zi and Zj , respectively.
Similarly, the synthesized samples Z̄i/j are also input to the
following layout estimation to improve the generalizability
of the whole framework. It is noteworthy that since the mix-
up synthesis is applied across rooms, so the room heights of
the synthesized samples are also mixed up, e.g., h̄i = hi[:
ci] ⊕ hj [cj : cj + w] ⊕ hi[ci + w :]. Then the model is
optimized through learning objectives as Eq. (2).

4.4. Corners and Occlusions Awareness Constraint

As shown in Figure 3, each wall is a plane but the
positions on the same wall could have different hori-
zon depths. Thus, to supervise the planar of the walls,
the normals at different positions of the same wall are
constrained consistently [19]. Since the wall and floors
are preassumed perpendicular to the floor and the nor-
mals. Thus we first convert the ground-truth and pre-
dicted horizon depth at each position back into the
3D point pi = (di sin(θi), h

f , di cos(θi)) and p̂i =

(d̂i sin(θi), h
f , d̂i cos(θi)), where hf is the height from the

camera center to the floor and θi is the angle of the logitude.
It it noteworthy that since the expected normal vectors are
parallel to the floor, thus the height of both pi and predicted



Table 1. Estimation performance based on the number of layout corners. We can see our iBARLE achieves the highest performances in
almost all metrics in all corner numbers separately. It shows the effectiveness of iBARLE for improve the performances of all cases without
sacrifice some specific subsets.

Corner HorizonNet [38] LED2-Net [41] LGT-Net [19] iBARLE (Ours)

Number 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1

4 86.07 84.16 0.19 0.94 86.24 84.42 0.19 0.93 87.21 85.37 0.17 0.94 88.22 86.38 0.18 0.94
5 83.76 80.66 0.28 0.92 84.49 82.27 0.25 0.92 85.76 83.44 0.22 0.93 87.83 85.74 0.20 0.93
6 83.73 81.78 0.22 0.93 83.29 81.32 0.22 0.93 83.50 81.66 0.21 0.93 85.50 83.57 0.19 0.94
7 76.02 73.54 0.30 0.90 77.45 73.86 0.29 0.89 79.68 77.22 0.28 0.91 79.62 76.92 0.25 0.92
8 80.38 78.18 0.22 0.93 79.97 77.72 0.22 0.93 80.13 77.98 0.23 0.92 80.69 78.55 0.20 0.94
9 81.92 79.59 0.25 0.92 81.65 79.17 0.25 0.91 80.39 78.17 0.26 0.92 81.14 78.75 0.23 0.93

10+ 75.42 72.61 0.30 0.91 74.75 71.91 0.29 0.91 75.21 72.26 0.29 0.90 76.16 73.39 0.25 0.92

Average 81.04 78.65 0.25 0.92 81.12 78.67 0.24 0.92 81.70 79.44 0.24 0.92 82.74 80.47 0.21 0.93

Table 2. Results comparison on ZInD dataset split by type of layout. Results on each group with specific type of layout are reported
separately, and the group-wise average results are also compared.

Room HorizonNet [38] LED2-Net [41] LGT-Net [19] iBARLE (Ours)

Type 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1

Cuboid 86.47 84.54 0.19 0.94 86.63 84.78 0.19 0.94 87.54 85.69 0.17 0.94 88.62 86.76 0.18 0.94
Manhattan-l 83.50 81.61 0.21 0.93 83.03 81.15 0.22 0.93 83.29 81.43 0.21 0.93 85.13 83.21 0.19 0.94
Manhattan-g 78.08 76.00 0.25 0.92 77.66 75.45 0.24 0.92 78.19 75.90 0.25 0.92 78.90 76.89 0.21 0.93

non-Manhattan 79.99 76.97 0.28 0.91 80.18 77.23 0.27 0.91 80.83 78.33 0.25 0.92 82.08 79.36 0.23 0.93

Average 82.01 79.78 0.23 0.93 81.87 79.66 0.23 0.92 82.46 80.34 0.22 0.93 83.68 81.55 0.20 0.94

p̂i are set as hf , which will not influence the computation
of normal vectors. Then ground-truth and predicted normal
vectors at the same position are computed as:

ni = Mr

( pi+1 − pi

∥pi+1 − pi∥

)⊤
,

n̂i = Mr

( p̂i+1 − p̂i

∥p̂i+1 − p̂i∥

)⊤
,

(6)

where Mr is the rotation matrix of pi

2 , and ni and hatni

are the ground-truth and predicted normal vectors at the
same position, respectively. The learning objective is de-
fined as maximizing inner product between the predicted
and ground-truth normals as:

Ln =
1

N

N∑
i=1

| − ni · n̂i|. (7)

Moreover, the normals change near the corners, thus the
gradient of the normal angles are obtained to supervise the
turning of corners [19]. However, for complex indoor space
beyond simple cuboid or Manhattan world, occlusions ap-
pear and the normals near the boundaries remain consistent
but the depth change sharply. In order to capture the chang-
ing of visible corners and invisible boundaries near occlu-
sions, the gradient constraints to both the normal vectors
and depth prediction are applied. Specifically, the gradient
of the normals and depth are calculated as:

gn
i = arccos(ni · ni+1), gdi = di+1 − di,

ĝn
i = arccos(n̂i · n̂i+1), ĝdi = d̂i+1 − d̂i,

(8)

where ni/n̂i and di/d̂i are the ground truth and predicted
normal/depth, respectively. Then, the gradient-based nor-
mal and depth prediction constraint is defined as:

Lg =
1

N

N∑
i=1

(|gn
i − ĝn

i |+ |gdi − ĝdi |). (9)

To this end, the aggregated learning objective of layout
estimation with the panorama images as input is obtained
via integrating the aforementioned losses as L(Z) = Ld +
Lh+Ln+Lg , where Z denotes the visual features extracted
by G(·) with panorama images as input.

4.5. Overall Training Objective

Combining the horizon depth prediction, room height
prediction, normals prediction, and gradient-based predic-
tion constraint loss for all real train samples and synthesized
data, produced by appearance variation domain generaliza-
tion and cross-room structure mix-up, the overall learning
objective of our proposed model is shown below:

min
G,F

L(Z) + αL(Z̃) + βL(Z̄),

min
Ev,Dv

Lvar,
(10)

where α and β are hyper-parameters to balance the contri-
bution of the real data, and the synthesized samples via AVG
and CSMix, respectively. Moreover, the networks Ev(·)
and Dv(·) in AVG are trained separately and fixed during
the training of other networks.



Table 3. Estimation performance based on different panorama capture locations. Our iBARLE achieves the highest performances for all
primary/secondary categories and the overall performance.

Camera HorizonNet [38] LED2-Net [41] LGT-Net [19] iBARLE (Ours)

Pose 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1 2DIoU 3DIoU RMSE δ1

Primary 85.58 83.71 0.21 0.94 85.93 84.00 0.20 0.93 86.23 84.41 0.19 0.94 87.72 85.85 0.19 0.94
Secondary 81.16 78.81 0.23 0.93 80.70 78.46 0.23 0.92 81.57 79.33 0.22 0.93 82.63 80.44 0.20 0.93

Average 83.37 81.26 0.22 0.93 83.32 81.23 0.22 0.93 83.90 81.87 0.21 0.93 85.18 83.15 0.19 0.94

Table 4. Overall experimental results comparison on ZInD dataset
Corner Number 2DIoU(%) ↑ 3DIoU(%) ↑ RMSE ↓ δ1 ↑
HorizonNet [38] 83.25 81.13 0.2219 0.9303
LED2-Net [41] 83.18 81.08 0.2172 0.9273
LGT-Net [19] 83.81 81.77 0.2074 0.9309

iBARLE (Ours) 85.04 83.00 0.1949 0.9375

Table 5. Overall experimental results comparison on ZInD-simple
Corner Number 2DIoU(%) ↑ 3DIoU(%) ↑ RMSE ↓ δ1 ↑
HorizonNet [38] 90.44 88.59 0.123 0.957
LED2-Net [41] 90.36 88.49 0.124 0.955

LGT-Net [ViT] [19] 88.93 86.19 0.146 0.950
LGT-Net [19] 91.77 89.95 0.111 0.960

iBARLE (Ours) 92.22 90.42 0.107 0.962

5. Experiment
5.1. Experimental settings

Datasets: Our experiments are based on two variants:
(1) Zillow Indoor Dataset (ZInD) [6] is the largest in-
door dataset consisting of 67,448 panorama images with
room layout annotations including various and complex in-
door spaces from general Manhattan, non-Manhattan, and
non-flat ceilings layouts. We follow the official train-
ing/validation/test splits and adopt the “raw” layout anno-
tations as ground truth. (2) ZInD-Simple [6] is a subset of
ZInD dataset with only simple indoor cuboid layouts with-
out any contiguous occluded corners exist. We evaluate
our proposed model on ZInD-simple to compare it with the
prior state-of-the-art method.
Data Splits: To evaluate iBARLE on different imbalanced
subsets, we split the whole test layouts into several groups
with different standards as mentioned earlier. The statis-
tics of the splits based on corner numbers, room types, and
camera poses are shown in Figure 4. We evaluate the per-
formance of our iBARLE model for each group.
Evaluation Metrics: We use four widely used metrics for
evaluation: (1) 2D IoU: Intersection over the Union of 2D
room layouts. (2) 3D IoU: Intersection over Union of 3D
room layouts. (3) RMSE: root mean squared error of the
depth prediction with the camera height as 1.6 meters. (4)
δ1: percentage of pixels where the ratio between the pre-
dicted depth and ground-truth depth is within a threshold of
1.25 [19, 52]. For 2DIoU, 3DIoU, and δ1 metrics, higher

is better which is denoted by ↑. On the contrary, RMSE
metric is a negatively-oriented score, thus lower is better
denoted by ↓. In addition to the overall performance based
on these evaluation metrics on the test data, we also report
the average results across different sub-groups split by spe-
cific standards to evaluate how balanced our model on the
data space across simple to complex indoor spaces.
Comparison with Baselines: We compare our lay-
out estimation results with those of state-of-the-art base-
lines, namely, HorizonNet (CVPR’19) [38], LED2-Net
(CVPR’21) [41], and LGT-Net (CVPR’22) [19].

5.2. Implementation Details

In our experiments, the feature extractor uses the archi-
tecture proposed in HorizonNet [38] based on ResNet-50
[14]. The architecture takes a panorama with the dimen-
sion of 512 × 1024 × 3 (height, width, channel) as input
and gets 2D feature maps of 4 different scales by ResNet-
50. Then, it compresses the height and up samples width
N of each feature map to get 1D feature sequences with
the same dimension RN×D

4 and connects them, finally out-
puts a feature sequence RN×D, where D = 1024 and
N = 256 in our implementation. For the sequential depth
prediction module, we use the SWG-Transformer proposed
in [19] which is based on Transformer [40]. The whole
framework is implemented with PyTorch and optimized
by Adam optimizer with a learning rate set as 1e−4. For
hyper-parameters, we empirically fix α = 0.1, β = 0.01.
The hyper-parameters of the layout estimation objectives in
L(Z) follow the same setting as [19] for a fair comparison.

5.3. Results Comparison

Layout Estimation across Imbalanced Data. The results
on groups with a different number of corners and different
room shapes are shown in Table 1 and Table 2, respectively.
We notice the performance degradation from simple shape
rooms to complex spaces, which demonstrates the motiva-
tion of exploring the imbalance issues of layout estimation
across arbitrary structures. From the results, we observe
that our proposed method outperforms state-of-the-art base-
lines in most cases with various metrics. More specifically,
for the group-wise average 2D IoU and 3D IoU calculated
across different numbers of corners, our model outperforms
the second-best baseline by 1.04% and 1.03%, respectively.



(b)(a)

Visible     Layout-raw

Visible     Layout-raw

Visible     Layout-raw

L
E

D
2
-N

et
L

G
T

-N
et

O
u
rs

Visible     Layout-raw

Visible     Layout-raw

Visible     Layout-raw

Figure 5. Case study: Layout estimation on samples where occlusions occur and some spaces are invisible to the panorama camera. It leads
to more complex, unique, and imbalanced layout shapes. “Visible” denotes the layout of visible regions. “layout-raw” is the real-world
room layout which includes the occlusion spaces. Our iBARLE model performs better for imbalanced/minority cases.
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Figure 6. Ablation study of the module contributions to the iBARLE framework, where each module is separately added to the basic model.
The 4 plots correspond to the 4 evaluation metrics. We can observe that each module is effective at improving the prediction performance.
And in most of the cases, the complete model achieves the highest performance.

From the results in Table 2, our iBARLE model improves
the 2D IoU on Manhattan-l and non-Manhattan groups both
over 1.5% compared to LGT-Net.

Moreover, we split the ZInD dataset into subsets based
on the location where the camera taking the panoramas. The
results are shown in Table 3. Based on the definition of the
camera pose of ZInD, panoramas that are taken with “Pri-
mary” pose capture more content and are easier to capture
the whole view of the room. On the contrary, images taken
with the “Secondary” pose usually contain less information
and are harder to estimate the layout since occlusions are
more possible to occur and the camera could be too close/far
from some walls. From the results, we observe our model
outperforms all compared baselines on different groups and

beats the second-best baseline more than 1.0% for average
2D IoU and 3D IoU across the types of camera pose.

Overall Layout Estimation. To compare the overall layout
estimation performance with prior layout estimation base-
lines, we report the overall results on ZInD dataset in Ta-
ble 4. From the results, we observe that our proposed frame-
work achieves a new state-of-the-art layout estimation per-
formance for all metrics. iBARLE improves the overall
2D IoU by 1.23% over LGT-Net. Furthermore, most prior
layout estimation solutions are designed for simple room
shapes, e.g., cuboids. Thus, we apply our proposed model
to ZInD-simple dataset, which is a subset of ZInD consist-
ing of only simple cuboid layouts without any occluded cor-
ners exist. From the results in Table 5, we observe that our
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Figure 7. Case study: Layout estimation results beyond Manhanttan world. Our iBARLE approach predicts non-Manhanttan regions (green
circle) in higher accuracy than other benchmarks. It denotes the robustness of iBARLE for handling minority cases.

model can beat the state-of-the-art baselines on simple lay-
out subsets. Although the performance improvement on the
simpler layout shape ZInD-simple subset is less significant
than on the more complex and diverse ZInD dataset, the
results in Table 5 demonstrate the effectiveness of the de-
signed modules in iBARLE.

6. Discussion
Ablation Study. We further conduct an ablation study
to evaluate the contribution of each module in iBARLE.
Specifically, we compare the performance changes, in-
creases of 2D IoU/3D IoU/δ1 and decreases of RMSE, when
each of these modules is stacked to the basic model. The
results changes of the four metrics are illustrated in Fig-
ure 6. From the results, we observe that all three modules
are able to effectively enhance the estimation performance
on almost all subgroups. It demonstrates the contribution
and effectiveness of the designed three modules for layout
estimation, especially for the imbalanced scenario. More-
over, our complete iBARLE model with all modules aggre-
gated can achieve the highest performance which denotes
the smoothness of the whole model structure.

Qualitative Analysis. To intuitively check the effective-
ness of our iBARLE model, we visualize some results on
the ZInD dataset in Figure 5 and Figure 7. The boundaries
of the room layout are displayed on the panorama and the
floor plan. The blue lines are the ground truth, the green
lines are predictions, and the red cross is the position of the
camera. In addition, the predicted horizon depth, normal,
and gradient of the normal are visualized as heat maps un-
der the panorama image, and the ground truth is shown on
top of the image. Moreover, 3D visualization of the selected
samples is reconstructed based on the predicted layout, and
the red dash lines highlight the errors made by the compared

baselines. From the results in Figure 5, we observe that our
model can manage the layout estimation of complex rooms
beyond the Manhattan world assumption. Moreover, we
also observe the difference between the “raw layout” and
the layout “visible” to the camera. Our model can predict
accurately with occlusion corners. Besides, results shown
in Figure 7 are with challenging camera poses, e.g., close to
the wall or corner. From the results, we can observe the pro-
posed model is robust to predict layout with complex space
panoramas taken on arbitrary positions in the room. .

Non-Manhattan Results. From Table 2, our layout es-
timation performance on the “Non-Manhattan” group is
not as significant as other groups. Our hypothesis is that
the “Non-Manhattan” group contains samples that have far
more complex and diverse structures. In addition, the num-
ber and positions of the selected columns in the CSMix
module are hyper-parameters influencing the complexity of
the synthesized samples. These issues require more in-
depth investigation on generalizability and robustness.

7. Conclusion
We propose a new technique, iBARLE, to address prob-

lems associated with data imbalance and appearance vari-
ation for single-image room layout estimation. The key
components are the Appearance Variation Generalization
(AVG) and Complex Structure Mix-up (CSMix) modules,
which help generalize over a wide range of complex and di-
verse room shapes as well as scene appearance variations.
We also use a gradient-based layout estimation constraint
to account for occlusions in complex layouts. Experimen-
tal results show that iBARLE improves room layout esti-
mation across different kinds of imbalanced distributions of
majority and minority groups in the dataset. iBARLE also
improves overall layout estimation performance.
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