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Abstract

We present a fresh perspective on shot noise corrupted im-
ages and noise removal. By viewing image formation as
the sequential accumulation of photons on a detector grid,
we show that a network trained to predict where the next
photon could arrive is in fact solving the minimum mean
square error (MMSE) denoising task. This new perspec-
tive allows us to make three contributions: i. We present a
new strategy for self-supervised denoising, ii. We present
a new method for sampling from the posterior of possible
solutions by iteratively sampling and adding small num-
bers of photons to the image. iii. We derive a full genera-
tive model by starting this process from an empty canvas.
We call this approach generative accumulation of pho-
tons (GAP). We evaluate our method quantitatively and
qualitatively on 4 new fluorescence microscopy datasets,
which will be made available to the community. We find
that it outperforms supervised, self-supervised and unsu-
pervised baselines or performs on-par.

1 Introduction

Scientific imaging techniques such as fluorescence mi-
croscopy have to limit the amount of light used to avoid
damaging or destroying their sample [1]. As a result, the
recorded images inevitably suffer from a certain degree
of noise which has to be addressed in the downstream
analysis. Images can be subject to a variety of differ-

ent types [2] of noise which can be alleviated by various
technical means (e.g. [3]). However, there is a type of
noise which is physically inevitable for most imaging se-
tups in low-light conditions. It is referred to as Poisson
shot noise.

Shot noise is the result of the particle nature of light.
Even high-end scientific detectors and cameras that can
accurately count the precise number of photons hitting
each pixel cannot record a noise-free image. For a given
light intensity the number of photons arriving at the de-
tector is itself inherently random and follows a Poisson
distribution. The effect is especially severe in microscopy
applications, operating in low-light conditions.

The last decade has seen a number of deep learning-
based computational methods designed to reduce noise
after images have been recorded in order to allow for
improved analysis of the data [2]. One of the first pro-
posed methods, known as content-aware image restora-
tion (CARE) [4], is based on training convolutional neural
networks (CNNs) to learn a mapping from noisy images
to clean images. Unfortunately, the method requires pairs
of corresponding noisy and clean images during training,
which can be hard to acquire in practice, rendering it in-
applicable in many situations. However, other works have
expanded on this line of research, enabling training with
noisy image pairs [S] and even with unpaired noisy im-
ages, e.g. [6,[7, 18 9].

While achieving impressive results, these supervised
and self-supervised methods share a common shortcom-
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Generative accumulation of photons (GAP): Starting with an empty canvas, our method repeatedly

predicts a map of probabilities of where the next photon might arrive and uses it to randomly place photons. We show
the process for the Neuro-PC and Conv-PC datasets. Photon images have been down-sampled for better visibility.

ing: Denoising is inherently an ill-posed problem and
given an image corrupted by a substantial amount of
noise, it is not generally possible to recover the true un-
derlying clean image. In fact, there is a posterior distri-
bution of possible solutions that all might have led to the
original noisy observation. When we view denoising as
a regression problem like [4] aiming to learn a mapping
to the clean image, we are in fact learning a mapping to a
compromise between possible solutions, which may itself
look different (often being more blurry) from real clean
images.

This problem has been explored by Prakash et al. [10,
11]], who proposed the idea of diversity denoising based
on a variational autoencoder [12] (VAE). Instead of pro-
ducing a single solution for each noisy image, Prakasher
al. are able to sample possible solutions from an approxi-
mate posterior distribution of clean images.

Here, we take an entirely new perspective, focusing on
shot noise and the denoising of shot noise corrupted im-
ages. Instead of viewing shot noise as a secondary cor-
ruption process applied to a clean image, we understand
image formation as the sequential accumulation of pho-
tons and see any measured shot noise-affected image as
a result of this process. We call this approach generative
accumulation of photons (GAP).

We train a CNN to take a shot noise-affected image as
input and predict a probability distribution over where the
next photon might arrive. We show that, for normalized
images, predicting the next photon position is identical to

denoising the image.

Based on this insight, we derive a novel method of
training a self-supervised model for image denoising. Ad-
ditionally, by understanding image generation as the ac-
cumulation of photons, we describe a new method for di-
versity denoising: we iteratively predict the distribution
of the next photon position and randomly sample photons
accordingly. Finally, by starting with an empty photon-
free canvas, we are able to derive a full generative image
model. The process is illustrated in Figures [[]and 2}

We introduce four new shot noise-corrupted mi-
croscopy datasets for evaluation that will be made avail-
able to the community. We evaluate our method quantita-
tively and qualitatively and find that it yields competitive
results.

2 Related Work

2.1 Supervised denoising

Supervised denoising methods usually train CNNs using
pairs of noisy and clean images to learn a mapping be-
tween the two. A common choice for the loss function
is the mean square error (MSE) between the prediction
and clean ground truth. Considering that there is a dis-
tribution of possible solutions, minimising the MSE loss
corresponds to finding the expected value. Unfortunately
obtaining clean ground truth data can be challenging or
impossible for many applications and so supervised meth-



ods are often not applicable in the context of scientific
imaging.

Lehtinen et al. introduced Noise2Noise [3]), a partial so-
lution to this problem. They showed that it is possible to
replace the clean ground truth target with a second noisy
version which might be more readily available. A net-
work trained with this type of data will still find the same
MMSE solution. While this presented a big step forward
with respect to applicability, Noise2Noise still requires
training pairs, which have to be collected for this purpose.

2.2 Self-supervised blind-spot denoising

Self-supervised blind-spot methods [6} [7, [13] suggest a
training strategy that can do without paired training data,
i.e. allowing training directly on the data that should be
denoised, while still obtaining the same MMSE solution.
The main idea is to block out individual pixels in order
to use them as noisy targets (similar to Noise2Noise).
These strategies rely on the assumption that imaging noise
is conditionally pixel-independent given the underlying
clean signal, making it not possible to predict the noise
in a pixel from its surroundings. The downside of this ap-
proach is that, when making a prediction for a pixel, the
network cannot make use of the pixel value itself, thus it
is not making optimal use of the available information.

Our photon-based self-supervised denoising strategy is
related to the blind-spot idea in that it removes part of the
input image to use it as the target. However, instead of
removing pixels, we are only removing individual pho-
tons, which means we are not facing the same problem of
disregarded information.

2.3 VAE-based denoising

Another approach to image denoising has been suggested
in [10]. The core idea is to use a variational autoencoder
to describe the distribution of noisy images. By includ-
ing a statistical model of the imaging noise as part of the
decoder, the method allows us to: i. sample from an ap-
proximate posterior distribution of possible clean images,
and ii. to sample clean images from scratch, functioning
as a full generative model.

An extended method with a more powerful network ar-
chitecture was presented in [11] under the name HDN. We
see this method as our main competitor as it can be trained

from unpaired noisy data and, similarly to our method,
can function as a generative model.

Unlike GAP which produces an MMSE denoising re-
sult in a single step, HDN produces MMSE results by
repeated sampling and averaging from the posterior dis-
tribution.

2.4 Generative Image Models

Generative image models aim to describe a probability
distribution over images, a highly challenging task, due
to: i. the high dimensionality of the random variable (the
number of pixels) and ii. due to the complex higher-order
correlations between pixel values at different locations.
As a result of the distribution cannot easily be fac-
torised into lower order terms and attempts to factorise us-
ing methods such as Markov random fields (MRFs) [[14]
have led to overly simplistic results that do not realisti-
cally describe the image distribution.

In recent years, a number of approaches to this prob-
lem have been highly successful. Latent variable models,
such as generative adversarial networks (GANSs) [15]] and
VAE:s [12], or normalising flows [[16], describe difficult
distributions indirectly by starting with an easily modelled
high dimensional latent variable (usually following a nor-
mal distribution) which is then deformed using convolu-
tional neural networks (CNNs) to describe the distribu-
tions of interest.

A different approach to this is autoregressive mod-
elling, as proposed by Van Oord et al. [17]. By view-
ing image generation as a sequential process in which the
pixels of an image are thought to be generated one-at-a-
time conditioned on all previous pixels. In this setup, the
whole model can be formulated as a product of 1D condi-
tional distributions over each pixel’s intensity value. Our
method can be viewed as an autoregressive approach as
we model image generation as a sequential process. How-
ever, we sample images by sequentially placing individual
photons instead of drawing pixel values.

Finally, the current state-of-the-art approach to image
modelling, denoising diffusion models [18], follows a
similar approach by describing image generation as a se-
quence of steps. The process is inspired by physics and
considers an image as a particle in a high dimensional
space, diffusing away from its original position according
to some noise distribution. To generate an image the de-



noising diffusion approach reverses the diffusion process
by applying a sequence of denoising steps.

Denoising diffusion models iteratively reverse a dif-
fusion process on clean images which typically involves
Gaussian noise. This noise can be applied directly to the
image [19, /18], or instead to a latent representation of the
image corresponding to a pre-existing autoencoder [20]].
In both cases, the diffusion noise distribution is unrelated
to the noise distribution of the training data. The diffusion
model learns to sample from the noisy training data distri-
bution and so its samples contain this noise. In contrast,
GAP learns to sample from a noisy training data distri-
bution and to denoise this distribution. In addition, every
iteration of GAP results in a physically valid noisy image.

Recent works have explored generalisations of diffu-
sion models to broader families of corruption processes.
Bansal et al. [21] focused on deterministic image corrup-
tions. Daras et al. [22] focused on image corruptions
which are linear with respect to the clean image. GAP
focuses on shot noise, which is neither deterministic nor
linear.

3 Method
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Figure 2: Sampling algorithm: Starting with a noisy
or empty image, our method repeatedly predicts a map
of where the next photon might arrive and uses it to ran-
domly place a small number of photons.

3.1 Image Formation and Shot Noise

When we record an image, we usually project light onto
a digital sensor, such as a CMOS or a CCD chip
These chips contain many detector elements measuring
the amount of light arriving at different locations on the
chip. In our simplified model we assume that each of
these detector elements corresponds to one pixel of the
final image. When measuring the amount of light in each
pixel, we treat light as discrete particles called photons.
In an ideal case with a perfect detector, each pixel value
in the final image corresponds to the number of photons
that fell onto the pixel.

The result of this process is a shot noise corrupted im-
age x = (x1,...,%,), where the photon count z; in each
pixel ¢, is independently drawn from a Poisson distribu-
tion
sitexp(—s;)

p(wilsi) = ; (1)
where s; refers to the expected number of photons hitting
the pixel ¢ during the exposure, i.e. to the light intensity
at the pixel — the quantity we were originally interested in
measuring. We will refer to the vector s = (s1,...,8y)
as the signal or as a clean image.

Since photons are hitting each pixel independently
given a signal, we can describe the probability of observ-
ing a noisy image x given a signal s as

n

p(xls) = [ [ p(xils:)-

i=1

@)

We can now think of image formation as a two-step pro-
cess. We can imagine an image being created by first
drawing a clean image s from a distribution p(s) and then
applying shot noise by drawing photon counts from Eq. 2]
to create the shot noise-corrupted version.

3.2 The Denoising Task

Given noisy observation x, denoising is defined as finding
an estimate § for the unknown clean image s.

'Some imaging technologies, especially those capable of counting
photons, work by scanning the sample and recording one pixel at a time.
Since this does not affect our model we will focus our explanation on
camera-based systems for simplicity.



However, considering the process of image generation
described above, finding the true signal may not be pos-
sible since many clean images can lead to the same noisy
observation. We can use Bayes’ theorem to write down
a posterior distribution over possible clean images for a
given noisy observation

p(s[x) o< p(x[s)p(s). 3)

Deep learning-based approaches (e.g. [4,6]]) often view
denoising as a regression problem and use CNNSs to try to
directly learn a mapping from x to s. When such methods
are trained with a mean squared error (MSE) loss function
the optimal solution is the expectation

§= /p(s|x)s ds. (G
We call this the minimum mean squared error (MMSE)
solution. This is a sensible way to find an estimate, but we
should be aware that it constitutes a compromise between
all possible s.
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Figure 3: Photon splitting: We propose a new way of

generating training pairs that requires only noisy data. We
split the noisy image by randomly assigning photons to
the input or target image. The number of photons assigned
to the input is drawn from a binomial distribution, with a
parameter p controlling the noise level. Remaining pho-
tons are assigned to the target.

3.3 Image Generation from Photon Se-
quences

Here, we take an alternative view on image generation.
Instead of thinking of our pixel values as being drawn

from a Poisson distribution, we will derive an equiva-
lent description, viewing image generation as a sequen-
tial process. Remembering that our observation x is cre-
ated by photons hitting our detector, we can imagine
that it was created by an ordered sequence of photons
i= (41,...,ir), where ¢; is the index of the pixel where
photon ¢ hit the detector. The index ¢ simply refers to the
position of the photon in the sequence, with the first pho-
ton arriving at £ = 1 and the lastone att = 7.

Assuming a known sequence of photons, we compute
the resulting image by counting the number of photons
hitting each pixel as

T
zi= Y 1(iy =),
t=1

where 1(i; = ) is the indicator function.

Considering a given signal s and a known number 7" of
photons, we can compute the probability of a sequence i
as

&)

[T pli=ils) T =i

0 T #|i|’ ©

p(ils, T) = {
with the probability being 0 where the length [i| of the
sequence does not match the number of photons 7. Since
the photons hit the detector independently, their position
in the sequence does not matter and we can rewrite the
probability as a product over pixels as

[Tizy p(ils)™

o T =i
p(lIS,T)—{O rei @

where the probability p(i|s) for a photon to hit a par-
ticular pixel ¢, given the signal, should be proportional to
the light intensity at the pixel. Thus, we can compute it as

the normalised signal at that pixel
Si

pliy = ils) = an

=157

®)

However, if the clean signal is unknown the distribution
will no longer factorise as easily as Eq. Instead, we
have to compute the probability of a sequence as

T . .. .
= oo, T) T =
p(i|T) _ Ht:l p(l Z75|Z17 y Ut—1, )
0 T



where the distribution p(i = i4i1,...,i;—1,T) of the
next possible photon location now depends on all previ-
ous photons. The order in which photons 41, ...,7;—1 ar-
rived does not provide any information regarding the next
photon position. By additionally considering that the next
photon position does not depend on total photon number
T nor on the order of previous photons, we can write

(10)

p(i = iglin, ... i1, T) = p(i = iefxi—1),

where x;_; is the observed image at step ¢ — 1 according
to Eq.[3]

Equation [I0]refers to the distribution over the next pos-
sible photon locations given a photon image x;_;. Be-
fore taking a closer look at how it can be computed, we
would like to point out its significance. Together, Eq. 9]
and Eq. [I0] provide not only a way to calculate the prob-
ability of a sequence but also an iterative way to sample
a sequence of photons and therefore images x7. Further-
more, for large T', we can expect X to approach the clean
image s, when scaled correctly, so that Eq. [9]and Eq. [I0]
hold the key to the generation of clean images as well.

3.4 Predicting the Next Photon Location is
MMSE Denoising for Normalised Sig-
nals

Let us now take a closer look at the distribution of possi-
ble next photon locations p(i = i;|x;_1). We can rewrite
Eq. [I0|by marginalising over the unknown signal and us-

ing Eq. 8] as

i = ixi) = [ plobxs)plic = ils.xi) ds
(1)

= S|x¢— nsil ds. 12
[ psbegt s a2
We can see that the result is a weighted average of the

possible normalized signals. We should expect that the

distribution will be high entropy for small ¢, i.e., when we
have not yet observed many photons, and that it should

become more concentrated and low entropy for large t.

For very large t, the distribution should approach a nor-

malised version of the signal (Eq.[8), because x; will give

us more and more information on the underlying signal.

Interestingly, Eq. [I2] closely resembles Eq. ] In fact,
if we were to consider only normalized signals with
Z?:l s; = 1 the two equations are identical, meaning
that the task of predicting the next photon location is iden-
tical to denoising the image in an MMSE sense.

We will use a CNN to approximate fp(x;—1) ~ p(i =
it|x¢—1), where 6 are the network parameters. In sec-
tion we will discuss how we can train the CNN to
achieve this task.

3.5 Learning to Predict the Next Photon
Location

Based on the insight from section we know that any
model trained for MMSE denoising can approximate the
distribution over the next photon location p(i = 4;|x¢—1).
Starting with normalised clean training images s*, the tra-
ditional way of creating training pairs is to simulate the
corresponding noisy version x*. We can then train a de-
noiser network using a standard quadratic loss function,
with x* as input and s* as target.

However, in many cases clean data is unavailable. Con-
sidering the task of predicting the next photon location
suggests an alternative self-supervised approach by view-
ing the problem as a classification task learning the cate-
gorical distribution of possible photon positions. By using
a softmax layer over pixels at the output of our network
to ensure that outputs sum to one, we can use the standard
cross-entropy loss. In principle, this would require only
individual photon positions as target for each training im-
age, just as classifiers are frequently trained using indi-
vidual class labels for each training example. We could
easily create such training pairs from unpaired noisy im-
ages x* by randomly removing a single photon and using
it as target. The corresponding cross entropy loss is

L(O) = - i zn:ln fi(xf‘p; H)xfm-,

k=11i=1

13)

where m is the number of training images, xi’:p is the train-
ing image with one photon randomly removed and x* is
a one-hot representation of the removed photon position.

However, we require training data at multiple noise lev-
els to enable our network to predict an accurate approxi-
mation of p(i = 4;|x,_1) at different times ¢. To achieve

this, we use a control parameter p and split the image x*



into two parts, x* . and x¥ . We can think of this process as
simulating a shorter exposure time during image acquisi-
tion. Considering that x* was recorded with a certain ex-
posure time 7, we can imagine what would be the result if
we had instead recorded two images consecutively, with
the first image being exposed for p7 and the second being
exposed for (1 — p)r. Considering, that the underlying
signal remained fixed during the entire time, each of the
photons that make up x* would end up in the first image
with probability p and in the second image with proba-
bility (1 — p). To efficiently sample a split for parameter
value 0 < p < 1, we can determine each pixel value xmp i
by drawing from binomial distribution using p and z¥ as
the distributions parameters, for success probability and
number of trials, respectively. We can then compute the

number photons in the target image as af =k gk

in| Z 1 inp,?°
By changing the value p we can controi) the numberpof
photons that are on average assigned to the input or target
image respectively. The process is illustrated in Figure 3]
We use a randomly selected p for each training patch to
cover all levels of noise. We show in the Supplementary
material that the loss formulation in Eq. [I3] can still be
used to maximise the likelihood of the training data even
when x* is not a one-hot encoding of a single photon
position but an image that contains an arbitrary number
photons. In practice, we use a normalized variant that still
maximizes likelihood of the data

z ln f'L mp’ lar (3

m

==Y

k=1 tar

(14)

k

tar*

where |x* | is the sum of photons in x

tar

3.6 Inference

MMSE denoising: To compute the MMSE denoising re-
sult s for a noisy input image x, we can simply apply our
trained CNN. As shown in section[3.4] the resulting prob-
ability distribution corresponds to the MMSE estimate.
However, since our network uses a final softmax layer, the
output can only tell us about the normalized pixel inten-
sities and not about the absolute ones. To obtain a scaled
version, that is comparable to the results from N2V2 or
HDN, we multiply our output with the number of photons
in the input image.

Diversity denoising: To obtain a sample from the pos-
terior of clean images, given a shot noise corrupted in-
put, we use the iterative procedure illustrated in Figure
Starting with the original image, we repeatedly apply our
network to obtain the distribution for the next photon po-
sition and add photons drawn from this distribution. Even
though Eq. [9] contains a product over individual photons
and we should in principle draw only a single photon at a
time, we find that we can add multiple photons simulta-
neously while maintaining acceptable quality. In practice,
we add 10% of the current photon count in each step, in-
crease the total number of photons exponentially. A more
detailed description of photon sampling can be found in
the Supplementary materials.

Image generation: To obtain samples from our genera-
tive model, we follow the same process as diversity de-
noising, but start with a blank image.

4 Experiments

4.1 Network Architecture and Training

Here, we will only give a brief overview of the archi-
tecture and training procedure used for the experiments
on microscopy data. A more detailed description can be
found in the Supplementary material.

For all our experiments on microscopy datasets, we use
a modified UNet [23] consisting of 6 levels, with a resid-
ual block at each level and skip connections. We use 28
feature channels in the first level and double the number
of feature channels at each subsequent level. All our net-
works are trained using the ADAM [24] optimizer for 100
epochs. We use randomly cropped patches of 256x256
pixels, which are augmented 8-fold, using random flips
and transpose operations. We use a batch size of 32.

4.2 Baselines

Supervised denoising uses the same network architecture
as our method except for the softmax layer at the end. It
is trained with the same hyperparameters but uses a MSE
loss function. As for our method, we use 8-fold data aug-
mentation.

N2V2 uses the implementation from et al. [13]], with de-
fault hyper parameters and the default 64x64 training



patch size.

HDN uses the implementation from Prakash et al. [11]],
with default hyper parameters and the default 64x64
training patch size. HDN requires a model of the imag-
ing noise, which is usually trained from data. Instead,
because we know our data contains pure shot noise, we
added an analytical Poisson noise model, accounting for
shot noise.

HDN256 uses the implementation from Prakash et
al. [[11]] but with increased network complexity to allow
for a fairer comparison to our method. Specifically, we
increase the dimensionality of the latent variables from
32 feature channels to 70, and the number of determinis-
tic filters in the hidden units from 64 to 140. The method
uses 256x256 pixel training patches. We use the same
noise model as for HDN.

4.3 Photon Counting Datasets

While a number of denoising datasets are available in the
microscopy domain (e.g. [25} 126]]), none of them show
purely shot noise corrupted data. To address this gap,
we introduce four new quantitative datasets, including
High-SNR ground truth data and one additional qualita-
tive dataset that does not contain ground truth.

We use two photon-counting datasets that will be made
available to the community. As a result, the recorded pixel
intensities give a very accurate approximation of the pho-
tons hitting each pixel during the exposure.

The Conv-PC dataset We image 5 fields of view (FOV)
repeatedly, 512 times at a resolution of 512 x 512 pix-
els. Each of the individual frames contains a substantial
amount of shot noise. By summing the 512 images for
each FOV, we obtain the high-SNR version. Four FOVs
were used as training data for supervised denoising, the
remaining one was used as test data.

The Neuro-PC dataset contains images of mouse neu-
rons. The dataset is created from a z-stack of 2048 x 2048
pixels by using 2 x 2 binning in x- and y-direction direc-
tion and 4 times binning in the z-direction. We divided
the images into non-overlapping 320x 320 regions and re-
jected empty ones. To produce the corresponding low-
SNR versions we reduced the photon count in each pixel
to simulate a 1000-fold shorter exposure by using a bino-
mial distribution with p = 0.001. We use every fourth
frame as test set and keep the rest as training set for the

supervised baseline. All in all, this amounts to 133 images
of size 320x320, 33 of which are test images.

4.4 Single Molecule Localisation Mi-

Croscopy

Single molecule localisation microscopy (SMLM) [27]
data is produced differently from photon counting data
but is subject to the same type of shot noise corruption.
It uses a large set of images of the same field of view to
detect and localise individual fluorescent emitters in each
image. The resulting emitter locations are then stored in
a list and can be binned in x and y to produce a 2D his-
togram/image containing the number of emitters in each
bin/pixel.

The NPC-SM dataset was derived from single molecule
localisation data published by Loschberger et al. in [28]].
It shows the arrangement of the gp210 protein around the
nuclear pore complex (NPC). To create the dataset, we
binned the detected emitter locations using a bin size of
20nm x 20nm to produce the high-SNR data. To pro-
duce the corresponding low-SNR data we randomly re-
duced the detections by a factor of 20, using a binomial
distribution for each pixel with p = 0.05. We use every
4th image as test set and keep the rest as training data for
the supervised baseline. This amounts to a total of 33 im-
ages (24 for training and 9 for testing) of size 280x280
pixels.

The MT-SM dataset was derived from single molecule
localisation data published by Jimenez et al. in [29]. It
shows the arranged cells labeled for microtubules. To cre-
ate the dataset, we binned the detected emitter locations
using a bin size of 28nm x 28nm to produce the high-
SNR data. To produce the corresponding low-SNR data
we randomly reduced the detections by a factor of 200, us-
ing a binomial distribution for each pixel with p = 0.005.
We use every 4th image as test set and keep the rest as
training data for the supervised baseline. This gives a to-
tal of 120 images (90 for training and 30 for testing) of
size 640x 640 pixels.

4.5 Denoising Performance

To evaluate the denoising performance of our method we
train one network for our method and one for each base-
line (N2V2, HDN, and HDN256). Since these methods
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Qualitative denoising results: We show MMSE denoising results for all datasets and methods. All

baselines except for the supervised one have been trained purely on low-SNR input data.

Table 1: Average peak signal to noise ratios (PSNRs) in
dB (higher is better).

‘ Superv. N2V HDN HDN256 Ours
NPC-SM 39.09 39.00 39.01 38.73 39.17
MT-SM 36.59 36.17 34.32 36.43 36.64
Conv-PC 20.42 23.85 23.77 24.32 24.84
Neuro-PC | 31.74 32.61 3241 32.56 32.63

do not require clean data, we can train them on the full
low-SNR data, including the section used for testing. The
supervised baseline, which requires clean training data, is
trained only on the designated training section of the data.
Quantitative and qualitative results can be found in table[]]
and Figure ]

We find that our method is on-par or outperforms the
baselines and even the supervised approach. We be-
lieve that the reason for this might be that, depending
on the data split, supervised methods might suffer from a
mismatch between training and test distributions, which
might be especially the case for the Conv-PC dataset
where test and training data consist of different FOVs
showing slightly different patterns.

4.6 Diversity Denoising

In Figure [5] we qualitatively evaluate the performance
of our method for diversity denoising, that is, its abil-

ity to sample diverse possible clean images from single
noisy input. To show the full range of possible results, we
trained our method on the high-SNR data of the Conv-PC
dataset.

We generate six different shot noise corrupted versions
of an image at different noise levels/photon numbers and
use them as input for the sampling procedure described
in Figure [2] to generate three possible clean versions for
each noisy input image. Noisy images with low photon
counts can be explained by a broad range of possible clean
images and yield highly diverse results. Increasing the
photon count of the input image, we find that the differ-
ences in the sampled clean images become more subtle
until only local structures differ.

4.7 Image Generation Performance

Finally, we evaluate our method for the use as a gener-
ative image model. We are especially interested in the
setting where only low-SNR data is available for training
and want to investigate how the distribution of the gener-
ated images will compare to the clean high-SNR data. We
train our model as well as the HDN and HDN256 base-
lines on the low-SNR data for each dataset. We generate
10000 images of 256 x256 pixels using our method (Fig-
ure@) and HDN256. We then compute the FID [30] score
against 10000 random crops of the augmented high SNR-
data. We compute the scores using the clean FID [31]).
For a fair comparison against the HDN baseline, trained
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Figure 5: Diverse solutions for shot noise removal:
GAP models can be used to remove shot noise by taking
the noisy image as starting point and sequentially adding
additional photons, until a clean image is produced. Less
noisy inputs lead to less diverse predictions as more in-
formation about the clean image becomes available. The
last column depicts a zoomed in region indicated by the
dashed box. Arrows highlight structural differences in the
samples.
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Figure 6: Comparison of sample quality: We show ran-
domly selected generated samples for the Conv-PC and
MT-SM datasets compared to randomly cropped real high-
and low-SNR patches.

on 64x64 pixel patches, we compute the FID using
64 x64 pixel patches against 64x64 crops of the high-
SNR data. To compare against our method, we use ran-
dom 64 x64 crops from the 256x256 pixel patches gen-
erated by our method. Quantitative results can be found
in Table 2| Qualitative results for 256 x256 patches are

10

Table 2: We show the FID score [30] of 10k generated
images compared to 10k random crops of high-SNR data.
Note that all methods have been trained on low-SNR
training data.

64x64 pixels  256x256 pixels

| HDN  Ours | HDN256  Ours
NPC-SM | 14648 146.92 | 204.34 95.32
MT-SM | 130.20 13872 | 132.55 84.49
Conv-PC | 200.70 134.20 | 163.28 86.82
Neuro-PC | 111.23 11506 |  77.90 64.16

shown in Figure[6] We find that our method visually out-
performs HDN and HDN256 and consistently achieves
lower FID scores for 256256 patches. For the smaller
64 x 64 patches FID results are less clear. We believe, that
this is due to the fact, that larger structures are not cap-
tured at this patch size, and that our high-SNR data con-
tains residual noise, which seems to be better represented
by HDN.

5 Discussion and Conclusion

We have introduced a new perspective on shot noise-
affected imaging and showed that it can be utilised for
self-supervised MMSE denoising, obtaining diverse de-
noising solutions, and constructing generative models that
can be trained with noisy data. We believe that this per-
spective might open the door to new applications in ar-
eas of microscopy where only shot noise-affected data is
available. We also believe that our method can be ex-
tended to be used in a conditional setting for image-to-
image translation, such as the prediction of fluorescence
channels from bright-field images — a topic that has re-
ceived much attention in the recent years [32, 33]. While
our method is currently limited to data purely affected by
shot noise, we hope that future work can extend the ap-
proach to be applicable in a more general setting. Finally,
we applied GAP to two natural image datasets (see Sup-
plementary material) with encouraging generative visual
results. We believe GAP might be applicable as a genera-
tive model beyond microscopy.
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1 Code and Data Availability

The code and datasets will be made publicly available here:
https://github.com/krulllab/GAP.

2 Comparing DDPM versus our Generative Model

In Figure 1, we qualitatively compare our results against a denoising diffusion model
(DDPM) [1]. While DDPM models achieve impressive sample quality, they are, unlike
our method not able to learn the generation of denoised images when trained on noisy
data.

3 Additional Details on the Training Procedure

During training, we must ensure that our CNN is able to produce high quality predic-
tions for a range of photon counts. To achieve this, we randomly pick a value for p for
each training patch (see section 3.5 in the main paper). To achieve a good coverage
over different noise levels/photon counts we use a concept we call pseudo-PSNR, ex-
plained in section 3.1. We sample uniformly from a range of pseudo-PSNR numbers
and then compute the corresponding value for p accordingly. The process is described
in section 3.2



Denoising
Noisy Data Diffusion Ours Clean Data

Sample 3 Sample 2 Sample 1

Sample 4

Figure 1: DDPM vs GAP: Randomly generated samples from DDPM and GAP
compared to paired clean and noisy samples. DDPM [1] and our method were
trained on 256x256 patches sampled from the low-SNR MT-SM dataset, each input was
obtained via data augmentation strategies that included random cropping, vertical and
horizontal flipping, and random transposing. DDPM was trained with default settings
and a batch size of 4 on a single NVIDIA GTX1080Ti for 40,000 iterations.

3.1 The Pseudo-PSNR value

When imaging a static sample the resulting PSNR number of the recorded image de-
pends on the amount of light that was allowed to hit the detector. We can expect
a longer exposure time or stronger light intensity to produce a cleaner image with a
higher PSNR value than an image recorded with a shorter exposure or reduced light
intensity, in which the detector was allowed to collect fewer photons. We define the



intensity of an image as the average number of photons per pixel

v = M ey
n
To compute the PSNR value of a noisy image x one generally requires the correctly
scaled version of the normalised clean ground truth image s. We can compute the
correctly scaled signal as s = yns, which is then directly comparable to the noisy
image x. The equation used for this is

a2

PSNR(x,5) = 10log;, ;I'"SE )

where S, is the maximum value of the absolute signal s, and MSE is the mean squared
error between x and s.

The idea of pseudo-PSNR is to directly compute the PSNR value we might expect
for a shot noise corrupted image of a certain intensity, without requiring us to compare
anoisy and clean image. We define the pseudo-PSNR value for intensity v as the PSNR
value we would expect for the shot noise corrupted version of a flat signal s, with all
pixel values being s; = % Based on the shape of the Poisson distribution, we should
expect for such an image MSE = ~ and s,,, = . Based on Eq. 2, we calculate the
pseudo PSNR as

a2

S
PSNR(7) = 101logy, M"‘S‘E
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= 10log;y —
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= 10log,oy

We can invert Eq. 3 to compute the corresponding intensity ~y for a given pseudo PSNR

value as
PSNR,,
y=10" 1 . 4)

3.2 Training Pair Sampling

Before we can split out training patches into input and target using a binomial distribu-
tion (see section 3.5 in the main paper), we have to determine the success probability
parameter p of the distribution. To achieve this, for each training patch, we first sample
from a uniform distribution over pseudo PSNR values between a predefined minimum
and maximum.

The goal is to set p, so that the average photon number (intensity) of the resulting
input image corresponds to the drawn pseudo PSNR value. We compute the corre-
sponding intensity y using Eq. 4 from the randomly determined pseudo PSNR value.
Then, we compute the corresponding success probability for the binomial distribution

as
v

p= m, 5)



such that the input image photon count after the split will correspond to the drawn
pseudo PSNR. The result is then clipped to values below 0.99 to guarantee that at least
1% of photons is on average assigned to the target image.

We use the following intervals to sample the pseudo PSNR values: [—40 : —5] for
NPC-SM, [—40, —10] for MT-SM, [—40, —10] for Conv-PC, and [—40, 20] for Neuro-
PC.

4 Details on Photon Sampling Procedure

Here, we want to discuss the details of the photon sampling procedure. Depending on
whether we perform image generation or diverity denoising, we initialise the process
with an empty image or a noisy image xo. We then apply our trained CNN to compute
the probability distribution over the possible next photon positions

st = f(xu;0). (6)

Because of our softmax output layer it is guaranteed that each pixel value 5, ; > 0 and

that .
> sei=1. ™

We then sample a set of new photons represented by the image x;°%, where each pixel

value x}¢" holds the number of photons that will be added at location 7. Each pixel
value 2} is drawn from a Poisson distribution with mean

Ati = N80, )

where o controls how many photons will on average be sampled in total in x}°V. We
set as

a; =max(BY wpi,1), ©

where the parameter 8 controls the rate at which the photon number increases on av-
erage. In our experiments, we set 8 = 10%. The maximum operation ensures that the
number of photons is increasing from the beginning even when starting with an empty
image xg. Finally, we compute the next photon count image as

Xt+1 = X¢ + Xgew (]O)

and repeat the process.

5 Detailed Description of Datasets

Here, we want to give additional information about the photon counting datasets we
recorded.



5.1 Conv-PC dataset

Data was recorded from a Convallaria majalis rhizome section sample slide at a Leica
TCS SP8 TPE DIVE with FALCON and the HC PL IRAPO 25x dipping objective.
We used 850 nm excitation at 1% laser power, HyD-RLD detector, emission range of
600 — 650 nm, pixel size 0.6 x 0.6 um, an 8 MHz resonant scanner and 4x averaging.
We imaged 5 fields of view (FOVs), each containing 512x512x2048 voxels (xyt). Four
FOVs were used as training data for supervised denoising, and the fifth FOV was used
as test data.

We used a time binning of 4, resulting in datasets of 512x512x512 voxels, and
named these low-SNR raw data ’trainingData.tif” and ’testData.tif” respectively. Fur-
thermore, we summed these 512 frames to produce the high SNR ("ground truth’)
version and named it "trainingDataGT.tif” and "testDataGT.tif’. Each frame of the raw
data contains a significant amount of image noise. All voxel values correspond to pho-
ton counts.

5.2 Neuro-PC dataset

Data was obtained from 11-14 week old male Mice (C57BL/6J background) stereo-
tactically injected with AAV-hGFAP-5-HT4R-eGFP and AAV-hGFAP-tdTomato to the
CA1 region of the hippocampus 3 weeks prior to experiment. Data was recorded from
acute slices of the mouse hippocampus region at a Leica TCS SP8 TPE DIVE with
FALCON, using following acquisition settings: HC PL IRAPO 25x dipping objective,
excitation 920 nm at 15-30%, HyD-RLD detector, emission 490 — 560 nm (eGFP), and
560 — 650 nm (tdTomato), voxel size ( 0.1 x 0.1 x 0.5 um), 4x averaging, scan speed
600 Hz. We are using only the tdTomato channel.

6 Network Architecture

We use a modified UNet [2] architecture, with skip connections and residual blocks.
Each residual down-block and up-block consists of 3 3x3 convolutions with RELU
activation functions after the second convolutions and at the end of the block. We use
max-pooling for down-sampling and transposed convolutions for up-sampling.

Since we are training a single network to handle a range of different noise levels and
photon counts in its input, normalizing the input is not trivial. To avoid normalization,
we use a sinusoidal frequency encoding [3] applied to each pixel value at the input of
our network. We use 10 different sinosoids with frequencies at different powers of 10.

7 Hyper Parameters

Since our datasets have differing sizes, we define one training epoch as 500 training
steps. We use the first 90% of images in each dataset as training data and the last 10%
as validation set. We use the ADAM optimizer [4]. We use an initial learning rate of
le—4 and reduce the learning rate using the pytorch ReduceLROnPlateau scheduler
with a patience of 10 by a factor of 2.



8 Details on the Loss Function

Here we show that the loss function from Eq. 13 in the main paper, which uses target
images x* with multiple photons is equivalent to using single photons represented by
one-hot-encoding images. We can write the loss as

M=

L(6) = In fi(x}; 0)z)

(11)
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where Zt 1 xmr ; 1s the one-hot-encoding photon image for photon ¢ from x* . Note
that the order of photons does not matter here. We can then continue to write
m n T
k.t
Z Z In fl mp7 Z :'Ular,i
1 =1
k=1 i= t (12)
n
= —ZZZlnﬂ
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In this formulation it becomes clear that using target images with multiple photons is
equivalent to replicating each input image 7" times and using it together with each of
the corresponding single-photon target images. This corresponds to the same training
data distribution as randomly sampling single photon targets.

9 Additional qualitative results

We show randomly selected samples for all datasets in Figure 2.

10 Natural image datasets

To demonstrate the potential of our method, we show randomly selected outputs of our
generative model when applied on natural image datasets in Figure 3. To account for
the greater complexity of these datasets, we trained 8 expert networks, each specialised
on a sub-range of pseudo PSNR values. Each network is scaled up to 7 levels (instead
of 6) and starting with 32 feature (instead of 28) channels. When generating images
we switch between these expert networks as the image gains more and more photons.
Apart from this, the approach is the same as for the microscopy data.
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Figure 2: Comparison of sample quality: We show randomly selected generated
samples for all datasets (top-left to bottom-right: Conv-PC, MT-SM, NPC-SM, Neuro-
PC) compared to randomly cropped real high- and low-SNR patches.



Figure 3: Randomly selected sample images generated by our model. Results of
our method when trained on the 256 x256 pixel versions of FFHQ dataset [5] and the
LSUN-churches dataset [6].
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