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Abstract

Masked Image Modeling (MIM) has achieved impressive
representative performance with the aim of reconstructing
randomly masked images. Despite the empirical success,
most previous works have neglected the important fact that
it is unreasonable to force the model to reconstruct some-
thing beyond recovery, such as those masked objects. In this
work, we show that uniformly random masking widely used
in previous works unavoidably loses some key objects and
changes original semantic information, resulting in a mis-
alignment problem and hurting the representative learning
eventually. To address this issue, we augment MIM with
a new masking strategy namely the DPPMask by substitut-
ing the random process with Determinantal Point Process
(DPPs) to reduce the semantic change of the image after
masking. Our method is simple yet effective and requires no
extra learnable parameters when implemented within var-
ious frameworks. In particular, we evaluate our method
on two representative MIM frameworks, MAE and iBOT.
We show that DPPMask surpassed random sampling under
both lower and higher masking ratios, indicating that DPP-
Mask makes the reconstruction task more reasonable. We
further test our method on the background challenge and
multi-class classification tasks, showing that our method is
more robust at various tasks.

1. Introduction

Self-supervised learning aims to extract semantic fea-
tures by solving auxiliary prediction tasks (or pretext tasks)
with pseudo labels generated solely based on input features.
While various tasks have been proposed for self-supervised
learning, one intuitive idea is learning representations by
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Figure 1: Illustration of the misalignment problem in MIM.
The model generates predictions that differ plausibly from
the original image, while the original image has still been
imposed as supervision, leading to an unreasonable high
loss.

recovering the original data from the corrupted structure.
The philosophy behind such methods is simple: what the
model generates can examine whether the model under-
stands. This principle was first introduced by the denoising
autoencoder [57] which has supported significant advances
in NLP [4, 48, 37]. Methods that follow this idea such as
BERT [15] now have become a dominant routine. In the
field of image processing tasks, although reconstruction-
based pre-training was first put forth by [45], it wasn’t until
recently that methods based on this concept were brought
back to state-of-the-art performance. Benefiting from the
new network architectures like ViT [17], Masked Image
Modeling (MIM) has become highly popular, and there is
a series of more aggressive masking strategies like MAE
[26], simMIM [62].

However, simply random masking can be problematic in
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practice. An important fact is that it is unreasonable to force
the model to reconstruct something beyond recovery. Con-
sider a simple case as Fig. 1. The top row of Fig. 1 shows the
underlying logic of MIM: successful reconstruction implies
the network captures the correct semantic features. While
the bottom row of Fig. 1 shows a failure case: if the mask-
ing process happens to drop an important semantic of the
original image, the book in Fig. 1, then will change the se-
mantics of the original image and make the network hardly
recover it from the rest. In this case, if the model continues
to be forced to reconstruct the original image, the model
might fill in the obscured image with whatever is feasible,
which will interfere with the process of learning the orig-
inal features. Furthermore, as the masking rate increases,
the original semantic information is distorted with a higher
probability. We refer to such a situation as a misalignment
problem, i.e. the semantics of masked image and the orig-
inal image are miss-aligned. Consequently, the misalign-
ment problem will cause the alignment of improper sample
pairs, which will eventually harm the performance of the
downstream task.

Some studies also proposed constructing better sample
pairs for MIM. In MaskFeat [59], they change the pixel
reconstruction task to HOG reconstruction, to reduce the
impact of some ambiguous situations for the network to
prediction, such as colors, and textures. However, Mask-
Feat can only reduce the impact of hardly recoverable high-
frequency signals. If the masked part contains the whole
object instance, there is still not enough information for the
network to rebuild. In ADIOS [52] and SemMAE [35], they
train an extra segmentation network to partition the image
into different semantics. However, the number of seman-
tics varies significantly in different images, thus, it is hard
to find an optimal semantic partition network. In AttMask
[29], they mask the most attended patches according to
their attention score to construct more challenging MIM
tasks. However, AttMask needs an attention map to per-
form sampling, which can not fit into reconstruction-based
MIM methods (e.g., MAE) seamlessly. Recently, AMT [25]
adding attention map guided masking to MAE. Unfortu-
nately, these algorithms do not take into account the mis-
alignment problem, which leads to inferior performance.

In contrastive learning, an InfoMin principle suggests
that two augmented views of an image should retain task-
relevant information while minimizing irrelevant nuisances
[54]. Analog to MIM, we can summarize the following two
conditions: First, the selected patches should be represen-
tative enough to cover the whole semantic information of
the original image. Second, the masking ratio should be
set to a high level to minimize the irrelevant information
shares between different masks of the same image. While
the second constraint is easy to satisfy, the problem is how
to retain the task-relevant original semantics under the lim-

ited input ratio. To address this, we propose a novel mask-
ing strategy based on Determinantal Point Process (DPPs).
DPPs are elegant probabilistic models on sets that can cap-
ture both quality and diversity when a subset is sampled
from a ground set [32, 33], making them ideal for modeling
the set that contains more information of original images as
possible. During the sampling process, DPPs will compute
the distance of each patch, and select patches that are dis-
similar from the selected subset. This process makes the
network focus on the patches with more representative in-
formation. For example, the unique color, texture, etc. We
show that our new sampling strategy can obtain more repre-
sentative patches to keep the semantics unchanged and alle-
viate the impact of the misalignment problem. More impor-
tantly, We show that DPPMask surpassed random sampling
under both lower and higher masking ratios, indicating that
DPPMask makes the reconstruction task more reasonable.
Furthermore, our method needs no extra training process
and achieves minimal computational resource consumption.
Our contribution can be summarized as follows:

e We analyze the training behavior of reconstruction-
based MIM and discuss the impact of the misalignment
problem.

e To alleviate the impact of misalignment in MIM,
we proposed a novel plug-and-play sampling strategy
called DPPMask based on DPPs. Our method can gen-
erate more reasonable training pairs, is simple yet ef-
fective, and requires no extra learning parameters.

* We verify our method on two representative MIM
frameworks, our experiments evidence that features
learned by fewer misalignment problems achieve bet-
ter performance in downstream tasks.

2. Related Work

Self-supervised learning. Classic deep learning trains the
parameters of the model by utilizing labeled data. Instead,
self-supervised learning(SSL) expects to acquire represen-
tations with unlabeled data by a pre-text task. Among them,
Masked language modeling (MLM) has taken the lead to
be a highly influential self-supervised learning model be-
fore. e.g.,, BERT [15] and GPT [47, 48] are such suc-
cessful methods that the academia has focused on these two
models for pre-training in NLP. These models leverage vis-
ible tokens in a sequence and predict invisible tokens to
gain appropriate representations, which have been proved
to successfully repaint the field [4]. In other fields of SSL,
there have been numerous methods that focus on different
pretext tasks like reconstructing original tokens from im-
age/patch operations [5, 16, 21, 43, 60]and Spatio-temporal
operation [44, 41, 23, 19, 58]. A well-known method is
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Figure 2: An illustration of misalignment and our method. For each image, the masking policy can propose different patch
sets for reconstruction, however, some of them with skewed semantics are not suitable for reconstruction. Our method models
the probability of co-occurrence of each patch to avoid such misalignment problems.

contrastive learning that capitalizes on augmentation invari-
ance in the feature space and could be evaluated by linear
probing [6, 7, 11, 12, 18, 27, 46], which was the previous
mainstream based on SSL.

Masked Image Modeling(MIM) Masked Image Modeling
recently has shown capability to reconstruct pixels [1] from
corrupted images. MIM can be seen as a generalized De-
noising AutoEncoders (DAE) [56, 9], which aims to recon-
struct the original tokens from corrupt input. e.g., inputing
missing color channels [66] or missing pixels [57]. Context
Encoder [45] reconstructs a rectangle area of the original
images using convolutional networks. Then ViT [17] and
iGPT [10] recall the learning approach of predicting patches
with a contrastive predictive coding loss on the modern vi-
sion Transformers, and show strong potential in representa-
tion learning. BEIT [2] proposes to use a pre-trained dis-
crete VAE [49]as the tokenizer, and improves MIM’s per-
formance further. However, the tokenizer needs to be of-
fline pre-trained with matched model and dataset which lim-
its its adaptivity. To end this, iBOT [67] presents a new
framework that performs masked prediction with an online
tokenizer and gains prominence achievement. Recently,
equipped with a more aggressive masking strategy, Sim-
MIM [62] and MAE [26] further demonstrate that simple
pixel reconstruction can achieve competitive results from
previous pre-training methods.

Determinantal Point Process. Determinantal point pro-
cesses (DPPs) are probabilistic models of configurations
that favor diversity [40]. Its repulsion brings new potential
to enhance diversity in multiple machine learning problems,
such as feature extract from high dimensional data [3], tex-
ture synthesis in image processing [34], building informa-
tive summaries by selecting diverse sentences [32].

In addition to DPPs, there are some previous methods
like Markov random fields(MRFs). However, MRF as-
sumes that repulsion does not depend on context too much,
so it cannot express that, say, there can be only a certain

number of selected items overall [32]. The DPPs can natu-
rally implement this kind of restriction through the rank of
the kernel.

3. Methods

In this section, we first discuss the impact of the mis-
alignment problem on the downstream tasks, then, we give a
brief introduction to DPPs. Finally, we propose our method
of applying DPPs in the patch masking process.

3.1. Misalignment in MIM

Let x1, x2, z be the masked image, reconstruction target,
and hidden vector. In the ideal situation, the input x; and re-
construction target xo all followed an identical distribution
x1,x9 ~ P(z). However, consider the input only captures
the partial information of the original image, in this case,
x1 ~ P(z") where 2z’ defines a different distribution to z.
For pixel reconstruction tasks, we denote the encoder and
the decoder parameterized by ¢ and 6 respectively. Follow-
ing [2], MIM training can be viewed as variational autoen-
coder training [30], which can be described as a Maximum
A Posteriori (MAP) Estimation:

arg¢r;1asz/Nq¢(z,|$l) log pg(w2|z") (1)

Suppose the encoder is capable of capturing the semantic
information of z; and the decoder is capable of recovering
the image described by z and z’, by unfolding the decoder
part, we get:

po(aals’) = / po(al2) P(2]2")dz @)

The Eq.l indicates that the pixel reconstruction task is
minimizing the distance between representations of masked
image 2’ and original image z. Now, let’s zoom the
lens to multiple steps, MIM can receive multiple different



masked images of the original image. By training the net-
work to reconstruct original images from different masked
ones, MIM minimizes the distance between those different
masks. Fig. 2 shows a diagram of such training behavior,
where different masking result lies at a different location of
a hyperplane and construct the semantic space. During the
reconstruction training process, data points in the semantic
space are pushed to align with the location of the original
image. Consequently, as they are aligned with the same
data point, the distance between each data point in semantic
space is also minimized. While misalignment is a false ag-
gregation of data points that have skewed semantics (orange
dot in Fig. 2). For other MIM reconstruction targets, such as
visual tokens in BEiT [2] and iBOT [67], it is easy to verify
that they also share similar training behavior. A similar con-
clusion has also been reported in [65], however, they focus
on the dimensional collapse issue in MAE and neglect the
misalignment problem of MIM. In practice, semantics are
not evenly distributed in images. These semantics are likely
to be ignored by random masking strategies. As the MIM
pulls masked samples together, two images with different
semantics are miss-aligned. If the changed semantics is an
important clue for image understanding, such a problem can
seriously affect downstream performance. To this end, we
propose a new sampling strategy to select as representative
patches as possible.

3.2. Determinantal Point Process

Our core technical innovation is modeling the patch
masking process with DPPs. To this end, we start with a
high-level overview of DPPs.

Brief intro. A determinantal point process (DPPs) is a dis-
tribution over configurations of points. The defining char-
acteristic of the DPP is that it is repulsive, which makes it
useful for modeling diversity [32]. Formally, a point pro-
cess P on a discrete set S = {1,2,..., N} is a probability
measure on 2°, the set of all subsets of S. P is called a
determinantal point process if, when A is a random subset
drawn according to P, we have,

PY =A)xdet(Lya), 3)

where L € RNV*N is a real, symmetric, positive semi-
definite kernel, and L4 € R4l is a submatrix of L
indexed by elements of A. Note this is an unnormalized
probability of sampling a set of A. The normalization con-
stant is defined as the sum of the unnormalized probabili-
ties over all subsets of the S, i.e. ) ,~gdet (L4). We can
compute the normalized constant by the following theorem

[32]:
Theorem 1 Forany A C S:

> det(Ly) = det (L + 1), 4)
ACYCS

where 1 5 is a diagonal matrix such that I;; = 0 for indices
i€ Aand I; = 1f0ri € A

Setting A = (), we obtain the following corollary:

Corollary 1.1

> det (La) = det (L + Is). (5)
ACS

Therefore, for any A C S, we can compute its probability
by:
det (LA)
Y=A)= ———— 6
Pl ) det (L+1)’ ©)

where I is the identity matrix.

We give a simple example to illustrate how DPPs model
diversity. Suppose we have two patches 7,5 to select,
ie. A = {i,j}, we denote the vector of each patch as
Si, S; € R™™ where n is the dimension of elements in
S. We can compute the L-ensemble L;; = S7'S; and their
co-occurrence probability by Eq.6. The numerator of Eq.6
can be written as: det(La) = Li; x Lj; — L;j x Lj;. Note
that L;; and L;; measure the similarity between elements
¢ and j, being more similar lowers the probability of co-
occurrence. On the other hand, when the subset is very
diverse, i.e. L;; x Lj; becomes small, the determinant is
bigger and correspondingly its co-occurrence is more likely.
The DPP thus naturally diversifies the selection of subsets.

Unfortunately, to our best knowledge, the implementa-
tion of exact DPP sampling needs matrix decomposition
[32, 20], which is an unacceptable computation cost dur-
ing the training iteration. Thus, to apply DPPs in MIM, an
approximation is needed.

Greedy approximation. Considering we only select the
subset Y with the highest probability under a cardinality
constraint n, then such problem can be defined as:

Ymap = arg max det(Ly ). @)
YCs

This problem is known as maximum a posteriori (MAP)
inference and has been proved as an NP-hard problem in
DPPs [31]. Instead, the greedy algorithm is widely used for
approximation [42] for MAP inference, justified by the fact
that the log-probability of set in DPPs f(Y') = log det(Ly)
is sub-modular [22]. Thus, the selection process of our
method can be described as follows:

J =argmax f(Y, U{i}) — f(Yy), (®)
1€S\Yy

where Y is the subset of Y. In each iteration, we add an
item that maximizes the marginal gain to Yy, until the max-
imal marginal gain emerges negative or goes against the car-
dinality constraint. We adopt a fast implementation of the



Algorithm 1 Greedy DPPs Sampling for MIM

Require: image patches .S, Purge ratio 7, subset length V;
S+ shuffle(.S)
L <+ kernel(S)
Yg :[]
d = zeros(len(5))
while N > 0 do
d <+ update(L, Yy, d)
if max(d) > 7 then
Y, .append(argmax(d))

> Follow [§]

else
Y, .append(randomSelect(d))
end if
N+ N-1
end while

greedy MAP inference algorithm for DPPs following [S].
Formally, since L is a PSD matrix,
the Cholesky decomposition of Ly, is available as

Ly, =VVT, ©)

where V is an invertible lower triangular matrix. For any
i € Z \ 'Yy, the Cholesky decomposition of Ly, (;jcan be
derived as:

b [y, Ly ]_[Vv o][Vv o]
YU T Ly, Lu | | d ¢ o di |

where row vector ¢; and scalar d; > 0 satisfies:

‘/szT = Lywi, dl2 = Lii — ||CZ||3 . (10)

Then the determinate of Ly, (;} can be written as
det (Ly,uqy) = det (VV'T) - d? = det (Ly,) - dZ. (11)

Therefore, Eq.7 is equivalent to select the element ¢ with
maximum di2.

After solving the equation, the Cholesky factor of
Ly, can therefore be efficiently updated after a new item
is added to Y,. With these approximations, the selecting
process can be fit in the GPU training loops. In our exper-
iments, the acceleration ratio is up to 10 times faster with
respect to exact DPPs sampling and brings the time cost
of DPPs to the same level of random, more details can be
found in the supplementary.

3.3. Purge misalignment with DPPs

In this section, we introduce two key factors of DPP-
Mask: kernel and purge ratio.
Kernels. A common-used type of kernel is the class of
Gaussian kernels [55, 34]. Defined by

1S = Sl
€

VS, Sj e€s, Lij = exp( ) (12)

(@7=0 (b)r=0.9 ©r=1

Figure 3: Qualitative comparison of three different purge
ratios, a suitable purge ratio can preserve the semantics of
original images while maintaining the variety of augmented

inputs.

Where € is called the bandwidth or scale parameter. This
kernel depends on the squared Euclidean distance between
the intensity values of pairs of patches. It is often used as a
similarity measure on patches. The value of the parameter
€ has an impact on how repulsive the DPPs are. However,
note we only choose patches that maximize Eq.8, and the
value of ¢ influences a little to model performance. This is
because e will not change the order of distances between
patches. Thus, for better numerical stability, we normalize
each patch before computing the distances and set € to 1
empirically.

Purge ratio. As shown in Fig. 2, DPPMask aims to purge
those cases in that semantic information has been changed
by masking. However, DPPMask can get over-purged in
some cases. As Fig. 3 shows, due to patches of the sky being
too similar to each other, then the greedy selection will only
focus on the foreground, as it is more diverse than the back-
ground. This situation makes the MIM task too easy and
purges most of useful augmented inputs, which is not help-
ful in feature learning. A simple modification can tackle
this problem. Instead of letting the selection process hit the
cardinality constraint, we set a parameter called purge ra-
tio 7 € (0,1) as the threshold of maximal marginal gain.
Concretely, in each iteration, we monitor the distance of the
next patch to the selected subsets, if the distance is below
the purge ratio 7, abort the greedy selection process and
fill the subset will random patches. The purge ratio plays
a role of adjust how “severe” the DPPMask is. In partic-
ular, 7 = 0 indicates the selection process becomes fully
greedy and 7 = 1 indicates fully random sampling. Fig. 3
shows greedy selection under three different purge ratios,
a higher purge ratio can prevent DPPMask get over-purged
and maintain the input diversity for training the network.

In this section, we first analyze the training behavior of
MIM, then we give our method namely DPPMask which
uses DPPs to model the repulsion of image patches, in order
to sample the most representative patches and preserve the
original semantic information of images. We summarize
our algorithm in Alg. 1.



Method  Pre-train loss  Linear prob.  Fine-tuned
r=0.6 0.417 - 89.67
7=08 0.434 62.58 89.67
7=09 0.440 63.22 89.56
MAE 0.444 67.08 89.45

Table 1: Detailed results of MAE+DPPMask on ImageNet-
100. The best of each metric are marked in bold.

Method NMI ACC Linear prob. Fine-tune
7=0.6 0.518 67.88 72.84 87.58
T7=0.8 0.522 68.04 73.56 87.64
7=0.9 0.525 68.68 73.60 87.84
iBOT 0.522 68.28 73.30 87.44
iBOT+AttMask 0.512  67.32 72.30 87.44

Table 2: Detailed results of iBOT+DPPMask on ImageNet-
100. The best of each metric are marked in bold.

4. Experiment
4.1. Implementation details

To examine the effectiveness of our method, we perform
DPPMask on two representative MIM methods: MAE [26],
iBOT [67], which represent two different MIM frameworks:
pixel reconstruction and feature contrast. For MAE, images
are patched by convolutional kernels and added with a po-
sition embedding, after that, we compute the distances of
patches. For iBOT, images are fed into a teacher model to
get semantic tokens, which we compute distances based on.
Compare to direct computing with pixel intensities, seman-
tic tokens may contain more useful information for parti-
tioning images. For example, to identify instances that share
similar appearances.

We adopt two different scales of backbones, ViT-Base
and ViT-Small for MAE and iBOT respectively. We mainly
evaluate our algorithms on the ImageNet-100 dataset, which
is derived from ImageNet-1K [51, 52]. We train MAE and
iBOT for 400 and 100 epochs respectively. Unfortunately,
our computational resources can not support us to make out
larger-scale experiments, such as more training epochs and
heavier backbones. We leave this for future work. We set
the masking ratio is set to 0.75 for MAE and 0.7 with 0.05
variance for iBOT by default.

4.2. A detailed study of misalignment

We give our main result in Tab. 1 and Tab. 2. The final
feature vector for classification is obtained by global pool-
ing. For fine-tuning tasks, we run each setting with three
random seeds and report their average performance. We
train the iBOT model under the fine-tuning and linear prob-
ing parameter setting of MAE for reducing the experiment’s
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Figure 4: Validation accuracy of MAE on ImageNet-100
under different masking ratios.

Method Backbone Epochs Fine-tuned
MAE ViT-Base 400 82.9
MAE+AMT ViT-Base 400 82.8
SemMAE ViT-Base 800 83.3
MAE+DPPMask  ViT-Base 400 83.3

Table 3: Comparison with other sampling methods on
ImageNet-1K. The best of each metric are marked in bold.

complexity.

The performance gain brings by DPPMask. We first
observed a steady performance gain on fine-tuning tasks
in both MAE and iBOT frameworks. In MAE, we make
0.2% accuracy gains. In iBOT, we make 0.4% accuracy
gains. This shows our method can improve the representa-
tion power by purging the misalignment samples. As the
threshold 7 increases, the pre-train loss becomes smaller
in response. However, when 7 is too low, greedy sam-

pling goes over-purged and makes the task too simple for
the network to learn useful features. Besides, iBOT and
MAE show different preferences of 7, this is because we
apply DPPs on the output of the teacher model, which is a
different distribution from MAE. For linear probing, we no-
tice a significant performance drop of MAE. This does not
surprise us as we analyze in Sec. 3.1. DPPs make the sam-
ple space shrunk in order to purge the misalignment sam-
ples. Aggregating fewer samples together makes the feature
space more continuous and less linear separable. Notably,
the features also become more precise to describe an image,
which can reflect the fine-tuned performance. This behav-
ior is not observed on iBOT, which uses extensive augmen-
tation to further expand the scale of positive samples. In-
stead, iBOT got 0.3% performance gain on linear probing as
well as cluster performance (NMI and ACC), which proves
our method indeed purged improper samples that hurt fea-
ture learning. Tab. 3 shows our method alongside other ad-
vanced sampling methods on ImageNet-1K, our methods
surpassed other sampling methods.
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Figure 5: Examples of background challenge.

Method Orig. OF MS. MR. MN

iBOT 56.05 4232 48.07 39.70 37.23
iBOT+AttMask  54.22 41.01 46.15 3798 36.02
iBOT+DPPMask 56.47 43.36 49.65 40.59 38.44

MAE 5546 43.04 4736 40.12 38.30
MAE+DPPMask 56.32 44.12 47.73 40.74 3943

Table 4: Performance on background challenge.

DPPMask makes the MIM task more reasonable. An-
other key factor of successfully applying MIM is the mask-
ing ratio of input images [26, 62]. It should be high enough
to construct a meaningful reconstruction target while pre-
venting the task from degenerating to simply copying-
pasting from neighboring patches. However, the root cause
of the misalignment problem is also the aggressive mask-
ing strategy. To better understand the relationship between
the masking ratio and the misalignment problem, we study
the fine-tuned performance of MAE under different mask-
ing ratios. We perform each experiment three times and
report their mean accuracy of ImageNet-100. For DPPs
sampling, we run two values of 7, 0.90 and 0.85, we re-
port the higher performance. As Fig. 4 shows, we find that
the original 0.75 masking ratio is not the optimal setting
for fine-tuned performance. Instead, lowering the masking
ratio significantly improves the accuracy, this is further evi-
dence of the impact of the misalignment problem on feature
learning, as a higher masking ratio raises the probability of
misalignment. With DPPs sampling equipped, our method
has achieved higher performance in all masking ratio set-
tings. In the masking ratio 0.7, the maximal performance
boost reached 0.4%. When the masking ratio gets lower, the
pretext task actually becomes more simple, which leads to
a performance drop. Notably, we make a better result than
the best in MAE (masking ratio at 0.6) with both higher
and lower masking ratios (0.5, 0.7). This is meaningful, as
the reconstruction problem becomes more simple while our
method still performs better than MAE, which shows our
sampling method makes the pre-train task more reasonable
rather more simple.

4.3. Robustness

The misalignment problem makes the network align im-
ages with different semantics. In some severe cases, the
network may are required to align the original image with
the background. Thus, the misalignment problem can inter-

Method mAP  Fl,; Flogss

iBOT 63.16 6494 5578
iBOT+AttMask  63.26 65.31  56.36
iBOT+DPPMask 63.78 65.72  56.40

MAE 68.95 69.05 61.24
MAE+DPPMask 69.56 69.59 61.86

Table 5: Multi-label classification accuracy on COCO.

Method ACC Flmacro Flmicro Flwcightcd
MAE 80.69 44.81 45.45 46.46
MAE+DPPMask  80.85 45.08 45.85 47.24

Table 6: Multi-label classification accuracy on CLEVR.

fere with the network decision by letting the network more
focusing the background of images. To verify this, we eval-
uate the quality of the learned feature on the background
challenge [61]. We run fine-tuned models of each method
on 4 different variations from the original image. Each vari-
ation replaces the original background with empty (O.F.),
with another image in the same class (M.S.), with a ran-
dom image in any class (M.R.), or with an image from the
next class (M.N.), examples are shown in Fig. 5. Tab. 4
shows the performance of our method on the background
challenge.

Both iBOT and MAE witnessed a steady performance
gain in four different variations of original images. No-
tably, our method on MAE achieves 1.08% and 1.13% im-
provements on O.F. and M.N images respectively, which is
higher than the original images (0.86%). Such results were
also observed in the iBOT framework. Our method achieves
0.42% improvements on original images, while other vari-
ations both improved by a large margin. In particular, we
achieve 1.58% improvements on M.S. which largely sur-
passes the original improvements. This shows our methods
are more robust to background changes, as we do not im-
pose the network to align the background to the original
image as the random strategy does.

4.4. Multi-label classification

To further examine the influence of the misalignment
problem, we also test our method on a multi-label classifi-
cation task. An intuitive understanding is that: the network
can not reflect the semantic changes, which are trained to
reconstruct objects whether are been masked or not. Where
in multi-label classification, every semantics is important,
which makes them suitable to test whether the network is
capable to extract whole information of images. We test
our method on CLEVR [28] and MS-COCO [36] datasets,
which are widely used in multi-label classification. The
CLEVR dataset contains 24 binary labels, each indicating



Figure 6: Comparison of DPPs sampling and random sampling, each triplet indicates the original image (right), reconstruction
result with random sampling (middle), and DPPs sampling (left). The white boxes represent patches selected by both random
and DPPs, while red boxes are for random sampling and blue boxes are for DPPs sampling. The threshold 7 is set to 0.8, best
views with zoom-in.

the presence of a particular color and shape (8 x 3) combina-
tion in the image [52]. For the MS-COCO dataset, we report
the following fine-tuned performance on the validation set:
mean average precision (mAP), average per-class F1 score
(Fl.4ss), and the average overall F1 score (F1,;;) [50]. For
the CLEVR dataset, we train MAE with and without DPPs
for 200 epochs, we report the linear probing and fine-tuned
performance of Fl,icro, Flmacro and Flyeightea, Where
‘micro’ evaluate F1 across the entire dataset, ‘macro’ eval-
uates an unweighted average of per-label F1 score, and
‘weighted’ scale the per-label F1 score by a number of ex-
amples when taking the average. We show our result in
Tab. 5 and Tab. 6. Our method shows better performance
on both COCO and CLEVR datasets. This shows our sam-
pling method can select more informative patches for the
network to reconstruct or align, which reduces the impact
of the misalignment problem.

4.5. Qualitative analysis of DPPs sampling

To better understand the sampling behavior of DPPs, we
compare the DPPs sampling result with random sampling.
Fig. 8 shows the MAE reconstruction result from the Im-
ageNet validation set, each triplet from left to right indi-
cates the original image, reconstruction result with random

sampling and DPPs sampling. For each image, we fix the
random seed in order to find the difference between DPPs
and random. We show coincide patches with white boxes,
patches in random sampling while not in DPPs are shown
in red boxes, and patches in DPPs while not in random are
shown in blue boxes. Our experiment shows the recon-
struction result of DPP sampling is better than random sam-
pling, which proves that DPPs can represent more complete
semantics than random. In particular, the sampling result
shows two important properties of DPPs. First, DPPs can
catch the appearance of each object more precisely, which
is an important clue for image understanding. For example,
the slot of the mailbox is crucial evidence to classify with
cabin. Another important property is DPPs can retain more
small foreground information, which is highly likely omit-
ted in random sampling. Such properties show our method
successfully alleviates the impact of misalignment problem,
and achieve better performance in feature learning.

In our experiments, the MAE does not reconstruct the
unobserved semantics, indicating that false positive sam-
ples are not perfectly aligned. A proper guess of such a
phenomenon can be the diversity of ImageNet or the rep-
resentative capabilities of networks. However, despite the
network does not fall into over-fit, the incorrect gradient of



misalignment will still interfere with the learning process.
Our experiment also shows the potential of MIM with fewer
misalignment problems.

5. Conclusion

In this paper, we show that uniformly random mask-
ing widely used in previous works unavoidably loses some
key objects and changes original semantic information, re-
sulting in a misalignment problem and hurting the repre-
sentative learning eventually. To this end, we propose a
new masking strategy namely the DPPMask to reduce the
semantic change of the image after masking. We show
that DPPMask can make the MIM task more reasonable by
purging the misalignment of training pairs. We hope our
work can provide insights to help design a better MIM al-
gorithm.
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Table 7: Fine-tuning setting.

config value
optimizer AdamW [39]
base learning rate 5e — 4
weight decay 0.05

optimizer momentum B1, 82 = 0.9,0.999 [9]
layer-wise Ir decay [13, 2] | 0.65

batch size 1024

learning rate schedule cosine decay [38]
warmup epochs [24] 5

training epochs 100

cutmix[63] 1.0

drop path 0.1

mixup [64] 0.8

weight decay 0.05

label smoothing [53] 0.1

augmentation RandAug(9,0.5)[14]

A. Implementation details of DPPMask

Suppose we add i into the subset Y, U {j}. From Eq. 10,
we have

Voo T Ly,
[cj d; }c; :LYgu{j},iZ[ L;Z}’ (13)

where
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For updating d;, we have
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With Eq. 14 and Eq. 15, we can update d incrementally.

B. ImageNet-100 setting

We follow the original MAE [26] experiment setting, ex-
cept for the learning rate of fine-tuning task. We list our
fine-tuning parameters in Tab. 7. For iBOT [67], we train a
ViT-small backbone with 100 epochs. We change the block
mask strategy with random, and set masking ratio to 70%
with 5% variation. We list our fine-tuning parameters in
Tab. 8

C. Greedy approximation performance

We examine the approximation performance with re-
spect to original DPPs. We run each setting with one en-
tire epoch and report the mean time cost of each iteration.
As Tab. 9 shows, the greedy approximation achieved 10x
faster than original DPPs, which makes it possible to fit into
a GPU training loop.

Table 8: iBOT pre-train setting.

config value
learning rate 5e —4
teacher momentum [2] 0.996
teacher temp 0.07
warmup teacher temp epochs [2] | 30

out dim 8192
local crops number 10
global crops scale [0.25, 1]
local crops scale [0.05, 0.25]
mask ratio 0.7
mask ratio var 0.05
masking prob 0.5

Table 9: Training efficiency of DPPMask

Method DPP
Training speed  2.7442s/it

Random
0.2129 s/it

DPP (Greedy approximation)
0.2609 s/it

D. More discussion about relative works

Our method is different from recent masking strategies.
Recent strategies can roughly divide into two lines of work,
learning-based and attention-based.

Learning-based strategies include ADIOS[52] and
SemMAE[35]. They both need extra learning parameters.
ADIOS trains a network to propose masks adversarially, in
order to find out more meaningful masks for MIM tasks.
However, the semantic meaningful masks proposed by
the network are hard to predict, which is less explainable.
SemMAE separates the mask learning process from pre-
training and makes the training process into two stages.
The type of masks they learned are more like semantic
parts, such as heads, arms, etc. However, as the semantics
varies in images, the number of classes is hard to define,
therefore weakening the application of such methods.
Attention-based strategies include AttMask[29] and
AMT[25]. This line of work selects patches according to
the attention map. Despite different policies to manipulate
the attention map, both intend to retain some patches with
high attention scores to give a "hint” to the model as such
patches are more likely to have more semantics. Note this
policy aligns with our ideas. However, they do not asso-
ciate it with misalignment problems in MIM, thus leading
to an inferior policy. Furthermore, attention maps require
an extra forward pass to compute, which brings more com-
putation.

E. Alignment versus diversity

As we discussed in 3.1, DPPMask aims to purge the
training pairs that are polluted by misalignment problems.
However, the network also needs irrelevant information be-
tween different masks to perform feature learning which can
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Figure 7: Alignment and diversity of different 7s, 7 = 1
indicate random masking.

be measured as the variance of sampled masks. Here, we
show that DPPMask achieves the adjustment between align-
ment and diversity. We first obtain the original semantic
representation by feeding the network with unmasked im-
ages and saving the cls token. Then, we obtain the masked
semantic representation by saving the cls tokens of masked
images under different masking strategies. We compute the
L2 distance between masked semantics and original seman-
tics to illustrate the alignment of different masking strate-
gies. For masked semantic representation, we run 5 inde-
pendent trails and compute the L2 distance between each
trail to illustrate the diversity of different masking strate-
gies. As shown in 7, random masking has the most diver-
sity, but it also suffers from the misalignment problem, i.e.
the farthest distance between masked semantics and origi-
nal semantics 7a. As the 7 decrease, the distance between
masked semantics and original semantics has been reduced,
indicating more alignment to the original semantics. How-
ever, a lower 7 cause less diversity of different masks, which
can purge some useful training pairs and is not helpful for
feature learning 7b.

F. Broader impact

Despite the eye-catching performance of MIM algo-
rithms, what makes a good mask for MIM tasks still re-
mains unclear. DPPMask provides a possible answer to
this question. By analog to the InfoMin principle of con-
trastive learning. We conclude two properties of MIM.
Masked images should retain the original semantics while
minimizing shared information from different masks. Mini-
mizing shared information can be achieved by setting a high
mask ratio, while how to retain the original semantics is a
non-trivial problem. Furthermore, DPPMask also models
the probability-of-co-occurrence of each patch and thus can
serve as a potential tool to study the relationship between
such two properties.



Figure 8: More qualitative samples. Each triplet indicates the original image (right), reconstruction result with random
sampling (middle), and DPPs sampling (left).



