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Abstract

Open-set semi-supervised learning (OSSL) embodies
a practical scenario within semi-supervised learning,
wherein the unlabeled training set encompasses classes
absent from the labeled set. Many existing OSSL meth-
ods assume that these out-of-distribution data are harmful
and put effort into excluding data belonging to unknown
classes from the training objective. In contrast, we pro-
pose an OSSL framework that facilitates learning from all
unlabeled data through self-supervision. Additionally, we
utilize an energy-based score to accurately recognize data
belonging to the known classes, making our method well-
suited for handling uncurated data in deployment. We
show through extensive experimental evaluations that our
method yields state-of-the-art results on many of the eval-
uated benchmark problems in terms of closed-set accu-
racy and open-set recognition when compared with exist-
ing methods for OSSL. Our code is available at https:
//github.com/walline/ssl-tf2-sefoss.

1. Introduction
Using a combination of labeled and unlabeled data for

training a model, so-called semi-supervised learning (SSL),
is a well-studied field of machine learning [23,36,37,39,48],
motivated by exploiting the extensive amounts of cheap and
readily available unlabeled data. However, semi-supervised
learning is typically studied in a closed-set context, where
labeled and unlabeled data are assumed to follow the same
distribution. In practice though, one can expect that the la-
beled set is of a much more curated character, e.g., hand-
picked examples from known classes, compared to its unla-
beled counterpart, which may contain outliers or corrupted
data. Semi-supervised learning where the unlabeled set
contains more classes than the labeled set (see Fig. 1) is
referred to as open-set semi-supervised learning (OSSL),
where classes present in the labeled set are considered in-
distribution (ID), whereas other classes are recognized as
out-of-distribution (OOD).

A common approach for training models in OSSL is to

Labeled Unlabeled ID Unlabeled OOD

Closed-set semi-supervised learning

Open-set semi-supervised learning

Figure 1. Comparison between open- and closed-set semi-
supervised learning.

use a standard SSL objective but only include unlabeled
data that are predicted as ID [5,9,12,49], while the rest are,
e.g., discarded [4] or given less importance [9]. This ap-
proach is motivated by an assumption that the training sig-
nal from OOD data is harmful. Consequently, by restrict-
ing learning to samples predicted as ID they are not effi-
ciently using all available data. Some algorithms take steps
towards better employment of unlabeled data in OSSL. For
example, [33] uses consistency regularization and [17] in-
troduces a self-supervised rotation loss on all unlabeled
data, while [19] identifies OOD data semantically similar
to ID data that can be “recycled” as such.

In this work, we propose a Self-supervision-centric
Framework for Open-set Semi-Supervised learning (Se-
FOSS). Our framework unconditionally promotes learning
from all unlabeled data by utilizing a self-supervised con-
sistency loss, which is effective in the traditional closed-set
SSL setting [41]. Compared to previous methods focusing
on predicted inliers through an SSL objective, we argue that
making self-supervision the primary source of learning is
key, both for data efficiency and robustness in OSSL. The
impact of classifying unlabeled data incorrectly as ID, or as
the incorrect class, is intuitively much less significant for
a self-supervised training objective. To our knowledge, we
are the first to utilize self-supervised feature consistency of
the type used in [41] for OSSL. Moreover, we prioritize the
final model’s capacity for open-set recognition (OSR) (pre-
dicting data as ID or OOD). To this end, we resort to the
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recently popularized free-energy score [26]. This theoret-
ically founded approach for OSR is well-performing with
the added benefit of not requiring any architectural modifi-
cations to the classification model.

We assess our framework and compare it with existing
approaches through extensive experiments across diverse
datasets. The results show that SeFOSS reaches state-of-
the-art performance for closed-set accuracy and OSR on
many of the evaluated benchmark problems. Although Se-
FOSS does not reach SOTA on all problems, it consistently
displays strong results across the range of evaluated scenar-
ios. We also show that the training of SeFOSS is stable,
avoiding the need for additional validation data for early
stopping. Furthermore, our experiments reveal that the pre-
vious assumption [5,9,12] that OOD data significantly hurt
the closed-set accuracy of traditional SSL is not always
valid. On the contrary, the seminal SSL method FixMatch
[37] outperforms all evaluated OSSL methods on closed-set
accuracy. Thus, we suggest that designated OSSL methods
are mainly important when OSR performance is vital.

Our main contributions are:
• a framework for OSSL that incorporates self-

supervised feature consistency for accurate closed-set
performance and OSR

• an extensive evaluation across a wide range of open-set
scenarios showing that our framework achieves strong
results compared to existing methods.

• a challenge to the prior assumption that OOD data
in the unlabeled set significantly harms the closed-
set performance of traditional SSL methods, indicating
that research efforts should be put elsewhere.

2. Related work
Semi-supervised learning: Research in SSL has a long

history [1, 8, 23, 32, 36, 48]. Recently, frameworks such as
FixMatch [37] and UDA [44] introduced a new paradigm
for SSL combining pseudo-labeling with consistency regu-
larization using data augmentations. These works empha-
size the importance of strong domain-specific data augmen-
tations for high performance in SSL. In the image domain,
these augmentations are, e.g., RandAugment [6] and Cutout
[7]. The effectiveness of FixMatch and UDA sparked a new
wave of research trying to extend or improve these frame-
works. For example, FlexMatch [51], Dash [46], SimMatch
[54], CCSSL [47], DP-SSL [45], and DoubleMatch [41] all
propose ways to improve the strategies for pseudo-labeling
and consistency regularization of UDA and FixMatch.

For this work, we take particular inspiration from Dou-
bleMatch [41], which highlighted the effectiveness of en-
abling learning from all unlabeled data. DoubleMatch is
motivated by the fact that UDA and FixMatch restrict learn-
ing from unlabeled data to samples for which the model pro-
duces confident predictions. In this regard, DoubleMatch

adds a self-supervised cosine-similarity loss on the feature
predictions across augmentations of all unlabeled data. By
promoting prediction consistency also for uncertain unla-
beled data, DoubleMatch sees improvements in terms of
both final accuracy and training speed. In the context of
OSSL, we suggest that this ability to safely learn from all
unlabeled data, without inferring class predictions, is of par-
ticular interest as it can enable the model to learn from out-
lier data. For this reason, we include the self-supervision
proposed by DoubleMatch as a core part of SeFOSS.

Open-set recognition: The ability to identify previously
unseen classes is an important safety feature in many ma-
chine learning applications and the task of predicting if data
belongs to a pre-defined set of classes or not is often re-
ferred to as open-set recognition. This problem is widely
studied [2,14,15,22,24,25,35] where existing solutions are
based on, e.g., modeling class conditional feature distribu-
tions [24], using ensembles of models [22], or analyzing the
model predictions under perturbations of input data [25].

Recently, Li et al. [26] proposed to use the free-energy
score for OSR, which for a data point x is obtained by in-
terpreting the logits fy(x) for each class y as negative en-
ergies: E(x, y) = −fy(x). The free-energy score is then
given by

F (x) = − 1

β
log

C∑
y′=1

e−βE(x,y′), (1)

where β is a hyperparameter and C is the number of
classes. The free-energy score is theoretically aligned with
the marginal distribution for ID data, p(x), so that we can
expect F (xa) < F (xb) for an xa that is ID and an xb
that is OOD. It’s worth noting that, for large β, we get
F (x) ≈ miny′ E(x, y′), i.e., the maximum logit score,
which also has been used successfully for OSR [40].

For SeFOSS, we utilize the free-energy score to deter-
mine which samples are ID or OOD. Our main motivation is
its simplicity, i.e., not requiring architectural modifications
or significant computational complexity, while still being a
powerful discriminant. Another benefit of using a method
that can be “plugged in” to any existing model is that it al-
lows for easy and fair comparisons of results.

Open-set semi-supervised learning: In OSSL [5, 9, 10,
12,13,17–19,27,31,33,43,49,53], we study the case where
the unlabeled training set, and sometimes also the test set,
contains additional classes not present in the labeled set.
Compared to (closed-set) SSL, this is a more general and
much less studied problem, and compared to open-set do-
main adaptation (OSDA) [30,34], there are no assumptions
regarding domain shifts in the training sets.

Many proposed methods for OSSL classify the unlabeled
data as either ID or OOD and use only confident ID sam-
ples for the training objective in a traditional SSL scheme.



One such example is UASD [5], where unlabeled data are
classified as inliers based on thresholding the maximum of
predicted softmax distribution. The method averages mul-
tiple predictions of the same unlabeled data from different
time steps during training for increased predictive calibra-
tion. The framework MTCF [49] uses a similar strategy but
employs a separate OSR head for predicting the probabil-
ity of a sample being ID. The OSR head trains in an SSL
fashion where the OSR head uses model predictions as op-
timization targets. In SAFE-STUDENT [12], the model is
trained using both pseudo-in- and outliers, which are pre-
dicted from unlabeled data by using energy discrepancy.

OpenMatch [33] and T2T [17] use a slightly different
strategy built around a one-vs-all framework. In both cases,
we have one head for each class predicting the probability of
a sample belonging to the corresponding class. Predicted in-
liers are used for SSL objectives based on FixMatch (Open-
Match) or UDA (T2T). Both T2T and OpenMatch take steps
towards utilizing all unlabeled data: OpenMatch through
a consistency loss for its one-vs-all predictions, and T2T
through a self-supervised rotation loss.

In the DS3L method [9], the focus is on preserving
closed-set performance by solving the OSSL problem via a
bi-level optimization. The inner task is to learn the classifier
based on a standard two-term SSL optimization but scal-
ing the loss for unlabeled samples using a data-dependent
weight function. The outer task is thus to learn the weight
function that minimizes the labeled loss term of the inner
task. This way, the outer optimization steers the training
by using the labeled set as a proxy so that the model never
drops in closed-set performance.

Lastly, TOOR [19] proposes to identify “recyclable”
OOD data, i.e., semantically close to one of the ID classes.
The method projects the recyclable OOD data on the space
of ID data by domain adaptation and uses them in conjunc-
tion with unlabeled data predicted as ID for training through
an SSL objective.

In summary, most existing contributions for OSSL are
based on the assumption that OOD data are “harmful” and
focus on detecting ID data from the unlabeled set to use in
an SSL training objective. In SeFOSS, we instead facilitate
learning from all unlabeled data while also learning to dis-
tinguish between ID and OOD. Additionally, in contrast to
many prior works, we do not require extra model heads for
classifying data as ID or OOD. Using the free energy score,
we avoid additional model parameters or heavy computa-
tional complexity for solving the OSR task.

3. Method
This section describes SeFOSS, our proposed method for

OSSL. The main philosophy behind this method is that we
encourage learning from all unlabeled data, whether it is ID
or OOD. Our proposed method achieves this by applying

the self-supervised loss of DoubleMatch [41] on all unla-
beled samples in each training batch.

We complement the self-supervision with losses on un-
labeled data confidently predicted as ID or OOD to improve
OSR performance. For samples confidently predicted as
ID, we apply a pseudo-labeling loss similar to those of Fix-
Match [37] and UDA [44]. For unlabeled data confidently
predicted as outliers, we instead use energy regularization
to increase the model’s confidence that these are OOD. Fig-
ure 2 illustrates how SeFOSS treats unlabeled data.

Following standard SSL practice, losses on unlabeled
data are combined with supervised cross-entropy on labeled
data. The components of SeFOSS are detailed below.

3.1. Self-supervision on all unlabeled data

The central source of learning from unlabeled data in
SeFOSS is self-supervision. To this end, we use the loss
proposed by [41], i.e., a cosine similarity between feature
predictions for different augmentations of unlabeled data:

ls = −
1

µB

µB∑
i=1

h(vi) · zi
∥h(vi)∥∥zi∥

, (2)

where µB is the unlabeled batch size, vi and zi are d-sized
feature vectors from the penultimate network layer for weak
and strong augmentations of sample i, respectively. The
operator ∥ · ∥ is the l2 norm. The mapping h : Rd → Rd

is a trainable linear projection to allow for differences in
feature predictions for weak and strong augmentations. In
gradient evaluations of ls, we treat zi as constant.

A principal difference between the self-supervision of
(2) and the losses for all unlabeled data in T2T [17] and
OpenMatch [33], is that (2) makes use of strong data-
augmentation whereas the corresponding losses of T2T and
OpenMatch use weak data-augmentation only.

3.2. Pseudo-labeling loss for pseudo-inliers

SeFOSS uses the free-energy score [26] as defined in (1)
for OSR. For convenience, we define the equivalent func-
tion s : RC → R that operates on the logits σ as

s(σ) = − log

C∑
y′=1

eσy′ , (3)

where σy′ = fy′(x) is the logit associated with class y′

for data point x. For data that are confidently ID (pseudo-
inliers), we expect s(σ) to be low. To amplify this confi-
dence, we apply the pseudo-labeling loss

lp =
1

µB

µB∑
i=1

1{s(wi) < τid}

×H(argmax(wi), softmax(qi)),

(4)
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Figure 2. Sorting of unlabeled data in SeFOSS. Predicted outliers are used for energy regularization in le. Predicted inliers are used for a
pseudo-labeling loss in lp. All unlabeled data are used for self-supervision in ls.

where τid is a confidence threshold. We let
argmax : RC → RC so that it returns a one-hot
vector. Similarly, we define softmax : RC → RC so that
the j:th element is

softmax(σ)j =
eσj∑C

y′=1 e
σy′

, for j = 1, . . . , C. (5)

The inputs wi and qi in (4) are the predicted logits for unla-
beled sample i for weak and strong data augmentations, re-
spectively. Lastly, 1{·} is the indicator function and H(·, ·)
is the cross entropy between two discrete probability distri-
butions pa, pb given by

H(pa,pb) = −
C∑
i=1

pai log p
b
i , (6)

where pai and pbi are the i:th elements of pa ∈ RC and
pb ∈ RC , respectively. As for ls from (2), we consider
the predictions on weakly augmented data as constant when
evaluating the gradient of lp.

Note that lp is equivalent to the pseudo-labeling loss
in FixMatch [37] with the exception that FixMatch selects
pseudo-labels by thresholding the maximum value of the
predicted softmax distributions. We choose pseudo-labels
by thresholding the free-energy score, which is a better
score for OSR than the maximum softmax probability [26].

3.3. Energy regularization for pseudo-outliers

Many existing methods for OSSL [5,9,49] focus on iden-
tifying unlabeled data that are confidently ID. To boost the
separation of OSR predictions between ID and OOD, we
suggest including a loss for unlabeled data confidently pre-
dicted as OOD, i.e., pseudo-outliers. Inspired by [26], we
employ a hinge loss on the free-energy score of the pseudo-
outliers to stimulate the model to raise the free-energy score
to a given margin. This energy regularization is given by

le =

∑µB
i=1 1{s(wi) > τood}max(0,mood − s(wi))

2∑µB
i=1 1{s(wi) > τood}

,

(7)

where τood ∈ R is the confidence threshold for OOD data
and mood ∈ R is the margin for the hinge loss. Note that
le only uses the predictions for weakly augmented data be-
cause we empirically found that using strongly augmented
data in le led to instabilities during training.

3.4. Adaptive confidence thresholds

In SeFOSS, we select pseudo-in- and outliers from unla-
beled data, cf. (4) and (7), based on thresholding the free-
energy score s defined in (3). The free-energy score is non-
probabilistic and thus unbounded, so selecting these thresh-
olds is not trivial. Thus, we propose adaptively calculating
τid, τood and mood based on the distribution of s given our
labeled training set at the end of a pre-training phase. Dur-
ing this pre-training phase, the model is trained only with
a supervised loss on labeled data and the self-supervised
loss given by (2) on unlabeled data. Following the pre-
training phase, we compute s for the complete (unaug-
mented) labeled training set. The energy scores are eval-
uated using an exponential moving average of the model
parameters for stability. Given the set of energy scores
{Si : i = 1, . . . ,M}, where M is the number of labeled
training data, we compute the median Sm and the interquar-
tile range Siqr. The confidence thresholds and the margin
for the energy regularization are then set as

τid ← Sm − Siqr · ζid,

τood ← Sm + Siqr · ζood

mood ← Sm + Siqr · ξood,

(8)

where ζid, ζood, and ξood are scalar hyperparameters. By us-
ing these adaptive metrics, we expect a tuned set of the hy-
perparameters ζid, ζood, and ξood to work for a wider set of
problems, compared to direct tuning of τid, τood, and mood.
Compared to the Otsu method [29] used for adaptive thresh-
olding on unlabeled data in OSSL [17, 43], our method has
no requirement for clearly bi-modal situations [20] since we
only consider ID training data. Moreover, in contrast to the
adaptive thresholds for pseudo-labeling used in closed-set
SSL [42, 46, 51], their purpose is to lower thresholds to as-
sign more pseudo-labels, which is not desired in OSSL.



Algorithm 1 SeFOSS training loop
Require: Trainable models f , g, and h, labeled training data

{(x1,y1), . . . , (xM ,yM )}, unlabeled training data {x̃1, . . . , x̃M̃},
scaling parameters wp, ws, we, and ww , learning rate scheme η(k)

1: ▷ Pretraining loop
2: for i = 1, . . . ,Kp do
3: Compute loss according to Algorithm 2 setting we = wp = 0
4: Update parameters of f , g, and h using SGD
5: end for

6: ▷ Compute confidence thresholds by looping through all labeled data
7: for i = 1, . . . ,M do
8: Si = s(g(f(xi)))
9: end for

10: Compute thresholds and margin τid, τood, and mood from Eq. (8)

11: ▷ Training loop
12: for i = Kp + 1, . . . ,K do
13: Compute loss using Algorithm 2 using wp = 1 and a tuned we

14: Update parameters of f , g, and h using SGD
15: end for

return trained classification model g ◦ f

3.5. Full training objective

The full training loss is a weighted sum of five terms:

l = ll + wplp + wsls + wele + wwlw, (9)

where wp, ws, we, and ww are scalar hyperparameters for
controlling the relative importance of each of the terms.
Here, ls is the self-supervision loss in (2), lp is the pseudo-
labeling loss in (4), and le is the energy regularization term
in (7). We also use a supervised loss for the labeled data:

ll =
1

B

B∑
i=1

H(yi, softmax(oi)), (10)

where B is the number of labeled data in each batch, yi ∈
RC is the one-hot label vector for labeled sample i, and
oi ∈ RC is the predicted logits for weakly augmented la-
beled sample i. Lastly, we add weight-regularization

lw =
1

2
∥θ∥2, (11)

θ being a vector of all trainable weights (excluding biases).

3.6. Data augmentation and optimization

Our method utilizes weak or strong data augmentation
for labeled and unlabeled data during training, where we
follow one of the proposed augmentation strategies from
FixMatch [37]. Weak augmentations involve a stochastic
flip-and-shift strategy. Strong augmentation stacks the weak
augmentation with two randomly selected transformations
from RandAugment [6], followed by Cutout [7].

For optimization, we use stochastic gradient descent
with Nesterov momentum [38]. We define a scheme for
the learning rate η where the learning rate stays constant

Algorithm 2 SeFOSS training step
Require: Strong augmentation β, weak augmentation α, labeled batch

{(x1,y1), . . . , (xB ,yB)}, unlabeled batch {x̃1, . . . , x̃µB}, scal-
ing parameters wp, ws, we, and ww , thresholds τid, τood, and mood,
backbone model f , prediction layer g, projection layer h

1: ▷ Cross-entropy loss for (weakly augmented) labeled data
2: for i = 1, · · · , B do
3: oi = g(f(α(xi)))
4: end for
5: ll =

1
B

∑B
i=1 H(yi, softmax(oi))

6: ▷ Predictions on unlabeled data
7: for i = 1, · · · , µB do
8: zi = f(α(x̃i)) ▷ Weak augmentation
9: vi = f(β(x̃i)) ▷ Strong augmentation

10: qi = g(vi)
11: wi = g(zi)
12: end for
13: Compute ls, lp, le, and lw according to (2), (4), (7), and (11)

return ll + wplp + wsls + wele + wwlw

in the pre-training phase and follows a cosine decay in the
subsequent training phase:

η(k) =

{
η0 for k < Kp

η0 cos
(
γ

π(k−Kp)
2(K−Kp)

)
otherwise

, (12)

where η0 is the initial learning rate, γ is a hyperparameter
that controls the decay rate, k is the current training step,
Kp is the number of pre-training steps, and K is the total
number of training steps.

Our training procedure is summarized in Algorithm 1,
and each training step is detailed in Algorithm 2, where we
denote the trainable parts of our model as f , g, and h. The
backbone model f : RD → Rd maps the input images of
dimension D to the feature predictions of dimension d. The
classification head, g : Rd → RC is a linear head that pre-
dicts logits given feature predictions. Finally, h : Rd → Rd

is a projection head that performs a linear transformation
on the feature predictions of strongly augmented data to the
feature space of weakly augmented data, cf. (2).

4. Experiments
We present experimental results for SeFOSS alongside

other SSL and OSSL methods across various datasets.
The OSSL methods that we compare with, MTCF [49],
OpenMatch [33], and T2T [17], all seek to produce well-
performing models in terms of both closed-set accuracy and
OSR. For comparison, we include closed-set SSL method
FixMatch [37] and a fully supervised baseline trained us-
ing only the labeled subset. We evaluate closed-set accu-
racy and OSR performance for each method, where OSR is
measured as the AUROC for classifying data as ID or OOD.
For our method, FixMatch, and fully supervised, we use the
free-energy score (3) to evaluate AUROC, whereas for the
others we use the scores proposed in the respective paper.



CIFAR-10 CIFAR-100 ImageNet-30SVHN Uniform noise

Figure 3. A few representative examples from the datasets used in our experiments.

4.1. Datasets

We use several datasets with different characteristics for
a complete performance assessment. For ID data, we use
CIFAR-10, CIFAR-100 [21] and ImageNet-30 [16]. The
CIFAR sets are of size 322 and comprise 10 and 100 classes,
respectively. Both have training sets of 50,000 images and
test sets of size 10,000. When CIFAR-10/100 is used as
ID, we use SVHN [28], uniform noise, and the correspond-
ing CIFAR set as OOD. SVHN consists of images showing
house numbers divided into 73,257 images in the training
set and 26,032 for the test set. The uniform noise dataset has
50,000 training images and 10,000 test images. ImageNet-
30 is a 30-class subset of ImageNet, selected such that there
is no overlap between the classes. Following [33], we use
the first 20 classes as ID and the last 10 classes as OOD.
Each class has 1,300 training images and 100 test images.
The images of ImageNet-30 are first resized so that the
shortest side gets a length of 256 while keeping the aspect
ratio. Each image is then center-cropped to size 2242.

The different open-set scenarios presented above pose
distinct challenges. CIFAR-10 and CIFAR-100 originate
from the same source set [21] and contain semantically sim-
ilar classes, e.g., CIFAR-10 contains dogs whereas CIFAR-
100 has images of wolves, making for a challenging OSR
problem. On the other hand, the similarities could po-
tentially increase the possibility of learning useful features
from the OOD set. Conversely, we have OOD data con-
stituting pure noise images containing no semantic content
or learnable features. However, they could cause unex-
pected behavior if misclassified and thus generate unwanted
training signals. The in-between scenario is the SVHN set
containing real images with learnable features but is se-
mantically very different from CIFAR-10 and CIFAR-100.
ImageNet-30 showcases how the methods perform on more
realistic data similar to that used in practical applications.
Example images are shown in Fig. 3.

4.2. Limitations

The experiments in this work only consider OSSL prob-
lems where the OOD data in training and testing follow the
same distributions. Furthermore, we do not evaluate our
method for very low-label regimes (i.e., only a few labeled
training samples per class). Lastly, we only use ID sets that
are balanced in terms of classes.

4.3. Implementation details

The architectures used for the experiments are WRN-28-
2 [50] (ID: CIFAR-10), WRN-28-8 [50] (ID: CIFAR-100),
and ResNet-18 [11] (ImageNet-30). In SeFOSS, when
CIFAR-10 is ID, we use we = 10−4, ws = 5.0, η0 =
0.03, γ = 7/8, B = 64, µ = 7, ξid = 0.2, ξood =
1.3, ζood = 1.9,Kp = 5 · 104,K = 4 · 105, wd = 5 · 10−4,
and SGD momentum 0.9. When CIFAR-100 is ID we use
ws = 15.0, wd = 10−4 and γ = 5/8 (following [41]),
keeping the other hyperparameters the same. For ImageNet-
30, we use the same hyperparameters as for CIFAR-10 ex-
cept that we use K = 2 · 105 because of the more expen-
sive training steps. We evaluate SeFOSS using an expo-
nential moving average of the model parameters (with mo-
mentum 0.999). For T2T and OpenMatch, we use the orig-
inal authors’ implementations and hyperparameters. For a
fair comparison, we implement MTCF with the FixMatch
backbone (with original FixMatch hyperparameters). Our
experiments with FixMatch use hyperparameters from the
original work. The fully supervised baseline is trained for
50,000 steps, uses batch size 256, and a learning rate from
(12) with γ = 7/8 and η0 = 0.03.

4.4. OSSL performance

CIFAR-10/100: The results from using CIFAR-10 and
CIFAR-100 as ID data are shown in Tab. 1. For CIFAR-
10, we use labeled sets of sizes 1,000 and 4,000, whereas,
for CIFAR-100, the sets have sizes 2,500 and 10,000. The
top row for each method shows closed-set accuracy in %,
and the bottom row shows AUROC for OSR. We evaluate
each combination of ID and OOD datasets for each method
using five different sub-samplings of the complete labeled
data. The reported numbers are the mean and standard de-
viation from these five training sessions. The results from
each session are evaluated by taking median performance
values from the last five model evaluations during training.

Tab. 1 shows that SeFOSS is the only method that
reaches good performances for both closed-set accuracy
and AUROC across all scenarios. MTCF shows overall
good AUROC but generally performs worse than SeFOSS
on closed-set accuracy. T2T reaches good results on a few
scenarios (e.g. CIFAR-100 with 10,000 labels with noise as
OOD) but does not consistently perform well across scenar-
ios. A drawback of T2T is that it displays high variance in
AUROC for many scenarios. OpenMatch shows very good
results in terms of closed-set accuracy when CIFAR-10 is



CIFAR-10: 1,000 labels CIFAR-10: 4,000 labels CIFAR-100: 2,500 labels CIFAR-100: 10,000 labels
CIFAR-100 SVHN Noise CIFAR-100 SVHN Noise CIFAR-10 SVHN Noise CIFAR-10 SVHN Noise

Fully supervised 54.51±1.82 54.03±2.05 55.39±2.67 75.57±2.88 76.70±2.27 77.62±1.79 34.62±1.43 33.19±1.80 34.03±1.50 59.12±0.91 60.32±0.54 59.40±2.11

0.62±0.01 0.61±0.04 0.56±0.22 0.74±0.02 0.80±0.03 0.78±0.15 0.61±0.01 0.57±0.05 0.34±0.19 0.71±0.01 0.76±0.08 0.77±0.17

FixMatch [37] 92.70±0.14 94.80±0.19 95.02±0.10 94.07±0.15 94.93±0.22 95.38±0.07 71.95±0.49 69.39±0.14 70.89±0.42 77.72±0.32 75.89±0.39 77.04±0.24

0.66±0.00 0.67±0.03 0.71±0.05 0.69±0.01 0.67±0.02 0.73±0.01 0.46±0.01 0.49±0.03 0.67±0.17 0.51±0.01 0.48±0.03 0.65±0.04

MTCF [49] 82.96±1.08 90.49±0.79 89.32±0.65 89.87±0.21 92.72±0.14 92.01±0.32 40.46±1.49 53.55±1.24 46.56±0.66 62.88±0.92 66.10±0.63 63.80±0.75

0.81±0.00 1.00±0.00 1.00±0.00 0.84±0.00 1.00±0.00 1.00±0.00 0.82±0.01 1.00±0.00 1.00±0.00 0.80±0.01 1.00±0.00 1.00±0.00

T2T [17] 86.99±1.09 91.83±1.20 91.13±1.12 86.11±1.91 92.16±1.00 92.91±0.57 38.30±9.72 58.44±18.14 51.33±9.59 62.02±3.73 70.93±4.38 73.01±0.37

0.57±0.02 0.96±0.07 0.72±0.26 0.57±0.04 0.80±0.24 0.90±0.19 0.63±0.08 0.80±0.40 1.00±0.00 0.59±0.08 0.66±0.42 1.00±0.00

OpenMatch [33] 92.20±0.15 94.12±0.34 94.07±0.08 94.82±0.21 94.73±0.10 94.76±0.15 20.84±8.65 18.66±2.59 16.10±5.70 40.95±20.44 32.69±9.68 21.19±8.55

0.93±0.00 0.98±0.03 0.68±0.40 0.96±0.00 1.00±0.00 0.58±0.24 0.66±0.05 0.69±0.10 0.85±0.18 0.77±0.11 0.68±0.19 0.50±0.32

SeFOSS (ours) 91.49±0.16 91.16±0.27 92.78±1.00 93.73±0.27 92.60±0.40 94.14±0.09 68.48±0.26 62.99±0.39 64.54±1.00 77.63±0.21 73.60±0.20 75.25±0.34

0.90±0.01 0.99±0.01 1.00±0.00 0.92±0.00 1.00±0.00 1.00±0.00 0.79±0.01 1.00±0.00 1.00±0.00 0.83±0.00 1.00±0.00 1.00±0.00

Table 1. Closed-set accuracy (top rows) and AUROC (bottom rows) for SSL and OSSL methods when using CIFAR-10/100 as ID data.
Boldface marks the best closed-set accuracies and underline marks the best AUROCs among OSSL methods.

MTCF [49] OpenMatch [33] SeFOSS (ours)

Accuracy 86.4±0.7 89.6±1.0 92.53±0.10

AUROC 0.94±0.00 0.96±0.00 0.97±0.00

Table 2. Closed-set accuracy and AUROC on ImageNet-30 dataset
when using 2,600 labels. Baseline results are taken from [33].

CIFAR-100: 2,500 labels CIFAR-100: 10,000 labels
CIFAR-10 SVHN Noise CIFAR-10 SVHN Noise

OpenMatch 63.33±0.86 63.41±1.32 58.97±0.52 75.89±0.23 75.56±0.17 75.08±0.28

0.86±0.01 1.00±0.00 0.42±0.47 0.92±0.01 1.00±0.00 0.24±0.20

SeFOSS 76.16±0.39 71.78±0.27 73.26±0.69 79.37±0.21 76.11±0.28 77.53±0.17

0.83±0.01 1.00±0.00 1.00±0.00 0.83±0.01 1.00±0.00 1.00±0.00

Table 3. Closed-set accuracy and AUROC with CIFAR-100 as ID
using an additional 50 labels/class as validation data. OpenMatch
uses the validation data for selecting the best model during train-
ing, and SeFOSS uses the data as extra labeled training data.

ID. OpenMatch however seems unable to handle noise as
OOD data since it displays poor and high-variance AUROC
for these scenarios. OpenMatch also drops in performance
in the CIFAR-100 experiments for both closed-set accu-
racy and AUROC, where it is outperformed by the fully
supervised lower bound for some scenarios. Slightly sur-
prisingly, the closed-set SSL method FixMatch obtains the
highest closed-set accuracy in nearly all scenarios. More
expected, however, is that FixMatch consistently gives poor
AUROC since it can freely assign pseudo-labels to OOD
samples, leading to erroneous and overconfident predictions
on these data. Existing works [17,33] have reported compa-
rably worse performance for FixMatch, the reason for this
is likely the use of hyperparameters that are different from
the original work (e.g., fewer training steps).

ImageNet-30: For the results on ImageNet-30, we com-
pare with numbers reported by [33]. The number of la-
beled data used here is 2,600. To make our results com-
parable with [33], we report the test performance also for

SeFOSS at the point of best validation performance given a
labeled validation set of 1,000 images. The reported num-
bers are means and standard deviations over three runs. The
results in Tab. 2 show that SeFOSS reaches better results
than MTCF and OpenMatch in terms of both AUROC and
closed-set accuracy. Note also that the hyperparameters
used for SeFOSS are the same as for CIFAR-10, indicating
that SeFOSS scales well to high-resolution data.

Avoiding collapse using validation data: To present the
fairest possible evaluation of OpenMatch, we note that the
poor results displayed in Tab. 1 when CIFAR-100 is ID are
many times a result of a training collapse from a much bet-
ter performance. This collapse can be avoided by using a
labeled validation set and selecting the model that yields
the best performance on the validation set during training.
The official code of [33] uses 50 images per class for this
purpose. The results from evaluating OpenMatch using this
procedure are shown in Tab. 3, where we see that Open-
Match displays much better results, although it does not
solve the poor AUROC for noise OOD. However, for fair-
ness, as SeFOSS does not suffer from training collapse and,
thus, has no need for a validation set, it is free to use the
additional data during training instead, resulting in a sig-
nificant boost to closed-set accuracy. As SSL methods are
meant for situations where labeled data are scarce or expen-
sive, assuming the presence of a sufficiently large labeled
validation set during training goes against this philosophy.

4.5. Influence of OOD data on SSL methods

From Tab. 1, we see that FixMatch displays high closed-
set accuracies for all datasets. These results contradict prior
works where OOD data in SSL are assumed to significantly
harm the closed-set performance [9, 12]. To investigate this
further, we study how a few SSL methods perform when
trained using unlabeled data containing different fractions
of OOD data. The SSL methods that we evaluate are Fix-



Match, UDA [44], and MixMatch [3]. We also include Se-
FOSS for comparison. The dataset used consists of CIFAR-
10 with 4,000 labels as ID data and CIFAR-100 as OOD
data. The unlabeled datasets with different fractions of
OOD data are created by adding CIFAR-100 data (up to
0.5) or removing CIFAR-10 data (above 0.5). For OSR, the
SSL methods are evaluated using the free-energy score (3).
The results are shown in Fig. 4.

Most notable from the results is that FixMatch and UDA
show no significant drop in closed-set accuracy when the
fraction of OOD data is below 0.4. MixMatch loses closed-
set accuracy faster, likely due to its use of mixup [52] aug-
mentations, which intuitively should not handle OOD data
well. For AUROC, we see a quick drop in performance for
all SSL methods as OOD data gets added to the unlabeled
set. It is also here we see a significant difference in the per-
formance of SeFOSS and the traditional SSL methods. Our
framework consistently shows high AUROC (around 0.9)
when the fraction of OOD data is below 0.7.

4.6. Ablation

SeFOSS uses three loss functions to learn from un-
labeled data, see Fig. 2. To study the importance of
these terms, we conduct experiments using 1) only self-
supervision on unlabeled data, 2) self-supervision and en-
ergy regularization, and 3) self-supervision and pseudo-
labeling. Additionally, we evaluate the OSR performance
of case 1) using the maximum softmax confidence to con-
firm that the free-energy score gives better performance.

The results in Tab. 4 show that using only the self-
supervision gives nearly as good results as using the entire
framework. Adding pseudo-labeling and energy regulariza-
tion barely affects the closed-set accuracy but gives better
AUROC by a couple of percentage points. This indicates
that self-supervision alone, at least under these conditions,
is a strong and safe training signal for OSSL.

Moreover, we study the effect of manually adjusting τid.
In Tab. 5 we see an increase in accuracy at the cost of a
reduction in AUROC when lowering τid. The increase in
accuracy can be explained by the model assigning pseudo-
labels to more data. However, when τid is low, many pre-
dicted inliers are likely outliers, causing weaker OSR per-
formance. These experiments are done with we = 0 to iso-
late the effect of τid.

CIFAR-10: 4,000 labels - OOD: CIFAR-100

ls le lp OSR-score Accuracy AUROC

✓ conf 93.87±0.17 0.89±0.00

✓ energy 93.87±0.17 0.90±0.01

✓ ✓ energy 93.74±0.17 0.90±0.01

✓ ✓ energy 93.85±0.12 0.91±0.01

✓ ✓ ✓ energy 93.73±0.27 0.92±0.00

Table 4. Evaluating different modifications of SeFOSS.
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Figure 4. Closed-set accuracy and AUROC using different frac-
tions of OOD data in the unlabeled set. ID data are CIFAR-10
with 4,000 labels. The OOD set is CIFAR-100.

CIFAR-100: 2,500 labels, OOD: CIFAR-10

τid -30 -25 -20 -15 -10 -5

Accuracy 68.93 68.44 68.51 68.35 70.21 69.25
AUROC 0.78 0.77 0.79 0.78 0.68 0.57

Table 5. Evaluating SeFOSS when manually adjusting τid.

5. Conclusion

This paper shows that self-supervision on all unlabeled
data combined with OSR predictions using the free-energy
score can be successfully applied in an OSSL context. Our
proposed framework reaches overall strong and consistent
results on a wide range of OSSL problems when consid-
ering both closed-set accuracy and OSR. In particular, it
displays SOTA performance on the more challenging tests
when CIFAR-100 is ID and the more realistic scenarios us-
ing ImageNet-30. However, we should note that the per-
formance is marginally below SOTA when CIFAR-10 is
ID. Moreover, if focusing solely on closed-set accuracy, we
show that SSL methods can perform equal to or better than
designated OSSL methods even when unlabeled data con-
tain OOD data, indicating that the challenge with OSSL lies
in ensuring OSR performance during employment.
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