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Abstract

Large-scale pre-trained vision-language models (VLM)
such as CLIP [37] have demonstrated noteworthy zero-
shot classification capability, achieving 76.3% top-1 ac-
curacy on ImageNet without seeing any examples. How-
ever, while applying CLIP to a downstream target domain,
the presence of visual and text domain gaps and cross-
modality misalignment can greatly impact the model per-
formance. To address such challenges, we propose ReCLIP,
a novel source-free domain adaptation method for VLMs,
which does not require any source data or target labeled
data. ReCLIP first learns a projection space to mitigate the
misaligned visual-text embeddings and learns pseudo la-
bels. Then, it deploys cross-modality self-training with the
pseudo labels to update visual and text encoders, refine la-
bels and reduce domain gaps and misalignment iteratively.
With extensive experiments, we show that ReCLIP outper-
forms all the baselines significantly and improves the aver-
age accuracy of CLIP from 69.83% to 74.94% on 22 im-
age classification benchmarks. Code available at https:
//github.com/michiganleon/ReCLIP_WACV .

1. Introduction
Large-scale pre-training vision-language models (VLM)

such as CLIP [37] have emerged recently and have formed a
new paradigm in the task of image classification. Instead of
annotating images with class labels, vision-language mod-
els match images towards text embeddings from their cate-
gory names. With semantic relationship from text and large-
scale pre-training over 400 million image-caption pairs,
CLIP is capable of performing accurate image classification
on novel target domains requiring zero training samples but
only a dictionary of potential category names.

However, we still observe domain gaps from both im-
age and text input that impact CLIP performance. The
existence of visual domain gap between source and tar-

“A photo of airplane”
“A photo of automobile”
“A photo of bird”
“A photo of cat”
“A photo of deer”
“A photo of dog”
“A photo of frog”
“A photo of horse”
“A photo of ship”
“A photo of truck”

Text Embeddings

Figure 1. the t-SNE plot of visual and text embeddings from CLIP
on CIFAR10 [26] test set. It is clear to see the misalignment in the
vision-language space: the text embedding of a class name is ad-
jacent to ones of other classes, but distant from image embeddings
in the same class.

get images has been a challenge for computer vision mod-
els [10, 49]. CLIP has been observed to have limitations
on visual embedding when data comes from less common
domains, e.g. PatchCamelyon [46], CLEVR [22], etc. On
the other hand, the domain gap in text is also a challenge
for vision-language models. The performance of CLIP is
often limited by the text embeddings rather than the visual
embeddings, especially on fine-grained datasets e.g. RE-
SISC45 [7], Birdsnap [2], where CLIP is able to create dis-
tinctive visual embeddings but the text embeddings from
class names fail to capture discriminative information.

In addition to the gaps in the visual and text domains,
we have identified significant misalignment between visual
and text embeddings across most datasets. Some recent
studies [31, 43] have also observed similar modality gaps
across various contrastive-learned visual-language models.
Figure 1 provides examples of this issue on the widely used
benchmark CIFAR10. We believe that there are two pri-
mary reasons for these misalignments. Firstly, text embed-
dings may be redundant, as CLIP was trained to work with
millions of captions and concepts, whereas target domain
categories might only activate limited feature dimensions,
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leaving the remaining ones inactive and redundant; these
redundant dimensions can dominate the similarity calcula-
tion. Secondly, visual embeddings may contain a significant
amount of class-agnostic information; since CLIP uses real
captions for training, it preserves rich information, such as
lighting, color, texture, and relationship, but only a small
portion of this information is crucial for classification.

Therefore, adaptation on both visual and text represen-
tations, and re-alignment between visual and text embed-
dings are crucial in improving the target domain perfor-
mance of vision-language models like CLIP. However, tra-
ditional domain adaptation methods have significant limi-
tations in this context. One major challenge is that these
methods either require target domain labeled examples (e.g.
semi-supervised domain adaptation [11, 38, 54]), or source
domain examples (e.g., unsupervised domain adaptation
[23, 34, 39]). Nonetheless, typical use cases of CLIP only
have access to unlabeled target images, which requires
source-free unsupervised domain adaptation that does not
need source data or labeled target data. Another challenge is
that existing methods assume conditions that may not hold
for vision-language models. For instance, most existing
methods [30,48,53] assume a lightweight classifier, while a
vision-language model uses a large text encoder to generate
classification weights based on category descriptions. Such
modules add flexibility and complexity to adaptation. Thus,
the lack of labeled data from source and target domains and
the presence of multiple adaptable modules make it essen-
tial to develop a novel source-free domain adaptation algo-
rithm for vision-language models.

More recently, POUF [43] also proposes to address the
misaligned embeddings of a vision-language model through
source-free adaptation. However, the unsupervised objec-
tive of POUF considers each target example independently,
instead of taking advantages from the neighboring relation-
ship over the entire embedding space. Moreover, POUF
cannot leverage multiple template augmented text embed-
dings as used in CLIP and our proposed method, which lim-
ited its performance during the adaptation.

To take advantage of the unified vision-language space,
and address the challenges on the visual and text domain
gaps and cross-modality misalignment, we propose Re-
CLIP, a novel source-free domain adaptation method to
Refine CLIP models. Firstly, ReCLIP addresses the mis-
alignment of visual and text embeddings from CLIP by
learning a projection subspace that removes redundant di-
mensions and class-agnostic information, and realigns em-
beddings. ReCLIP then utilizes the neighboring relation-
ship between aligned embeddings, and employs label prop-
agation to produce accurate pseudo-labels in the target do-
main. Secondly, ReCLIP leverages cross-modality self-
training with high-confidence pseudo labels to iteratively
refine embedding spaces and label assignments. Two par-

allel components are deployed to update the text and visual
encoders. The first component fine-tunes the text encoder
while freezing the visual to pull the text embedding of a
label closer to the embeddings of images assigned the la-
bel. Meanwhile, the second component fine-tunes the vi-
sual encoder so that the images under the same label get
closer to each other and to the multi-template augmented
text embedding of the label. During fine-tuning, each com-
ponent learns cross-modality consistency in the target do-
main, leading to new label assignments. ReCLIP selects
labels agreed upon by both components as high-confidence
ones for the next iteration. This iterative process improves
the quality of visual and text embeddings and significantly
enhances the assignment of pseudo labels.

Our contributions are summarized in the following:

• We proposed ReCLIP, a novel source-free domain
adaptation method for vision-language model, which
enhances the CLIP’s classification ability towards tar-
get domains without labeled data;

• We identified the cross-modality misalignment issue
between CLIP’s visual and language embeddings, and
address the issue with an efficient projection-based
component in ReCLIP;

• We proposed a novel cross-modality self-training algo-
rithm with high quality commonly agreed pseudo la-
bels leveraging cross-modality consistency to mitigate
domain gaps from both visual and text inputs;

• With extensive experiments and ablation studies, Re-
CLIP produces consistent and significant improve-
ments over CLIP and other baseline methods; ReCLIP
improves the average accuracy of CLIP from 69.83%
to 74.94% on 22 datasets.

2. Related Works
2.1. Large-Scale Vision-Language Models

Many large-scale pre-training vision-language models
have been recently proposed and demonstrate impres-
sive zero-shot classification ability, such as CLIP [37],
ALIGN [20] that perform large-scale contrastive train-
ing for strong generalization ability, and DeCLIP [10],
SLIP [33] that focus on efficient training with additional
self-supervised objectives. In this work, we adopt CLIP as
our main base model, as it is still the most representative
vision-language model with outstanding zero-shot classifi-
cation performance and publicly available model weights.
In addition, we will also demonstrate the effectiveness of
our method with different base models in ablation studies.
Augmented prompts through multiple templates. CLIP
makes classification prediction by matching the visual em-
beddings of query images with the text embeddings of cate-
gories names (wrapped in template text such as “A photo



of a {}”), and selects the category with the highest co-
sine similarity as prediction (please refer to the supplemen-
tary materials for more details on CLIP and VLM).

To further align these text embeddings with the pre-
training distribution generated from real captions, CLIP
prepares a long list of templates with various contexts for
each of the 27 benchmarks it evaluated on. Instead of us-
ing just one template, CLIP reported scores are produced
with the averaged text embeddings from a list of templated
prompts for each category to boost performance.
Limitations of CLIP. We observe the following condi-
tions where CLIP’s performance could be improved. 1)
Inaccurate Text Description. The accuracy of CLIP can
sometimes be drastically improved when the classification
weights are fully-supervised fine-tuned, e.g., On EuroSAT,
accuracy of CLIP improved from 59.9% to 98.2% [37].
This indicates that CLIP has good quality default visual rep-
resentations, but the zero-shot performance is limited by
the quality of text-generated classification weights. This
is often observed on fine-grained datasets (e.g., AID [51],
FGVC [32], EuroSAT [18], etc.), where the class names
can not fully capture the visual differences between classes
(e.g., “737-200” and “747-200” as class names from
FGVC); 2) Visual Gap. On some datasets, there are clear
gaps for CLIP to be further improved even after the fully su-
pervised fine-tuning on classification weight. For example,
fine-tuned CLIP achieves only 42.9% on Country211 [37],
and 85.97% on PatchCamelyon [46] (a binary classification
task with state-of-the-art system achieves 97.50%). This
indicates that the visual encoder of CLIP can also be fur-
ther improved. 3) Visual-Text Misalignment. Recent stud-
ies [31, 44] have also shown that the modality gap between
visual and text embeddings caused by contrastive pretrain-
ing could also limit the performance of CLIP. By modify-
ing contrastive temperature during pre-training [31], or by
minimizing the gap during few-shot fine tuning [44], these
works suggest that mitigating the modality gap can benefit
the classification ability of CLIP.

2.2. Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (UDA) is a task aimed
at improving target domain performance of models that
were pre-trained on a related but different source domain.
Many techniques have been developed [23,34,39,42,50], in-
cluding a recent method designed for visual-language mod-
els [27]. However, most of these techniques are not ideal for
the purpose of improving CLIP’s zero-shot performance, as
they often require access to source domain data, while we
do not require access to CLIP’s training data.
Source-Free Adaptation defines a more challenging set-
ting than UDA, where training examples are not available
in both the source and target domains. SHOT [30] is one of
the first Source-Free Adaptation (SFDA) methods. SHOT

updates the feature extractor with cluster-based pseudo la-
bels and information entropy loss, while maintaining the
classifier frozen. AaD [53] improves SHOT by replacing
the information entropy loss with a novel Attracting-and-
Dispersing (AaD) loss. This simple but effective approach
achieves state-of-the-art performance on the task of SFDA.

More recently, POUF [43] also proposes to mitigate
the misalignment embeddings through source-free domain
adaptation for vision-language models. But the optimiza-
tion objective of POUF has limited its performance in two
ways: 1) the training of POUF imposes dependency on
the number of text encoder inputs (prompts), which limits
POUF from using multiple templates to boost performance,
especially on datasets with large number of classes; 2) the
training objectives consider each image separately and fail
to leverage neighboring relationships.

3. Method
We describe our method ReCLIP, which Refines

CLIP’s classification performance by accessing only to the
pre-trained model and the following target domain data:

• Pre-trained vision-language model M = {MT ,MV },
with text encoder MT and visual encoder MV ,

• Unlabeled target images X = {x1, x2, ..., xn},
• Target class names C = {c1, c2, ..., cm}.

Our goal is to increase the classification accuracy of M
on target data X . As the first method that studies the source-
free adaptation problem for vision-language model, we ap-
proach this problem in two steps: (1) How to align visual
and text embeddings by removing class-agnostic and re-
dundant information in a learned projection space (Section
3.1). Then we show how to assign pseudo labels for images
in the projection space via label propagation (Section 3.2);
(2) How to utilize the pseudo labels to further mitigate the
visual and text domain gaps by efficiently updating both vi-
sual and text encoders, we propose a cross-modality self-
training algorithm which updates embeddings and pseudo
labels in a iterative fashion (Section 3.3).

3.1. Projection Space to Align Visual and Text

Figure 1 demonstrates the misalignment issue of text
and visual embeddings from CIFAR10 [26], which we have
also observed over all the ablation datasets. The plot in-
dicates that the text embeddings of different class names
are closer to each other than to images in the corresponding
categories. We also validate the misalignment with quanti-
tative statistics, as shown in Figure 2. The average cosine
similarity between text embeddings is 82%, while the aver-
age similarity between visual and text embeddings from the
same category is only 23%. This indicates that the unified
vision-language space of CLIP is far from well aligned.
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Intra-Class Visual-Text Similarity
Inter-Class Text-Text Similarity

Before Label Propagation
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Labeled Example

After Label Propagation

Pseudo Labels

Figure 2. Demonstration on Feature Redundancy Removal (left) and Label Propagation (right). Left: P0 shows the original distribution of
visual and text embeddings of CLIP, where text embeddings are close to each other distant from visual embeddings; P1 = UU⊤ removes
the class agnostic information from visual embeddings, and has pulled closer visual and text embeddings. P2 = U ′U ′⊤ separates the text
embeddings away by removing the redundant information from them. Similarity values demonstrated in this example is calculated based
on average statistics from CIFAR10 test set; Right: the Label Propagation process generates pseudo labels for unlabeled training images by
propagating label information from labeled text embeddings (categories names) to unlabeled visual embeddings (training images) through
nearest-neighbor connections.

As highlighted in Section 1, although the visual and text
embeddings from CLIP convey rich information, much of
them could be redundant and class-agnostic to target classi-
fication tasks. This redundancy can result in misalignment
between the text and visual embeddings. We hence pro-
pose a projection-based method to eliminate the redundancy
from both visual and text embeddings.
Remove class-agnostic information from visual embed-
dings. A straightforward way to remove class-agnostic in-
formation from visual features is just to project all the vi-
sual embeddings onto the span of text embeddings. As-
suming we have a d dimensional representation space
Rd, and we have m classes whose text embeddings are
T = [t1, ..., tm] ∈ Rm×d, where ti = Mt(ci) for i ∈
{1, 2, ...,m}. With Singular Value Decomposition

U, S, V = svd(T )

we get U = [e1, e2, ..., em] as the orthonormal basis of the
span of T , which defines a projection matrix P1 = UU⊤.
Then, ∀f ∈ Rd, we can calculate f ′ = fP1 with

ek · (f − f ′) = 0,∀k ∈ {1, ...m}

where f − f ′ is the class-agnostic information that does not
contribute to the classification. As shown in Figure 2, P1 in-
creases the average similarity between images and text em-
beddings from the same category to 92.96% on CIFAR10.
Remove redundant information from text embeddings.
As suggested in Principal Component Analysis, the first
dimension e1 of the outer-space basis U will be the ma-
jor component that most {t1, ..., tm} overlap on. Remov-
ing the major component e1 will make all text embed-
dings nearly perpendicular to each other. Therefore, with
U ′ = [e2, e3, ..., em] we define a new projection matrix
P2 = U ′U ′⊤. As shown in Figure 2, P2 successfully sep-
arates the text embeddings from different classes to an av-
erage cosine similarity of 0.05%, while maintaining high
intra-class visual-text similarity at 90.19% on CIFAR10.

In addition to the improvement of CIFAR10 statistics,
experiments on pseudo label generation also indicate the ef-
fectiveness of embedding space induced by P2 in improving
clustering performance, as demonstrated in Section 4.3.2.

3.2. Pseudo Label Generation for VLM

The projection matrix P2 removes the redundancies and
aligns visual and text embeddings, which enables the gen-
eration of pseudo labels through Label Propagation [19],
which is a semi-supervised learning method that propagates
label information from labeled to unlabeled data points
through nearest neighbor connections, as demonstrated in
Figure 2. Although in source-free adaptation we do not
have access to labeled data points, the embedding align-
ment through P2 has enabled us to treat text embeddings
from class names as labeled points, and visual embeddings
from images as unlabeled points.

With labeled examples {t̂i}mi=1 (class name embeddings)
and unlabeled examples {v̂j}nj=1 ( image visual embed-
dings), we make the union set L:

L = [t̂1, t̂2, ..., t̂m, v̂1, v̂2, ..., v̂n] ∈ Rd×(m+n)

Following Label Propagation [19], we first produce affin-
ity matrix Ak through k−nearest neighbor affinity ranking
Ak = topk(L⊤L) where topk(·) is an operation that keeps
the top k highest value per row from the full affinity ma-
trix L⊤L. Then, with normalization and symmetrization,
we have:

W = D− 1
2 (Ak +A⊤

k )D
− 1

2

where D := diag(W1m+n) is the degree matrix, 1m+n is
the all-ones (m+n)−vector, andW is the normalized adja-
cency matrix that defines the random walk probability. With
an label matrix Y ∈ R(m+n)×m is defined with elements

Yji :=

{
1, if j = i, j ≤ m

0, otherwise
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Figure 3. Flow Chart of ReCLIP-V and ReCLIP-T. Orange symbols describe the loss and gradients path of ReCLIP-V, and blue symbols
describe the loss and gradients path of ReCLIP-T. Black symbols describe the common steps that both ReCLIP-V and ReCLIP-T have.

ReCLIP-VReCLIP-T

Pseudo LabelsPseudo Labels

Update Both Models with Commonly Agreed Labels

… …

Figure 4. Flow Chart of Pseudo Labels Sharing. The cross-
modality self-training algorithm merges the pseudo labels from
ReCLIP-T and ReCLIP-V at the end of each epoch and updates the
encoders only on high-confidence pseudo labels agreed by both.

where Yji is 1 for the text embedding entries at the corre-
sponding column, and 0 otherwise. Then, the pseudo label
vector Z can be estimated by solving the random walk prob-
lem with initial state Y , propagation probability matrixW
and diffusion magnitude α:

Z := (I− αW)−1Y (1)

where (I − αW)−1 is the closed-form solution to the ran-
dom walk problem. As (I − αW) ∈ Rm+n is not sparse,
and therefore the calculation of its inverse matrix is very
time consuming, we use conjugate gradient (CG) to approx-
imately solve Equation 1, following the suggestion from
[19]. Finally, with Equation 1 solved, the pseudo label can
be given by

ỹj := argmax
i

zm+j,i

where ỹj is the pseudo label of image xj , and zji is the (j, i)
element of matrix Z.

3.3. Source-Free Adaptation for Vision-Language
Model via Cross-Modality Self-Training

Vision-language models present a new challenge to
adaptation algorithms, where both visual and text encoders
need to be adapted. In this section, we discuss how to miti-
gates the domain gaps of visual and text domains, and pro-
pose a cross-modality self-training algorithm with pseudo
labels from 3.2 to iteratively update the label assignments,
and the visual and text encoders.

The self-training algorithm of ReCLIP consists of two
parallel components: ReCLIP-T aims at closing the text do-
main gap by pushing text embeddings towards visual em-
beddings of the same class, by fine-tuning the text encoder
with the visual encoder frozen. ReCLIP-V aims at closing
the visual domain gap by pushing visual embeddings of the
same class closer to each other, by fine-tuning the visual
encoder with the text encoder frozen. On top of ReCLIP-V
and ReCLIP-T, we integrate the commonly-agreed pseudo
labels to produce high-confidence training signals. For in-
ference, we add the prediction logits from both ReCLIP-V
and ReCLIP-T to make the final prediction.
ReCLIP-T: Text Encoder Training. We optimize the
text encoder Mt with simple cross-entropy loss LossT :=
CE(Ŷ T , Ỹ ) between pseudo label Ỹ and cosine similarity
prediction logits Ŷ T = [v̂1, ..., v̂n]

⊤[t̂1, ..., t̂m]. The objec-
tive of adaptation on the text encoder is to push text em-
beddings {t̂i} closer to the image embeddings {v̂j} from
the same class based on pseudo label assignments Ỹ T . In
Figure 3 we present the details of ReCLIP-T, the detailed
algorithm is provided in the supplementary materials.
ReCLIP-V: Visual Encoder Training. The goal of visual
encoder adaptation is to push visual embeddings {v̂j} from



the same class to be closer to each other, to form a bet-
ter feature space for classification. As contrastive loss is
expensive and applying constraints on batch size, we have
instead chosen to push visual embeddings closer to the cen-
ter of its class instead of other visual embeddings as an al-
ternative resort. To be specific, in ReCLIP-V we optimize
the visual encoder Mv with cross-entropy loss LossV :=
CE(Ŷ V , Ỹ ) between pseudo label Ỹ and cosine similarity
logits Ŷ V = [v̂1, ..., v̂n]

⊤[ŵ1, ..., ŵm], where ŵ1, ..., ŵm

are the class centers calculated based on Ỹ . In Figure 3 we
present the details of ReCLIP-V, the detailed algorithm is
provided in the supplementary materials.
High-Confidence Pseudo Labels Sharing. ReCLIP-V
updates the similarities among visual embeddings with
LossV , while ReCLIP-T updates the projection matrix and
text embeddings with LossT . As these two modules sep-
arately optimize the visual and text encoders with differ-
ent objectives, their pseudo labels may start to diverge af-
ter a certain number of epochs, resulting in different views
where only the commonly agreed samples are likely to be
correctly classified. As such, ReCLIP collects pseudo la-
bels from both ReCLIP-V and ReCLIP-T at the end of each
epoch, and updates both models with only the commonly
agreed pseudo labels Ỹ , as illustrated in Figure 4. The de-
tailed algorithm is provided in the supplementary materials.

4. Experiment and Results
Baselines We use the following methods for comparison:
1) CLIP [37]: State-of-the-art zero-shot image classifica-
tion model. We choose CLIP with ViT/L-14 architecture as
the main baseline model for comparison and adaptation. We
report both published results from Radford et al. [37] and
our reproduction, denoted as report and multi respectively.
Both report and multi are prepared with the official prompt
template lists provided by Radford et al. [37]. In addition,
we also report the results we reproduced with a single tem-
plate (“A photo of a {}”), denoted as single;
2) AaD [53]: State-of-the-art SFDA method. We adapt the
official code to apply it on CLIP and our benchmarks;
3) POUF [43]: A recent SFDA method that also aims
to mitigate misaligned visual and text embedding spaces.
Since POUF does not report on the benchmarks where CLIP
has published scores, we produce its results on these bench-
marks using its official code. We report the best performing
version of POUF which fine-tunes the entire model.
Evaluation and Datasets. 1) Main Results: for SFDA
comparison between ReCLIP, POUF, AaD and base model
CLIP, we use an abundant and comprehensive list of 21
common image classification benchmarks out of the 27
benchmarks from Radford et al. [37], except the 6 datasets
where CLIP are evaluated on the custom splits or proto-
cols which are not released at the time of this submis-
sion (KITTI [16], UCF101 [40], VOC2007 [15], Kinet-

ics700 [4], HatefulMemes [24], CLEVR [22]). In addi-
tion to the ablation dataset AID [51] we use for hyper-
parameters selection, SFDA evaluation is performed on 22
benchmarks in total. 2) Comparison with POUF: For ad-
ditional comparison with POUF on its published scores, we
evaluate ReCLIP on Office-Home [47], which contains four
different domains: Art (Ar), Clipart (Cl), Product (Pr) and
Real-World (Rw). 3) Ablation Studies: we choose AID,
CIFAR10, CIFAR100 and SUN397 as ablation datasets to
represent datasets with different sizes and characteristics.
For more details on evaluation datasets, please refer to sup-
plementary materials.

For SFDA evaluation in Section 4.1, AaD and ReCLIP
use CLIP-multi as base model, and POUF uses CLIP-single
due to its design. For experiments on Office-Home, both
ReCLIP and POUF use CLIP-single as base model.

Unless otherwise specified, we perform our experiments
in transductive manner, where SFDA methods ReCLIP,
POUF and AaD first perform adaptation on the unlabeled
test data of each dataset, and then the adapted models are
evaluated on the same test data following the standard CLIP
inference protocol. For all benchmarks, we use top-1 clas-
sification accuracy as our metric,
Implementation Details For the self-training of ReCLIP,
we fine-tune the layer-normalization [1] weights with other
weights frozen, as it is shown to be one of the most effec-
tive and stable option to adapt models with noisy super-
vision [48]. For the SFDA evaluation, we use AID [51]
to select the best hyper-parameter for ReCLIP, POUF and
AaD. We then use the same set of hyper-parameters for
all 22 datasets during the evaluation. We match the max-
imum adaptation steps for all methods to be the same,
as min{5000 iterations, 50 epochs}. For the evaluation on
Office-Home, we select the hyper-parameter on the Real-
World (Rw) domain and use the same hyper-parameters
across all domains for evaluation. For details on exact
hyper-parameters used in experiments, ablation studies on
choices of learnable modules, and the setup of Label Prop-
agation, please refer to supplementary materials.

4.1. Main Results

In Table 1 we present the SFDA accuracy of ReCLIP,
AaD and POUF over 22 datasets. Besides the accuracy from
the final epoch of self-training, we report the accuracy from
the peak-performing epoch for AaD, POUF and ReCLIP as
well, denoted as peak.

ReCLIP achieves consistent and significant improve-
ments over CLIP on 21 datasets and comparable perfor-
mance on Country 211. ReCLIP improves the averaged
top-1 accuracy of CLIP by 5.11% and 6.02% at the final
and peak epochs respectively over the 22 datasets without
accessing any labeled data, which outperforms both base-
line adaptation methods AaD, POUF by clear margin.
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CLIP-report 70.08 - 48.30 92.6* 96.20 77.90 32.70 55.30 59.90 57.50 36.1* 78.7* 92.90 50.30 75.30 87.20 93.50 58.80 64.00 71.60 77.3* 99.30 67.70
CLIP-single 65.53 61.30 51.88 92.02 95.19 77.18 25.78 52.50 56.03 52.22 30.18 74.19 92.56 45.57 73.46 52.63 93.21 57.75 52.39 63.29 76.45 99.47 66.42
CLIP-multi 69.83 68.73 52.48 91.63 95.60 78.22 31.84 55.37 60.00 56.39 31.59 79.04 93.08 50.59 75.52 76.23 93.62 62.43 68.92 69.66 77.88 99.36 67.97

AaD 46.53 69.83 52.42 91.45 96.54 80.18 0.47 55.43 11.12 16.91 32.37 78.61 0.99 51.26 0.11 89.81 93.62 49.95 49.92 2.51 0.52 99.41 0.25
AaD peak 71.79 70.33 52.58 91.93 96.55 80.46 31.90 55.59 76.18 55.67 32.43 79.22 93.04 52.83 75.53 91.95 93.73 64.03 68.97 71.01 77.96 99.42 67.96

POUF 69.73 64.83 52.91 92.97 96.06 80.39 28.19 56.65 67.95 55.92 32.88 75.62 92.71 51.47 73.05 91.22 94.20 66.57 48.22 67.54 76.72 99.50 68.38
POUF peak 69.76 64.87 52.96 92.97 96.06 80.39 28.22 56.75 67.95 55.92 32.91 75.62 92.73 51.47 73.06 91.22 94.20 66.75 48.60 67.54 76.72 99.53 68.38

ReCLIP 74.94 77.97 52.96 93.02 96.95 82.32 31.92 60.85 78.75 58.07 36.63 82.05 94.15 66.81 75.81 90.88 95.61 70.15 73.48 78.41 77.96 99.58 74.41
ReCLIP peak 75.85 79.27 53.28 93.10 97.04 83.42 31.95 61.38 79.94 58.29 38.70 83.14 94.18 69.14 76.01 97.11 96.05 70.56 73.48 79.31 79.26 99.59 74.53

Table 1. Classification accuracies (%) on 22 benchmarks. * on FGVC, Caltech101, Oxford-IIIT Pet and Flowers102, CLIP reported
mean-class-accuracy. All other scores in this table are top-1 accuracy.

Avg Ar Cl Pr Rw
CLIP single 82.45 82.70 68.10 89.10 89.90

POUF-prompt 84.28 83.70 71.20 91.40 90.80
POUF 86.10 86.20 73.80 92.70 91.70

Label Propagation 84.94 83.27 73.49 91.89 91.09
ReCLIP 87.00 86.11 75.97 93.90 92.01

Table 2. Comparison of ReCLIP and published scores from POUF
[43] on Office-Home [47], both use CLIP-single as base model.

AaD achieves 1.96% improvements over CLIP at its
peak epochs. However, it encounters drastic performance
drops at final epochs that lose 25.26% of the averaged ac-
curacy, due to collapsed unsupervised training on target
datasets such as Food101, SUN397, ImageNet, etc. Mean-
while, ReCLIP maintains the performance at final epochs,
with only 0.91% differences from the peak epochs. These
results suggest the effectiveness of the high-quality com-
monly agreed pseudo labels of ReCLIP in stabilizing the
noisy self-training and preventing model collapse.

POUF achieves 4.20% improvement over its base model
CLIP-single. However, such improvement is counteracted
by the inability to employ multiple prompts to enhance
text embedding quality, as suggested by CLIP [37]. Mul-
tiple templates create a large number of prompts, which
are not likely to fit in the same mini-batch for text en-
coder optimization. ReCLIP also experiences this limitation
when fine-tuning the text encoder. However, thanks to the
dual-component structure of ReCLIP, although ReCLIP-T
also only use single template for text-encoder optimization,
ReCLIP-V can still take advantage of the multiple template
augmented text embeddings and provides better pseudo la-
bels to ReCLIP-T through pseudo-label sharing. In addition
to the advantage brought by multi-template augmented text
embeddings, ReCLIP also takes advantage from the neigh-
boring relationships over the entire visual-text embedding
space, while POUF does not, which has also contributed to
the better performance of ReCLIP. More evidence and dis-

CIFAR10 CIFAR100 AID SUN397
Vanilla CLIP 95.54 76.48 64.87 67.25

Label Propagation 96.38 80.66 74.73 70.54
ReCLIP-V 96.69 80.84 79.47 67.15
ReCLIP-T 96.50 81.10 79.07 70.12

ReCLIP (w/o Label Sharing) 97.40 82.80 80.01 71.10
ReCLIP (w/ Label Sharing) 97.48 84.14 82.53 71.34

Table 3. Comparison of classification accuracy with different ver-
sion ReCLIP on ablation datasets. ReCLIP with Label Sharing
(Figure 4) is shown to be most effective compared to ReCLIP-V,
ReCLIP-T (Figure 3) and their simply assembled predictions (Re-
CLIP w/o Label Sharing).

cussion on this are covered in Section 4.2.
Country211 is designed to predict geo-location based on

visual appearance, while CLIP might tend to describe the
image from actual content and texture. As shown in [37],
CLIP can only achieve 42.9% after its classifier is fine-tuned
in the fully supervised way. Therefore, it is challenging to
obtain improvement during source-free domain adaptation.

4.2. Comparison with POUF

In Table 2 we present the comparison between the pub-
lished scores of POUF and ReCLIP on the Office-Home,
where both methods use CLIP-single (ViT/B-16) as base
model. We also include the Label Propagation pseudo la-
bel accuracy generated on our projected CLIP embeddings
prior to any updates on the base model. It is shown that the
Label Propagation accuracy already outperforms POUF-
prompt, which fine-tunes the learnable text prompt. More-
over, ReCLIP achieves clear improvement over POUF over
most of the domains, with 2.17%↑ on Cl, 1.20%↑ on Pr,
0.31%↑ on Rw and on-par performance on Ar. These re-
sults indicate that ReCLIP can still outperform POUF with-
out using multi-template augmented embeddings.

4.3. Ablations Studies

In this section, we present the ablation studies on com-
parison of different ReCLIP versions, pseudo label gener-



AID CIFAR10 CIFAR100 SUN397
Vanilla CLIP 68.80 95.59 78.21 67.97
Hierarchical Clustering 55.20 36.52 9.27 46.93
Spectrum Clustering 68.10 61.25 57.35 27.45
k-means Clustering 72.73 95.07 49.43 43.66
k-NN Classifier (P0) 72.30 93.74 69.46 60.72
k-NN Classifier (P1) 72.76 95.77 77.81 63.07
k-NN Classifier (P2) 72.43 95.76 78.19 63.29
Label Propagation (P0) 60.80 94.01 63.58 51.77
Label Propagation (P1) 60.43 96.23 45.41 33.41
Label Propagation (P2) 76.36 96.31 81.56 70.44

Table 4. Pseudo label accuracy with different methods. Label
Propagation on projection space P2 is shown to be the most effec-
tive and stable method in generating accurate pseudo labels.

ation, and ablation on various VLMs as base models. We
use AID, CIFAR10, CIFAR100 and SUN397 as our abla-
tion datasets, and the test set of each dataset is equally split
into two fixed partitions. We report the ablation results in
an inductive manner where models are first adapted on par-
tition 1 and then evaluated on partition 2. Note that results
in this section are not directly comparable to 4.1 because
the different evaluation partition.

4.3.1 Effectiveness of ReCLIP Components

In Table 3 we present the comparison between different ver-
sions of ReCLIP. As shown, Label Propagation can create
pseudo labels with significantly improved accuracy com-
pared to vanilla CLIP. On the top of Label Propagation, both
ReCLIP-V and ReCLIP-T (Figure 3) are shown to be effec-
tive in providing further improvements. In ReCLIP(w/o La-
bel Sharing) we present the result by simply assembling pre-
dictions from separately trained ReCLIP-V and ReCLIP-T
at inference time. Comparing the last two rows of Table 3
we observe that ReCLIP (w/ Label Sharing) has clear im-
provement over ReCLIP (w/o Label Sharing), which indi-
cates that the commonly agreed pseudo-labels stabilizes the
noisy adaptation process and improved both ReCLIP-V and
ReCLIP-T to achieve better performance.

4.3.2 Comparison on Pseudo Label Generations

In Table 4, we compare methods in pseudo label genera-
tion. For clustering based methods, we assign the same
pseudo labels for examples from the same cluster, based on
the in-cluster majority vote; For k-NN Classifier and La-
bel Propagation methods, we experiment them on original
CLIP feature space P0, and on projection spaces P1, P2 as
described in Figure 2. For k-NN Classifiers, we assign each
example with the major vote prediction within its k-nearest-
neighborhood, with k equal to the average sample count per
class. For Label Propagation on P0, we select the example
with the highest confidence from each class as the labeled
example to perform label propagation as a baseline. Label

CIFAR10 CIFAR100 AID SUN397
Init→ Adapt Init→ Adapt Init→ Adapt Init→ Adapt

SLIP (ViT-L/16) 89.45→ 91.80 56.69→ 67.61 48.13→64.07 55.56→ 65.28
DeCLIP (ViT-B/32) 90.57→ 94.50 66.58→ 77.10 53.53→65.93 63.05→ 66.90

CLIP (RN50) 71.46→ 82.73 42.32→ 53.15 53.43→65.97 59.76→ 65.38
CLIP (ViT-B/32) 89.83→ 92.15 65.25→ 71.09 60.83→76.80 62.96→ 68.30

Table 5. Ablation Studies on the effectiveness of ReCLIP on dif-
ferent model architecture and pre-training strategies.

Propagation on P1, P2 are as described in Section 3.1.
Table 4 indicates k-NN based methods achieve better

performance on projection spaces P1 are P2, which indi-
cates the effectiveness of P1, P2 in refining CLIP’s visual
embeddings. On Label Propagation methods, P2 gives a
significant improvement over P0, P1, indicating its effec-
tiveness in aligning CLIP’s visual and text embeddings.

4.3.3 Comparison on other Vision-Language Models

ReCLIP is designed to improve the classification perfor-
mance of visual-language models in general, not only on
CLIP. We tested the effectiveness of ReCLIP on SLIP [33]
and DeCLIP [29], both of these improved CLIP by adding
self-supervision learning objectives during pre-training. We
have also tested ReCLIP on other versions of CLIP with
smaller architectures. As shown in Table 5, ReCLIP
demonstrates steady and significant improvements on var-
ious vision-language models and architectures.

4.3.4 Runtime and Inductive Performance

Self-training of ReCLIP is very efficient, which completes
adaptation in only 0.5 to 5 GPU-Hour on a single V100
GPU, depending on the target dataset size. Note that this
adaptation time is a one-time effort on each target domain
and ReCLIP can then inference on unseen data from the
same domain without re-training. For complete runtime of
ReCLIP over each benchmarks and more inductive evalua-
tion results, please refer to the supplementary materials.

5. Conclusion
In this paper, we introduce ReCLIP, a novel solution on

source-free domain adaptation for vision-language models.
ReCLIP first uses a novel designed projection space to re-
aligns visual and text embeddings and to generate depend-
able pseudo labels for target classification tasks. ReCLIP
further applies cross-modality self-training with pseudo la-
bels, which iteratively enhances label assignments and vi-
sual and text embeddings. Compared to the previous meth-
ods AaD and POUF, ReCLIP provides an effective and sta-
ble solution to the source-free adaptation problem of vision-
language models. ReCLIP significantly improves CLIP,
increasing the average accuracy from 69.83% to 74.94%
across 22 datasets.
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Appendix I: Background on CLIP

CLIP performs contrastive learning over 400 millions
web-retrieved pairs of images and captions by pulling the
visual and text representation near if they are from the same
pair and away if they are not. At inference stage, CLIP
makes classification prediction by matching the visual em-
beddings of query images with the text embeddings of cate-
gories names (wrapped in template text such as “a photo
of {}”, or a list of templates and uses the averaged em-
bedding, as discussed in the main paper), and selects the
category with the highest cosine similarity as prediction, as
shown in Figure 5. CLIP is capable of performing classi-
fication over novel tasks without any training example, as
long as the category names are provided. CLIP has demon-
strated outstanding zero-shot classification accuracy, e.g.
76.3% top-1 accuracy on ImageNet without seeing any ex-
amples from the dataset. [37].

Visual
Encoder

Text
Encoder

A photo of Bird
A photo of Cat
A photo of Deer
A photo of Dog

Visual
Em

beddings

Cosine
Similarity

Predictions

Text
Em

beddings

Figure 5. CLIP performs classification on target classes by com-
paring visual embeddings with the text embeddings generated
from class names.

Appendix II: Algorithms

As described in Section 3.3 of the main paper, ReCLIP
is composed of two parallel components that are designed
for visual and text encoder fine-tuning, namely ReCLIP-V
and ReCLIP-T. On top of ReCLIP-T and ReCLIP-V, we in-
tegrate the pseudo labels by filtering the commonly-agreed
ones to produce high-confidence training signals for both
sides. In this Section, we present the detailed description of
ReCLIP-T and ReCLIP-V in Algorithm 1, and the pseudo
label sharing in Algorithm 2.

Appendix III: Evaluation Benchmarks

For the main result from the paper, we have evaluated
our model as well as the baseline methods on the validation
or test splits from 22 image classification benchmarks, ac-
cording to the setup as stated from Radford, et al [37]. The
22 benchmarks is composed of the one ablation datasets
AID [51] that we used for hyper-parameter selection, and
the 21 benchmarks (Caltech101 [28], CIFAR10 [26], CI-
FAR100 [26], ImageNet [12], SUN397 [52], Birdsnap [2],
Country211 [37], DTD [8], EuroSAT [18], FER2013 [55],
FGVC [32], Flowers [35], Food101 [3], GTSRB [41],
MNIST [13], Oxford Pet [36], PCam [46], SST2 [37], RE-
SISC45 [7], Cars [25], STL10 [9]) from the 27 benchmarks

CLIP reported in Radford, et al [37], except: i) KITTI [16],
UCF101 [40], VOC2007 [15], Kinetics700 [4] that are ob-
ject detection or video classification benchmarks that are
out of the scope of our discussion; ii) HatefulMemes [24]
and CLEVR [22], where CLIP uses custom splits that are
not released at the time of this submission. The detailed
statistics on the number of images and the number of classes
are reported in Table 6.

For comparison with POUF published score, we reported
our scores on the Office-Home datasets. Office-Home con-
tains 65 categories and 15588 images from four different
domains: 2427 Art images, 4365 Clipart images, 4439
Product images and 4357 Real-World Images.

Appendix IV: Implementation Details
As mentioned in the main paper, we use AID to choose

the best hyper-parameters for each baselines and evaluate
them with the same hyper-parameters across the 22 datasets
for SFDA evaluation.

For ReCLIP, we use learning rate of 10−3, weight de-
cay of 10−4, momentum of 0.9, batch size of 64, maximum
length of min{5000 iterations, 50 epochs} and SGD opti-
mization on both visual and text encoders. For Birdsnap,
Country211, SUN397 and ImageNet which have more than
200 classes, we use a batch size of 32 due to large mem-
ory occupation from text inputs to fit the training on a sin-
gle V100 GPU. For Label Propagation, we use propagation
strength α = 0.99 and neighbor size k = 20. For datasets
with more than 500 classes (Birdsnap, ImageNet), we no-
tice the accuracy of pseudo labels generated by label prop-
agation becomes unstable, and it requires additional hyper-
parameter tuning to achieve good performance. To maintain
stable performance, we turn off label propagation and sim-
ply use model predictions as pseudo labels on datasets with
over 500 categories (Birdsnap, ImageNet). For all other
datasets, we follow the exact process as described in Al-
gorithm 1 and 2.

For both AaD and POUF, we have tested different
hyper-parameters and report the the best performing set-
ting, with learning rate of 10−3, weight decay of 10−3,
momentum of 0.9, SGD optimization on AaD, and learn-
ing rate of 10−2, weight decay of 10−3, momentum of
0.9, SGD optimization on POUF. For both AaD and
POUF, we extended their default training length to match
our training length of ReCLIP, with batch size of 64 ×
min{5000 iterations, 50 epochs} steps on AaD, and batch
size of 32 × min{10000 iterations, 100 epochs} steps on
POUF.

For ReCLIP on Office-Home, we use the Real-World
(Rw) domain to choose the hyper-parameter. We use SGD
optimizer with learning rate of 10−2 on the visual encoder
and 10−3 on the text encoder, batch size of 64 and 5000
iteration as maximum step across all domains. For label



Algorithm 1 Visual and Text Encoder Self-Training: ReCLIP-V and ReCLIP-T
Require: Vision Language Pre-trained Model M = {Mv,Mt}
Require: Unlabeled Images X = {x1, ..., xn}
Require: Class Names C = {c1, ..., cm}
Require: Mode = ReCLIP-V or ReCLIP-T ▷ ReCLIP-V updates Mv with Mt frozen

▷ ReCLIP-T updates Mt with Mv frozen
for epoch← 1 to Max Epoch do
{t1, ..., tm} ←Mt({c1, ..., cm})
{v1, ..., vn} ←Mv({x1, ..., xn}) ▷ Calculate Visual and Text Embeddings
U, S, V ← svd([t1, ..., tm]), where U = [e1, ..., em]
P2 ← [e2, ..., em][e2, ..., em]⊤ ▷ Prepare Projection Matrix with Singular Value Decomposition
t̂i ← tiP2

∥tiP2∥

v̂j ← vjP2

∥vjP2∥ ▷ Align Visual and Text Embeddings in Projection Space

L← {t̂1, ..., ˆtm, v̂1, ..., v̂n}
Ỹ ← Label Propagation(L) ▷ Generate Pseudo Label through Label Propagation
if Mode=ReCLIP-T then

Ŷ ← [v̂1, ..., v̂n]
⊤[t̂1, ..., ˆtm] ▷ Generate Predictions through Cosine-Similarity

LossT ← Cross-Entropy(Ŷ , Ỹ )
Back-Propagation over Mt

else if Mode=ReCLIP-V then
wi ←

(∑
Ỹj=i vj

)
/
(∑

Ỹj=i 1
)

, for i ∈ {1, 2, ...,m}
ŵi ← wi

∥wi∥ for i ∈ {1, 2, ...,m} ▷ Calculate the average embeddings for each class i

Ŷ ← [v̂1, ..., v̂n]
⊤[ŵ1, ..., ŵm] ▷ Generate Predictions through Cosine-Similarity

LossV ← Cross-Entropy(Ŷ , Ỹ )
Back-Propagation over Mv

end if
end for

Algorithm 2 ReCLIP with Pseudo Label Sharing
Require: Component 1 M1 = {M1

v ,M
1
t } (for ReCLIP-V),

Require: Component 2 M2 = {M2
v ,M

2
t } (for ReCLIP-T)

Require: Unlabeled Images X = {x1, ..., xn}
Require: Class Names C = {c1, ..., cm}

Self-Training Adaptation Stage:
for epoch← 1 to Max Epoch do

Ŷ 1, Ỹ 1 ← ReCLIP-V(M1, X,C)
Ŷ 2, Ỹ 2 ← ReCLIP-T(M2, X,C) ▷ ReCLIP-V/T generate predictions Ŷ 1, Ŷ 2 and pseudo labels Ỹ 1, Ỹ 2.
Commonly Agreed Index Map Q← (Ỹ1 = Ỹ2) ▷ Boolean Index with True indicates Ỹ 1 agrees with Ỹ 2.
LossV ← Cross-Entropy(Ŷ 1[Q], Ỹ 1[Q])
LossT ← Cross-Entropy(Ŷ 2[Q], Ỹ 2[Q]) ▷ Only calculate loss on entries where Q is True (Ỹ 1 agrees with Ỹ 2).
Back-Propagate M1

v with LossV

Back-Propagate M2
t with LossT

end for

Inference Stage:
Ŷ 1 ← ReCLIP-V(M1, X,C) ▷ Generate inference predictions from ReCLIP-T/V
Ŷ 2 ← ReCLIP-T(M2, X,C) ▷ At inference time, ReCLIP-T/V skip the pseudo label generation.
Ŷ ← 1

2 (Ŷ
1 + Ŷ 2) ▷ Aggregate prediction logits from both ReCLIP-T/V for prediction.

return argmax
i

ŷji as prediction for image xj ▷ Y = {ŷji}, where ŷji is probability of image xj on class i.
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Image Number 1500 2,149 9,146 10,000 10,000 21,100 1,880 5000 3,574 3,333 6,149 25,250 12,630 50,000 10,000 3,669 32,768 1,821 25,200 8,041 8,000 19,850
Class Number 30 500 102 10 100 211 47 10 8 100 102 102 43 1,000 10 37 2 2 45 196 10 397

AaD (h) 1.19 0.49 0.56 0.98 1.26 1.26 1.30 0.42 4.39 0.71 0.71 1.24 1.24 1.29 1.29 1.27 0.77 1.31 0.38 1.34 1.26 1.30 1.32
POUF (h) 6.18 4.51 7.07 5.61 5.80 5.71 7.30 5.50 5.60 3.73 5.02 5.82 6.38 6.41 13.58 5.74 4.13 6.79 4.91 6.33 5.97 5.92 8.19

ReCLIP (h) 2.35 0.68 0.97 2.94 1.62 2.68 1.58 1.08 1.82 0.90 1.24 2.73 5.66 3.82 3.23 2.19 0.95 2.99 0.61 3.12 4.17 2.18 4.63

Table 6. Metadata and Runtime comparison of AaD, POUF and ReCLIP of the 22 Evaluation Benchmarks. Time reported in the unit of
hour (h).

propagation, we use k = 10 due to the smaller dataset size.

Appendix V: Additional Ablation Results
Choice on Learnable Modules

In Table 7, we evaluate different learnable modules by
comparing their fully-supervised fine-tuned performance.
As suggested in [48], fine-tuning the normalization weights
is shown to be efficient and stable, compared to fine-tuning
the entire weights in self-training of ReCLIP.

Recent research [21] as well as POUF [43] also suggests
that learnable prompts can also be effective in providing
stable and fast performance improvement during the fine-
tuning of Transformer [14, 45] based models. In Table 7,
we perform Visual Prompt tuning following [21], and our
own designed Text Prompt. Please refer to Appendix VII
for more details.

As shown in Table 7, fine-tuning Layer-Norm weights
from Visual Encoder has the best fully supervised accuracy
on both CIFAR10 and CIFAR100, while fine-tuning Layer-
Norm weights from Text Encoder has the best fully super-
vised accuracy on AID. As described in Section 2 from the
Main Paper, on some datasets (including AID), the perfor-
mance of CLIP is mainly limited by the poor quality text
embeddings from inaccurate class names. In this case, fine-
tuning the text encoder will achieve better performance as
we observed. Table 7 results suggest the necessity of fine-
tuning CLIP from both the visual and text side to handle
different scenarios.

Inductive Results

We perform the SFDA evaluation in Table 1 from the
main paper, to follow the protocols of AaD [53] and
POUF [43] and to fully utilize the test examples. How-
ever, ReCLIP can also be applied in the inductive manner,
so that the adaptation only has to be performed once for the
target domain, and the adapted model will be effective on
new and unseen examples of the target domain. In Table 8
we run ReCLIP in an inductive setting, where ReCLIP per-
forms self-training on the training split of a dataset (0.5 to 5

CIFAR10 CIFAR100 AID SUN397
Vanilla CLIP 95.54 76.48 64.87 67.25

Learnable Text Prompts 97.50 82.18 93.73 75.27
Learnable Visual Prompts [21] 96.70 80.68 74.27 68.09

Text Encoder Layer-Norm 97.32 83.30 94.8 78.47
Visual Encoder Layer-Norm 97.8 85.16 69.40 68.30

Table 7. Fully supervised fine-tuning accuracy of CLIP with dif-
ferent learnable modules on ablation datasets. On AID, fine-tuning
weights from Text Encoder Layer-Norm is shown to be most ef-
fective; On CIFAR10 and CIFAR100, fine-tuning weights from
Visual Encoder Layer-Norm is shown to be most effective.

CIFAR10 CIFAR100 AID SUN397
CLIP 95.60 78.22 68.73 67.97

ReCLIP (Transductive) 97.04 83.42 79.27 71.25
ReCLIP (Inductive) 96.92 82.30 79.87 74.53

Table 8. Inductive and Transductive performance comparison of
ReCLIP on ablation datasets.

GPU-Hour), and inference on the test split (similar to CLIP
inference time). ReCLIP achieves similar improvements in
the inductive setting as in the transductive setting.

Pseudo Label Quality

In Table 9 we report the pseudo label accuracy of Re-
CLIP. We report the pseudo label accuracy from ReCLIP
on the first epoch, before the self-training algorithm up-
dates the model weights. From Table 9 we observe that
the label propagation over projected visual and text embed-
dings has obtained ReCLIP pseudo labels with consistent
improved accuracy over CLIP, only except Birdsnap and
ImageNet which have more than 500 categories, as we dis-
cussed in Appendix IV. The results from Table 9 demon-
strate the effectiveness of our version of the label propaga-
tion method in generating reliable pseudo labels for vision-
language models. More discussion on pseudo label genera-
tion is also covered in Section 4.3.2 of the main paper.
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CLIP repro 69.83 68.73 52.48 91.63 95.60 78.22 31.84 55.37 60.00 56.39 31.59 79.04 93.08 50.59 75.52 76.23 93.62 62.43 68.92 69.66 77.88 99.36 67.97

ReCLIP (pseudo label) 72.54 74.50 43.25 91.91 96.56 81.40 26.30 59.04 73.36 57.15 36.33 82.55 93.95 60.64 25.11 82.85 94.77 62.46 68.86 77.63 77.66 99.52 70.54

Table 9. ReCLIP pseudo label Quality. Results are generated with vanilla CLIP ViT-L/16 checkpoint, on the first epoch of ReCLIP before
the training algorithms update the model weights.

Appendix VI: Time Analysis

We present the runtime required by SFDA methods,
namely AaD, POUF and ReCLIP, in Table 6. We matched
all methods to be at the same training steps for fair com-
parison. As shown by the result, AaD takes an average of
1.19 hours to adapt, ReCLIP takes 2.35 hours and POUF
takes 6.18 hours. ReCLIP is not much slower than AaD al-
though ReCLIP trains two sets of encoders at the same time,
except on datasets with more categories due to the time re-
quired for the Label Propagation process. However, POUF
is much slower than both AaD and ReCLIP, due to its less
efficient implementation. However, all three algorithms are
very efficient as the adaptation only has to be applied once
for each new target domain.

Appendix VII: Details on the design of learn-
able Language Prompt

What is Language Prompts

During the large-scale contrastive pre-training,
CLIP [37] was trained to match visual-text embed-
ding between training images with their caption sentences
such as ‘‘A Golden Retriever dog sitting
on grass’’. However, during inference time, category
descriptions are usually provided in the form of phrases
such as ‘‘Golden Retriever’’ or just ‘‘Dog’’
instead of captions in complete sentences. To mitigate
this gap, CLIP has proposed to use templates to wrap the
category description phrase into complete sentences to
generate better text embeddings.

For optimal performance, CLIP [37] further claims that
specific templates which provide contexts to the cate-
gory names might help generate better text embeddings
for classification. For example, CLIP finds the tem-
plate prompt ‘‘A photo of {category name}, a
type of pet’’ works the best for OxfordIII-Pet [36].
CLIP has designed different lists of template prompts for
all datasets it was evaluated on. The details can be found
on their official GitHub repository https://github.
com/openai/CLIP/blob/main/data/prompts.
md.

A Photo of Dog

Dog

t1

[EOS]

t2 t3 t4t* t5

Text Encoder

t

Category Name

Template
Prompt

Tokenized
Embeddings

Result Text Embeddings

[BOS]

t0

Figure 6. Demonstration of the design of Learnable Prompt. t∗

represents a learnable token embedding that is inserted at the be-
ginning of the sequence of inputs to the transformer-based text en-
coder. “BOS” and “EOS” stands for “beginning of sentence” and
“end of sentence” and they serve as the special tokens for the text
encoder to identify the beginning and end of the input sentence.

Learnable Language Prompts

As demonstrated by CLIP [37], the wisely chosen tem-
plate prompts might play a vital role in generating accu-
rate text embeddings. However, this process largely de-
pends on the heuristic design. Our goal for the learnable
language prompt design is to make the prompt learnable
and to avoid having different template prompts for differ-
ent datasets. Additionally, this can also be an efficient and
stable way to fine-tune the performance of CLIP.

We start from the default template prompt ‘‘A photo
of {category name}’’, and insert an additional
learnable token embedding t∗ at the beginning of the sen-
tence, right after the Begin-Of-Sentence (BOS) token, as
shown in Figure 6. t∗ is initialized with the same embedding
value of word ‘‘is’’ for reasonable performance before
it is fine-tuned. During the fine-tuning process, token t∗ is
made to be learnable while token embeddings for all other
words are fixed.

https://github.com/openai/CLIP/blob/main/data/prompts.md
https://github.com/openai/CLIP/blob/main/data/prompts.md
https://github.com/openai/CLIP/blob/main/data/prompts.md


Appendix VIII: Limitation and Future Work
As mentioned in the Implementation Details section, we

have observed that on datasets with more than 500 classes
(Birdsnap, ImageNet), the accuracy of pseudo labels gener-
ated by label propagation becomes unstable, and it requires
additional hyperparameter tuning to achieve good perfor-
mance. To maintain stable performance, we have turned off
label propagation and simply used model predictions as our
pseudo labels on datasets with over 500 categories. Studies
on how the hyper-parameters influence the label propaga-
tion performance on datasets with more than 500 categories
will be important future work to further improve ReCLIP.

Another future direction will be the utilization of aug-
mentation consistency. Augmentation Consistency has been
shown to be a very powerful unsupervised training sig-
nal and has been widely applied in unsupervised methods
[5, 6, 17]. Due to the scope and complexity of this project,
we have not explored the usage of augmentation consis-
tency in source-free domain adaptation. It will be important
future work to explore the combination of the current Re-
CLIP with augmentation consistency to further improve the
adaptation performance.
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