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Figure 1. Point-based Dynamic Radiance Fields for Long-Term Novel View Synthesis. Point-DynRF takes a monocular video following
dynamic objects, as shown in (a), and uses neural 3D points generated from the input video to efficiently represent dynamic radiance fields.
(b) We design a novel framework that samples a subset point cloud (green boxes) at each time step from the entire point cloud (a blue box)
and regresses dynamic radiance fields only on the scene surface where the subset point cloud are located. Especially with a wide-range
camera trajectory, Point-DynRF addresses the duplicating problem of the state-of-the-art method (red boxes).

Abstract

Dynamic radiance fields have emerged as a promising
approach for generating novel views from a monocular
video. However, previous methods enforce the geometric
consistency to dynamic radiance fields only between adja-
cent input frames, making it difficult to represent the global
scene geometry and degenerates at the viewpoint that is
spatio-temporally distant from the input camera trajectory.
To solve this problem, we introduce point-based dynamic
radiance fields (Point-DynRF), a novel framework where
the global geometric information and the volume render-
ing process are trained by neural point clouds and dynamic
radiance fields, respectively. Specifically, we reconstruct
neural point clouds directly from geometric proxies and op-
timize both radiance fields and the geometric proxies us-
ing our proposed losses, allowing them to complement each
other. We validate the effectiveness of our method with ex-
periments on the NVIDIA Dynamic Scenes Dataset and sev-
eral causally captured monocular video clips.

1. Introduction

Consider a monocular video recording of dynamic ob-
jects. While it is challenging to distinguish between static
and dynamic areas in a single frame, analyzing the entire
video sequence enables us to differentiate the background
from the moving objects. Moreover, we can also predict the
background outside a captured frame by assuming that the
background scene remains constant over time. This scene
reasoning ability enables us to identify the moving objects
and integrate partially available scene information, which is
crucial for understanding in-the-wild videos and scaling the
free-viewpoint rendering.

Existing novel view synthesis methods for monocular
videos often use separate modules for static and dynamic
regions, where view-dependent radiance fields are designed
for static regions and time-dependent radiance fields for dy-
namic regions [13, 22, 23, 25, 31, 39, 44, 47]. In this regard,
recent deformable NeRFs [12, 31, 32, 44] learn sufficient
view dependencies from small camera trajectories to rep-
resent the background, while representing the remaining re-
gions using time-dependent radiance fields. However, in
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the real world, there are many cases where the camera does
not follow a narrow trajectory, and deformable NeRFs fail
to distinguish between the background and dynamic objects
due to the lack of learning view dependencies.

On the other hand, flow-based methods [13, 22, 23, 25]
use additional supervisions from pre-trained depth [33], op-
tical flow [38] and semantic segmentation [16] estimation
networks to constrain the radiance field since identifying
moving objects and estimating their motion in monocular
videos are challenging. By imposing geometric constraints
on the radiance field, flow-based methods can design dy-
namic radiance fields for large scenes. Despite its scala-
bility, we observe that flow-based methods quickly degen-
erate for viewpoints in spatio-temporally distant from the
input camera trajectory, and the generated image is blurry
and sometimes contain duplicated objects. This is because
time-dependent radiance fields are trained by the optical
flow supervision to satisfy geometric consistency between
adjacent frames, which fails to incorporate global geometric
information of entire scene from wide-range camera trajec-
tories. Figure 1-(b) shows the problem of a state-of-the-art
dynamic view synthesis method [13] where a person is du-
plicated outside of the input frame and the background is
not preserved after the person walks by because of the du-
plicated person.

Motivated by our observations, we introduce point-based
dynamic radiance fields (Point-DynRF) to represent the en-
tire scene geometry and produce more realistic long-term
novel view synthesis results. Point-DynRF is built upon
the Point-NeRF [46] representation, which reconstructs 3D
neural point clouds and encodes the localized scene rep-
resentation from neighboring neural points. While Point-
NeRF aims at static scenes, we extend it to consider the
time domain where different subsets of neural point clouds
are sampled at each time step to represent time-varying radi-
ance fields. Specifically, we utilize a pre-trained depth esti-
mation network [33] and pre-defined foreground masks [13]
to initialize pixel-wise depth and rigidness of our neural
point clouds, respectively. Moreover, we propose a dy-
namic ray marching, where we march a ray over a subset
of the entire point cloud consisting of all background points
and the dynamic points corresponding to the rendering time.
As each subset of neural point clouds represents the ac-
tual scene surface of the corresponding rendering time, our
Point-DynRF can regress dynamic radiance fields only on
the scene surface at that rendering time and alleviate to gen-
erate of duplicated dynamic objects.

To train Point-DynRF, we simply modify the training ob-
jective of DVS [13] and jointly optimize the neural point
clouds and dynamic radiance fields, rather than solely su-
pervising the radiance fields using initialized depth and
foreground masks. Specifically, we train Point-DynRF to
align the initialized learnable depth and foreground masks

with the volume rendered depth and dynamicsness maps.
Through the joint optimization scheme, the global scene
geometry and dynamic radiance fields are further refined
and complement each other, addressing the degeneration
problems of previous methods in long-term dynamic view
synthesis. Extensive experiments on the NVIDIA Dynamic
Scenes [47] and several monocular video clips show the ef-
ficiency and effectiveness of our method.

2. Related Works
Neural representations for novel view synthesis. Novel
view synthesis aims to generate new views of a scene given
multiple posed images. To consider the arbitrary viewpoints
in three-dimension, multiple-view geometry is often uti-
lized and combined with image-based rendering methods
to synthesize realistic novel views [9, 10, 20, 34, 50]. More-
over, deep neural networks have been explored to improve
the visual quality of novel views by using explicit geomet-
ric proxies, such as multi-plane image [36, 42, 49], point
cloud [1, 40, 43], and voxel [12, 35].

Recently, coordinate-based neural representations [8,26,
27, 29] have achieved outstanding results in modeling the
scene as implicit scene representations. In the context of
novel view synthesis, Neural Radiance Fields (NeRF) [27]
has been proposed to model the scene as a continuous
volumetric field with neural networks. The success of
NeRF is attributed to the extension of neural represen-
tation design, which facilitates free-viewpoint rendering
with various applications, such as relighting [4], appear-
ance editing [24, 48], reflections [14], and generative mod-
els [5, 7, 28]. Despite its remarkable scalability, several
methods [19,46] focus on the fact that NeRF samples a large
number of unnecessary points for each ray. Specifically,
Point-NeRF [46] models a volumetric radiance field with
3D neural point clouds, avoiding ray sampling in the empty
space and encoding localized scene representations. Our
work extends Point-NeRF, encoding different scene repre-
sentations for static and dynamic regions by leveraging its
capability to encode localized scene representations.

Dynamic view synthesis for videos. Dynamic view syn-
thesis focuses on generating novel views with dynamically
moving objects at arbitrary viewpoints and time stamps.
Several works have been proposed to model time-varying
scenes on multiple time-synchronized videos [3,21,37,50],
sparse camera views [11, 17], stereo camera [2], and spe-
cific domain [6, 15, 41]. However, modeling neural scene
representation from a monocular video is more challenging
since it contains a single viewpoint for each time stamp.
This causes ambiguities that radiance can be changed in ei-
ther a view-dependent or a time-varying or both. To solve
this ambiguity, Yoon et al. [47] combines an explicit depth
estimation module to leverage geometric transformations
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Figure 2. An overview of network architecture. Our framework consists of three components. First, we initialize per-frame depth maps
Dn and foreground masks Mn for a given N frames. Then, we back-project each pixel of N frames to reconstruct our neural 3D point
clouds. Each neural point i contains its spatio-temporal locations (pi, ti), a point-wise rigidness γi, a randomly initialized neural feature
vector fi to represent the local scene representation. Then, we select a subset point cloud at a rendering time step t and assign sampling
points where the ray meets the neural points as they march. Finally, we regress a volume density and a radiance on both view-dependent
and time-dependent radiance fields. The volume density and radiance for each sampling point in the ray are integrated via volume rendering
to output an RGB color.

(i.e., warping) and to blend strategies for synthesizing novel
views of a dynamic scene, but it requires a time-consuming
preprocessing to generate manually annotated foreground
masks. Recently, flow-based methods [13, 22, 25, 45] di-
rectly regress 4D space-time radiance fields by using ad-
ditional geometric proxies, such as depth [33] and optical
flow [38] estimation networks. Geometric proxies are used
as additional supervision to learn their deformation module
and constrain temporal changes of a dynamic scene. Sev-
eral methods [12, 30–32, 39, 44] propose deformable neural
radiance fields by modeling a canonical template radiance
field and a deformation field for each frame. Our work also
uses geometric proxies for point cloud initialization, but we
optimize the dynamic radiance fields and geometric proxies
together based on the volume rendering process. Moreover,
point-based dynamic radiance fields allow us to incorporate
the entire scene geometry and regress the radiance fields
from the actual scene surface for each rendering time.

3. Method

Given a monocular video V = {I1, I2, . . . , IN} consist-
ing of N frames, our goal is to synthesize novel views at
arbitrary viewpoints and time steps. To achieve this, we de-
sign point-based dynamic radiance fields as shown in Fig. 2.
Our model is built on the Point-NeRF [46] representation
and extends it to consider time-varying radiance fields. We
briefly describe the volume rendering formulation in 3.1
and then explain how to extend Point-NeRF to consider the
time domain in 3.2. Finally, we illustrate the optimization
scheme of Point-DynRF in 3.3.

3.1. Volume rendering

We construct continuous volumetric fields for modeling
dynamic scenes, following the formulation in NeRF [27].
Given the camera center o ∈ R3 and viewing direction
d ∈ R2, each pixel’s RGB color C ∈ R3 is computed by
marching a ray r(s) = o+sd through the pixel and approx-
imate the integration over radiance and its volume density
{(rj , σj) ∈ R3×R | j = 1, . . . ,M} for M sampling points
in the ray as:

C(r) =
M∑
j=1

Tj(α(σjδj))rj , (1)

Tj = exp(−
j−1∑
k=1

σkδk), (2)

where α(x) = 1−exp(−x) outputs the opacity at each sam-
pling point, δj is the distance between two adjacent sam-
pling points and Tj represents a volume transmittance.

3.2. Point-DynRF Representation

Point-NeRF [46] is pre-trained on a multi-view stereo
dataset [18] or uses only points located on the actual surface
with high confidence from COLMAP. In dynamic scenes,
however, it fails to accurately regress the scene geome-
try since dynamic objects disrupt to estimate point-to-point
correspondences. To solve this ambiguity, we propose
Point-DynRF with associated neural point clouds, which are
initialized by imprecise depth maps and pre-defined fore-
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ground masks, and jointly optimize scene geometry and dy-
namic radiance fields.

Neural Point Clouds Reconstruction. Our neural point
clouds are reconstructed by depth maps {D1, ..., DN} and
foreground masks {M1, ...,MN}. We first initialize per-
frame depths by using disparity maps dispn obtained from
DPT [33] and convert it to depth maps with per-frame scale
sn and shift bn values as:

Dn(p) = sn/(dispn(p) + bn). (3)

Note that we design a more stable network by optimiz-
ing scale, shift, and disparity together rather than optimiz-
ing pixel-wise depth values individually. Per-frame fore-
ground masks are obtained as same as DVS [13], and we di-
rectly parameterize our point-wise rigidness γ with 1 for the
background and 0 for moving objects. Thus, we reconstruct
neural point clouds as P = {(pi, ti, fi, γi) | i = 1, ..., L},
where each point i is located at pi and captured at time steps
ti with a point-wise rigidness γi. We also use a neural fea-
ture vector fi, which are randomly initialized and parame-
terized to encode local scene representations. Since each
neural point is a one-to-one match to each pixel of input
frames, training the pi and γi of each neural point optimizes
the depth and foreground masks.

Dynamic Ray Marching. Our dynamic radiance fields
are regressed from a different subset of the entire point
cloud set P at each time step based on the sampling time
and the point-wise rigidness. Specifically, we select neural
points where their point-wise rigidness is higher than the
threshold λ = 0.5, or its temporal location is the same as
the sampling time as:

Pt = {(pi, ti, fi, γi) ∈ P | ti = t or γi > λ}, (4)

where neural points with γi is higher than λ to be back-
ground points to represent the static region whether the
position of the dynamic object changes with each subset.
Moreover, dynamic neural points do not represent the scene
surface from different viewpoints, resulting in avoiding un-
necessary ray sampling and not duplicating objects.

Neural Point Aggregation. After we select the subset
of the neural point cloud, Point-DynRF aggregates neural
points to output the density and radiance for each shading
point. Specifically, we follow the Point-NeRF [46] to query
K = 8 neighbor neural points for ray sampling, and we en-
code per-point local scene features with an MLP layer F for
each shading point x as:

fi,x = F (fi, x − pi). (5)

Volume Density Regression. We use density regression
MLP layers Gs and Gd for static and dynamic regions, re-
spectively. We first encode per-point time-invariant volume
density σs and time-varying volume density σd as:

σs
i,x = Gs(fi,x), (6)

σd
i,x = Gd(fi,x, t). (7)

Then, the time-invariant volume density σs
x and time-

variant volume density σd
x at the sampling point x is re-

gressed as:
σs

x =
∑
i

σs
i,x

wi∑
wi

, (8)

σd
x =

∑
i

σd
i,x

wi∑
wi

, (9)

where wi = 1
|pi−x| is for a distance-based weighted sum

that gives higher weight to neural points closer to x.

Radiance Regression. We regress a view-dependent ra-
diance rsx and a time-dependent radiance rdx by using MLP
layers Rs and Rd, respectively, as:

rsx = Rs(
∑
i

wi∑
wi

fi,x, d), (10)

rdx = Rd(
∑
i

wi∑
wi

fi,x, t), (11)

where d and t is the viewing direction and sampling time,
respectively.

Blending Weight Regression. We directly regress blend-
ing weights from the point-wise rigidness γi of neighboring
points as:

bx = 1[
∑
i

(
wi∑
wi

(1− γi)) > λ], (12)

where 1 equals to one if the condition is true. We define
the blending weight as 0 or 1 so that either static or dy-
namic radiance fields dominate at each shading point. To
optimize γi, we use the gradient clamping used in Point-
NeRF to

∑
i(

wi∑
wi

(1 − γi)) if MAX(σs
x , σ

d
x ) is larger than

a threshold 0.7 and there exists at least one dynamic point.

3.3. Training Objectiveness

In this section, we briefly demonstrate how we jointly
optimize dynamic radiance fields and neural 3D point
clouds. Specifically, we introduce reconstruction losses to
learn combined NeRF, static NeRF, and dynamic NeRF in
Sec. 3.3.1, scene geometry losses to reconstruct accurate
neural points in Sec. 3.3.2 and joint optimization of Point-
DynRF and neural 3D points in Sec. 3.3.3.

4



3.3.1 Reconstruction Loss

Combined NeRF We apply a reconstruction loss to dy-
namic radiance fields, which are a blend of view-dependent
and time-dependent radiance fields. To this end, we com-
bine two radiance fields with blending weights as:

C(r, t,Pt) =

M∑
j=1

Tj

(
α(σs

jδj)(1− bj)r
s
j + α(σd

j δj)bjr
d
j

)
,

(13)

Tj = exp

(
−

j−1∑
k=1

((σs
k(1− bk) + σd

kbk)δk)

)
, (14)

where C(r, t,Pt) is a volume rendered RGB value from a
ray r(s) = o + sd, rendering time t, and a subset point
cloud Pt. To ensure that the dynamic radiance fields accu-
rately reconstruct the input video sequence, we jointly train
view-/time-dependent radiance fields by applying a recon-
struction loss Lfull

rec as:

Lfull
rec =

N∑
i=1

∑
uv

∥C(riuv, i,Pi)− Iiu,v∥22, (15)

where riuv is a ray for pixel coordinates (u, v) in i-th frame
and Iiu,v is a ground-truth RGB value for pixel coordinates
(u, v) in i-th frame.

Static and Dynamic NeRF We leverage point-based neu-
ral scene representations to learn time-invariant radiance
fields (Static NeRF) and time-variant radiance fields (Dy-
namic NeRF), respectively. If we sample a subset point
cloud Pt,s consisting of only background points as:

Pt,s = {(pi, ti, fi, γi) ∈ P | γi > λ}, (16)

a volume rendered image contain only the background with
no dynamic objects. Likewise, if we sample a subset point
cloud Pt,d captured at a specific time t as:

Pt,d = {(pi, ti, fi, γi) ∈ P | ti = t}, (17)

Point-DynRF can render an image restricted to only the neu-
ral points at that moment. Figure 3 shows which subset
point clouds are used by combined NeRF, Static NeRF, and
Dynamic NeRF. Thus, each radiance field is regressed by
using Eq. 1 as:

Cs(r, t,Pt,s) =

M∑
j=1

T s
j (α(σ

s
jδj))r

s
j , (18)

Cd(r, t,Pt,d) =

M∑
j=1

T d
j (α(σ

d
j δj))r

d
j . (19)
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Figure 3. An overview of point cloud subsets for each NeRF.

Then, we apply reconstruction losses to each radiance
field as:

Ls
rec =

∑
i,u,v

∥Cs(riuv, t,Pt,s)−Iiu,v∥22∗1[M i
u,v > λ], (20)

Ld
rec =

∑
i,u,v

∥Cs(riuv, t,Pt,d)− Iiu,v∥22, (21)

where we only apply Ls
rec to background regions by using

a foreground mask, and 1[M i
u,v > λ] indicates whether a

rigidness value of pixel coordinates (u, v) in i-th frame is
higher than the threshold λ. Finally, our reconstruction loss
is formulated as:

Lrec = λfull
rec Lfull

rec + λs
recL

s
rec + λd

recL
d
rec. (22)

3.3.2 Scene Geometry Loss

Initialized depth maps well represent the scene geometry
but contain scale ambiguities with other frames. Therefore,
we use optical flow maps fgt from RAFT [38] to supervise
scale st and shift bt by applying a flow loss Lflow only for
background pixels as:

[u′, v′, z′]T = T−1
t′ TtDt[u, v, 1]

T , (23)

Lflow =
∑
uv

∥(u
′

z′
−u,

v′

z′
−v)−fgt∥∗1[M i

u,v > λ], (24)

where t′ indicates a time step for adjacent frames and Tt

is known camera parameters at t. Note that we detach the
gradient from back-propagating to the disparity so that only
the scale and shift values can be trained from the flow loss.

Moreover, we observe two cases that point-based ray
marching can miss the ray as shown in Fig. 4. While learn-
ing the scene geometry, some pixels may have large depth
values to satisfy the geometric consistency. As a result,
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(a) (b) (c) 

Figure 4. Missing rays. Assuming a ray is marched when it has
three neighbor points for a shading point. (a) If the depth value
is too large, the distance between neighboring pixels in 3D world
coordinates is larger than the querying radius and fails to march
the ray. Moreover, the subset point cloud is changed as the render
time varies, causing rays can be marched (b) or sometimes not (c).

neighboring pixels in the image plane are also outside the
query boundary, resulting in the ray can not be marched.
Therefore, we introduce Ls

miss, which is an ℓ2-loss to min-
imize the depth value corresponding to the pixel for which
the ray is not marched. Also, rays may not be marched
for different render times in the fixed-viewpoint due the dy-
namic ray sampling. To solve this problem, we introduce
Ld
miss, which is also an ℓ2-loss to maximize the rigidness

of a green point in Fig. 4-(b) to be one. Note that Ls
miss

and Ls
miss are introduced to deal with outlier cases, since

missing rays are rarely present in the entire training process.
Consequently, a scene geometry loss Lgeo is formulated as:

Lgeo = λflowLflow + λs
missL

s
miss + λd

missL
d
miss. (25)

3.3.3 Joint Optimization

We further introduce loss functions that optimize the dy-
namic radiance field and neural points together. Our joint
optimization losses are formulated in the same manner as
DVS [13]. However, we make a modification by intro-
ducing learnable per-frame depth and foreground masks, in
contrast to the supervised learning approach of matching the
volume-rendered depth D̃(r, t,Pt) and dynamicsness map
M̃(r, t,Pt) to the initialized depth and foreground mask.

Depth Adjust Loss We apply a depth adjust loss Ldepth

to train the depth map of i-th frame Di to match the ex-
pected depth D̃(r, t,Pt) as:

Ldepth =

N∑
i=1

∑
uv

∥D̃(riuv, i,Pi)−Di
u,v∥22, (26)

where Di
u,v is a depth value of pixel coordinates (u, v) in

i-th frame.

Mask Adjust Loss Similar to expected depth maps, we
use volume rendering for the blending weight to get the
dynamicness map M̃(riuv, i,Pi) and propose a mask adjust
loss Lmask to match the per-frame foreground mask.

Lmask =

N∑
i=1

∑
uv

∥M̃(riuv, i,Pi)−M i
u,v∥22. (27)

4. Experiments
4.1. Experimental Settings

Dataset. We evaluate our method on the Dynamic Scene
Dataset [47]. We also use the same evaluation protocol
in DVS [13], which evaluate the quality of the synthe-
sized novel views through PSNR, SSIM and LPIPS met-
rics with ground truth images. Note that we exclude the
Umbrella sequences since COLMAP estimates inaccurate
camera poses, failing to regress the scene geometry accu-
rately. Instead, we evaluate our method on several causally
captured monocular video clips, which are more realis-
tic videos and have a wide range of camera trajectories.
Causally captured videos provide various scene contexts
that can be happened in real-world scenarios, and COLMAP
accurately estimates camera poses.

4.2. Comparison to Baselines

We now compare our method with the state-of-the-art
methods on the NVIDIA Dynamic Scene dataset [47]. Ta-
ble 1 shows quantitative results, and Point-DynRF demon-
strates competitive performance with previous methods
across most scenes. Specifically, Point-DynRF outper-
forms all previous methods on the SSIM metric for all
scenes. However, due to the inaccurate camera pose es-
timated by COLMAP, the construction of neural points in
Point-DynRF is not optimal. As a result, the rendered posi-
tion of the dynamic object by Point-DynRF may differ from
the ground truth. In the Playground scene depicted in Fig. 5,
Point-DynRF generates a visually pleasing view but the po-
sition of the object is slightly shifted behind compared to the
ground-truth. In the Skating scene, Point-DynRF generate
realistic images, while flow-based methods like NSFF [22],
DVS [13], and RoDynRF [25] produce blurry images, and
deformable NeRFs such as HyperNeRF [31] and TiNeu-
Vox [12] struggle to represent the scene.

4.3. Long-Term View Synthesis

We evaluate our method and flow-based dynamic view
synthesis methods DVS [13], RoDynRF [25] and DynI-
BaR [23] on real-world scenarios with a wide-range camera
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Table 1. Quantitative results on NVIDIA Dynamic Scene dataset [47]. Image quality is measured by PSNR and LPIPS. Furthermore,
we show the average performance over all view changes at the end. Best results in each metric are in bold, and second best are underlined.

Methods PSNR(↑) / SSIM(↑) / LPIPS(↓)

Jumping Skating Truck Balloon1 Balloon2 Playground Avg

NeRF [27] + time 16.6 / 0.42 / 0.48 19.1 / 0.46 / 0.54 17.1 / 0.39 / 0.40 17.5 / 0.40 / 0.29 19.8 / 0.54 / 0.22 13.7 / 0.18 / 0.44 17.3 / 0.40 / 0.40
D-NeRF [32] 21.0 / 0.68 / 0.21 20.8 / 0.62 / 0.35 22.9 / 0.71 / 0.15 18.0 / 0.44 / 0.28 19.8 / 0.52 / 0.30 19.4 / 0.65 / 0.17 20.4 / 0.59 / 0.24
NR-NeRF [39] 19.4 / 0.61 / 0.29 23.2 / 0.72 / 0.23 18.8 / 0.44 / 0.45 17.0 / 0.34 / 0.35 22.0 / 0.70 / 0.21 14.3 / 0.19 / 0.33 19.2 / 0.50 / 0.33
HyperNeRF [31] 17.1 / 0.45 / 0.32 20.6 / 0.58 / 0.19 19.4 / 0.43 / 0.21 12.8 / 0.13 / 0.56 15.4 / 0.20 / 0.44 12.3 / 0.11 / 0.52 16.3 / 0.32 / 0.37
TiNeuVox [12] 19.7 / 0.60 / 0.26 21.9 / 0.68 / 0.16 22.9 / 0.63 / 0.19 16.2 / 0.34 / 0.37 18.1 / 0.41 / 0.29 12.6 / 0.14 / 0.46 18.6 / 0.47 / 0.29
NSFF [22] 23.9 / 0.80 / 0.15 28.8 / 0.88 / 0.13 25.4 / 0.76 / 0.17 21.5 / 0.69 / 0.22 23.8 / 0.73 / 0.23 20.8 / 0.70 / 0.22 24.1 / 0.76 / 0.18
DVS [13] 23.4 / 0.83 / 0.10 31.9 / 0.94 / 0.04 27.9 / 0.86 / 0.09 21.6 / 0.75 / 0.11 26.6 / 0.85 / 0.05 23.7 / 0.85 / 0.08 25.9 / 0.85 / 0.08
RoDynRF [25] 24.3 / 0.84 / 0.08 27.5 / 0.93 / 0.06 28.3 / 0.89 / 0.07 21.4 / 0.76 / 0.11 25.6 / 0.84 / 0.06 24.3 / 0.89 / 0.05 25.2 / 0.86 / 0.07
Point-DynRF (Ours) 23.6 / 0.90 / 0.14 29.6 / 0.96 / 0.04 28.5 / 0.94 / 0.08 21.7 / 0.88 / 0.12 26.2 / 0.92 / 0.06 22.2 / 0.91 / 0.09 25.3 / 0.92 / 0.08

NSFF [22] HyperNeRF [31] DVS [13] TiNeuVox [12] RoDynRF [25] Ours Ground Truth

Figure 5. Comparison to baselines on NVIDIA Dynamic Scene Dataset [47].
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Figure 6. Long-Term Novel View Generation. For a fixed cam-
era viewpoint at time t0, the first column shows the novel view at
time t0 and the second column shows the novel view at time t1.
DynIBaR is over-fitted on the input camera trajectory (green box)

trajectory. Point-DynRF can generate realistic novel views
for viewpoints far from the input camera trajectory in both
space and time because it leverages global scene geometry
(i.e., neural 3D points). Figure 6 shows the long-term view
synthesis results where DVS [13] has quickly degenerated
for unseen viewing directions and produces artifacts in the
background regions. Moreover, DynIBaR [23] fails to gen-
erate a dynamic object since it is highly over-fitted on the
input trajectory. On the other hand, our Point-DynRF effec-
tively captures both the moving object and the background.
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Figure 7. Extremely Wide-Range Camera Trajectory. DVS
produces duplicated dynamic objects in distant spatio-temporal lo-
cations from the input camera trajectory (green boxes). Moreover,
previous methods are quickly degenerated at the spatio-temporally
distant viewpoints.

We also observe that DVS [13] infinitely duplicates the
moving object and RoDynRF [25] is also degenerated when
a camera moves in an extremely single direction, as shown
in Fig. 7. This is due to geometric constraints focused on the
input camera trajectory, which fails to represent the global
scene geometry. Notably, our Point-DynRF generates more
detailed dynamic regions as well as static background re-
gions. These results confirm the superiority of our dynamic
ray sampling and joint optimization scheme, which incor-
porates the entire scene geometry.
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Initial Point Clouds Input Frame Optimized Point Clouds

Figure 8. Refinement of scale ambiguity. The initial point cloud
may not capture the complete scene geometry, but after optimiza-
tion, the refined point cloud is free from scale ambiguity.

(a) (b) (c) (d)

Figure 9. Refinement of depth map. For a input frame (a) and
initialized disparity map (b), optimized disparity map (c) well rep-
resent the boundary of a dynamic object. Also, expected depth
map (d) is well aligned with the disparity map.

4.4. Effect of Accurate Scene Geometry

To verify the effectiveness of our proposed losses for
training the scene geometry, we visualize initialized and re-
fined point clouds as well as a depth map on the Skating
scene as shown in Fig. 8-9. The results demonstrate that
our joint optimization effectively regresses the scene geom-
etry and address the scale ambiguity problem in monocular
videos, resulting in a dynamic radiance field that accurately
reflects this geometry.

4.5. Training and Rendering Time

Table 2 shows the training and rendering time on
NVIDIA Dynamic Scene Dataset [47] for recent dynamic
view synthesis methods. Since Point-DynRF avoids the
unnecessary ray marching for empty space, the training
process converges faster, leading to a reduction in overall
training time. In the rendering process, however, searching
neighbor neural points for each shading point requires addi-
tional computational costs, and the rendering time is slower
than DVS [13] and RoDynRF [25].

Table 2. Comparison of Training and Rendering Time. Meth-
ods denoted by † refer to reported performance in the paper.

Method Training (GPU hours) Rendering (s/img)
HyperNeRF [31] 32 15
DVS [13] 36 8
RoDynRF† [25] 28 8
DynIBaR† [23] 48 20
Ours 20 11

Table 3. Ablation Study of our proposed losses. We report
the PSNR, SSIM and LPIPS on the average of NVIDIA Dynamic
Scene Dataset [47].

PSNR (↑) SSIM (↑) LPIPS (↓)
Ours w/o Pt 23.62 (-1.68) 0.755 (-0.161) 0.148 (+0.067)
Ours w/o Ls

rec 24.38 (-0.92) 0.843 (-0.073) 0.121 (+0.040)
Ours w/o Ld

rec 25.08 (-0.22) 0.901 (-0.015) 0.097 (+0.016)
Ours w/o Lflow 24.13 (-1.07) 0.872 (-0.042) 0.099 (+0.018)
Ours w/o Ldepth 24.45 (-0.85) 0.856 (-0.070) 0.100 (+0.019)
Ours w/o Lmask 24.66 (-0.64) 0.884 (-0.032) 0.111 (+0.030)
Ours 25.30 0.916 0.081

Novel View w/   Dynamic 
Ray Marching

w/o Dynamic 
Ray Marching

Figure 10. Qualitative Ablation of Dynamic Ray Marching.
Without the dynamic ray marching, dynamic points at other times
interfere with dynamic radiance fields at the rendering time.

4.6. Ablation Study for Point-DynRF Design

We conduct an ablation study for each component of
Point-DynRF as shown in Table 3. The results show the
quantitative results, and we verify all components con-
tribute to the design of our Point-DynRF. Especially from
the results on Lflow and Ldepth, we confirm that the ac-
curacy of the neural points has a direct impact on the per-
formance of dynamic radiance fields. Also, the results on
Pt confirm that our dynamic ray marching scheme signif-
icantly improves the performance. Dynamic ray marching
ensures that the dynamicsness map for the novel view is
well matched to the actual scene, as shown in Fig. 10.

5. Conclusion

We propose a novel framework called point-based dy-
namic radiance fields for long-term dynamic view synthesis
from monocular videos. In our approach, we employ neu-
ral point clouds to encode geometric information and dy-
namic radiance fields to handle the volume rendering pro-
cess. Our framework, Point-DynRF, optimizes the neural
point clouds and dynamic radiance fields jointly, leverag-
ing direct regression from neural 3D points. This allows us
to effectively utilize the global scene geometry, which sets
our method apart from previous approaches relying on cor-
respondences between neighboring frames, limiting their
ability to incorporate the overall scene geometry. We be-
lieve that our work contributes significantly to the field of
dynamic view synthesis, enabling realistic rendering in var-
ious real-world scenarios.
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A. Overview
In this supplementary material, we further demonstrate

our experimental setup and provide additional results that
the scene geometry is well regressed. First, we explain
the total loss formulation in our training process in Sec. B.
Then, we describe implementation details with image near-
far bound determination by neural points in Sec. C and pro-
vide additional results for dynamicsness map of novel views
in Sec. D. Finally, we demonstrate failure cases in Sec. E.

B. Losses
Our optimization process involves utilizing the loss func-

tions Lrec, Lgeo, Ldepth, and Lmask. These loss functions
are either modifications of those used in DVS [13] or newly
introduced in this paper. To train Point-DynRF more stable,
we also incorporate with a depth order loss Lorder intro-
duced in DVS [13] and a sparsity loss Lsparse introduced in
Point-NeRF [46].

Depth Order Loss While the depth adjust loss helps op-
timize the overall scene geometry, there are inherent chal-
lenges in accurately determining the distance between dy-
namic objects and the background. Therefore, we use depth
order loss Lorder to allow the dynamic radiance fields to be
regularized via a frame-by-frame depth map. Since regu-
larizing the dynamic radiance fields with per-frame depth
maps has scale and shift ambiguities as mentioned ear-
lier, we leverage the volume rendering process of Dynamic
NeRF to propose Lorder as:

Lorder =

N∑
i=1

∑
uv

∥D̃(riuv, i,Pi)−D̃d
(riuv, i,Pi,d)∥22. (28)

Sparsity Loss Following the point-based representation,
we apply a sparsity loss Lsparse on the point-wise rigidness
to enforce it to be close to zero or one as:

Lsparse =
∑
i

(log(γi) + log(1− γi)). (29)

Total Training Loss Formulation We formulate a recon-
struction loss Lrec, a scene geometry loss Lgeo, a depth ad-
just loss Ldepth, a depth order loss Lorder, a mask adjust
loss Lmask and a sparsity loss Lsparse, to train our Point-
DynRF and neural points. Specifically, we define λfull

rec = 3,
λs
rec = 1, λd

rec = 1 for the reconstruction loss. For the
scene geometry loss, we define λflow = 0.1, λs

miss = 1,
λd
miss = 1. Finally, we define λdepth = 0.1, λorder = 0.1,

λmask = 0.1, and λsparse = 0.0002 to formulate the final
loss as:

Jumping Skating Truck Balloon1 Balloon2 Playground

Near Bound Far Bound

(epoch) (epoch)

Figure 11. Image Near-Far Bound Determination.

Ltotal = Lrec + Lgeo + λdepthLdepth + λorderLorder+

λmaskLmask + λsparseLorder.

C. Implementation Details.
We randomly sampled 1024 rays in a batch, and each ray

was assigned up to 32 sampling points. We used COLMAP
to estimate the camera poses and resized all images into
a resolution of 480 × 272. Also, we initialized our scale
and shift parameters by using near and far bounds from
COLMAP. We trained Point-DynRF for 250k iterations,
and training takes about 20 hours on a single NVIDIA
Geforce RTX 3090 GPU.

Near-Far Boundary Determination As our Point-
DynRF is built on Point-NeRF [46] representation, dynamic
radiance fields are regressed in 3D world coordinates, not
in NDC space used by previous methods. Moreover, we
need to render the far background as well, so we set the
image near-far bound dynamically associated with the neu-
ral points. Specifically, we set the image near boundary to
be the depth for the nearest neural point multiplied by 0.9,
and the image far boundary to be the depth for the farthest
neural point multiplied by 1.1. Figure 11 shows the con-
vergence of the image near-far boundary of the scenes in
the Dynamic Scene Dataset [47] during training. This re-
sult confirms that the scene geometry is stably trained and
refined the initialized scene geometry well.

D. Additional Results
Additional Qualitative Results. We further provide ad-
ditional qualitative results on Dynamic Scene Dataset [47] .
Point-DynRF generates more realistic images compared to
previous methods, and the human face in the third row of
Fig. 12 confirms that Point-DynRF produces much sharper
images, while other methods either fail to synthesize or pro-
duce blurry images. We also provide a video result of a
causally captured monocular video that our Point-DynRF
generates realistic images while the state-of-the-art method
DVS [13] suffers from duplicated dynamic objects when
rendering from a fixed viewpoint.
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NeRF + time [27] NR-NeRF [39] NSFF [22] DVS [13] Ours Ground Truth

Figure 12. Comparison to baselines on NVIDIA Dynamic Scene Dataset [47].

Figure 13. Dynamicsness Maps for novel views.

Our foreground masks (M1, . . . ,MN ) are also opti-
mized during the training, so we provide dynamicsness
maps for novel views, as shown in Fig 13. For each novel
view, our Point-DynRF can render blending weights by us-
ing the volume rendering process. These dynamicsness
maps for novel views confirm that our Point-DynRF well
represents dynamic regions in the scene, and we can see
that the static representation in the center of the person in
the Playground Sequence is due to the fact that all the se-
quences in the input video for that region are learned as dy-
namic regions and represented as background by the miss
ray marching scheme.

E. Failure Cases

While Point-DynRF optimizes well the ambiguous ini-
tial geometry and foreground masks, it fails to represent the
scene if the neural point clouds are unnaturally initialized.

Initial Point Cloud Rendered View
Figure 14. Failure Case.

A combination of inaccurate camera pose, depth map, and
foreground masks sometimes unnaturally initialize neural
point clouds where background points are closer to the cam-
era than dynamic points as shown in Fig. 14. In this failure
case, Point-DynRF falls short of distinguishing background
points in front of the dynamic objects even addressing the
scale ambiguity, and novel views also contain artifacts on
these background points.
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