arXiv:2312.14650v1 [cs.CV] 22 Dec 2023

Global Occlusion-Aware Transformer for Robust Stereo Matching

Zihua Liu!, Yizhou Li?, and Masatoshi Okutomi?®
Tokyo Institute of Technology, Japan
{zliu', yli®}@ok.sc.e.titech.ac.jp, mxo@ctrl.titech.ac.jp’

Abstract

Despite the remarkable progress facilitated by learning-
based stereo-matching algorithms, the performance in the
ill-conditioned regions, such as the occluded regions, re-
mains a bottleneck. To address this issue, this paper in-
troduces a novel attention-based stereo-matching network
called Global Occlusion-Aware Transformer (GOAT) to
exploit long-range dependency and occlusion-awareness
global context for disparity estimation. In the GOAT archi-
tecture, a parallel disparity and occlusion estimation mod-
ule (PDO) is proposed to estimate the initial disparity map
and the occlusion mask using a parallel attention mech-
anism. To further enhance the disparity estimates in the
occluded regions, an occlusion-aware global aggregation
module (OGA) is proposed. This module aims to refine the
disparity in the occluded regions by leveraging restricted
global correlation within the focus scope of the occluded ar-
eas. Extensive experiments were conducted on several pub-
lic benchmark datasets including SceneFlow [15], KITTI
2015 [16], and Middlebury [19]. The results show that pro-
posed GOAT demonstrates outstanding performance among
all benchmarks, particularly in the occluded regions. Code
is available at https://github.com/Magicboomliu/GOAT.

1. Introduction

Stereo-matching is one of the most fundamental tasks
in computer vision. It is to infer depth from a given pair
of stereo images taken by a binocular camera, which is
closely related to applications like robotic navigation [17],
autonomous driving [4 1], augmented reality [25], and so on.

Recently, the rapid development of convolutional neural
networks (CNNs) has improved the performance of stereo-
matching algorithms [9, 10, 15,33, 44] significantly. Typ-
ical CNN-based methods commonly rely on a cost vol-
ume, which is constructed with a predetermined search
range to evaluate the matching similarity. Existing cost
volume-based stereo matching can be categorized as the
3D correlation-volume-based methods [14, 32, 44] and the
4D concatenation-volume-based methods [1, 7, 9, 37, 43].
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Figure 1. (a) Visualization of estimated response for disparity
candidates using proposed PDO. Compared with a cost volume
method (orange), the PDO (blue) can alleviate matching ambigu-
ity in texture-less regions and show a single peak waveform. (b)
Visualization of global attention map in the occluded regions us-
ing the proposed OGA.

However, these methods perform poorly when applied in
ill-conditioned regions like occluded regions, and texture-
less regions.

The challenges associated with stereo matching in ill-
conditioned regions can be simply summarized as follows:
(1) Texture-less or repetitive regions show homogeneity in
the RGB domain, which is difficult for CNN-based methods
to extract distinguishable local matching features. (2) Oc-
cluded regions, which naturally lack matching correspon-
dences and cannot be estimated by matching directly. Most
methods [3, 18, 34] use CNN-based spatial propagation to
refine the disparity in the occluded regions using the con-
textual features as a guide. However, these CNN-based net-
works reliant on local windows exhibit a tendency to utilize
the limited receptive field information from the surround-
ing area for disparity refinement, which leads to limited im-
provement in large and irregular occluded regions. Other
methods in optical flow tasks like GMA [8] use global at-



tention instead of local correlations for the ill-conditioned
region’s refinement, while uncontrolled global attention is
inefficient and can even affect well-conditioned areas.

In order to improve the disparity performance in the ill-
conditioned regions, in this paper, we propose to lever-
age restricted global spatial correlation as a guide to alle-
viate matching ambiguities in texture-less regions and re-
fine the disparity in occluded regions. Our idea is that
disparity within a bounded region (e.g. an object) should
be continuous. To realize this, we propose the Global
Occlusion-Aware Transformer (GOAT) which introduces
Vision Transformer [6] and attention mechanism to es-
tablish restricted global spatial correlation for both the
matching and disparity refinement phases. In GOAT, a
parallel disparity and occlusion estimation module (PDO)
is proposed to estimate the initial disparity and the oc-
clusion mask respectively with an adaptive global search
range utilizing stacked self-cross attention layers for fea-
ture aggregation and parallel cross-attention for occlusion
and disparity estimation. The most related prior work is
the STTR [11], however, STTR employs a shared cross-
attention matrix for estimating both disparity and occlusion,
which leads to a trade-off between disparity and occlusion
prediction accuracy. In contrast, the proposed PDO infers
occlusion and disparity independently, eliminating any pos-
sible trade-offs between the two estimates. To further en-
hance the disparities in the occluded regions, an iterative
occlusion-aware global aggregation module (OGA) is pro-
posed to refine the disparity with a restricted focus scope of
the occluded regions using global spatial correlations and
context guidance.

Our main contributions lie in four folds:

* We explore employing restricted global spatial corre-
lation information for stereo-matching and propose a
novel stereo-matching network named GOAT, which
enables robust disparity estimation, particularly in ill-
conditioned regions.

* We propose a parallel disparity and occlusion estima-
tion module (PDO) that utilizes a parallel attention
mechanism to generate both disparity and occlusion
masks robustly, without mutual interference.

* We also propose an occlusion-aware global aggre-
gation module (OGA) that aggregates feature with a
focus scope in occluded regions using self-attention,
boosting disparity estimation in occluded areas.

* We conducted extensive experiments on several pub-
lic datasets including SceneFlow [!5], FallingTh-
ings [30], KITTI 2015 [16], and Middlebury [19].
Experimental results reveal that the proposed method
achieves outstanding performance on several bench-

mark datasets, especially in the ill-conditioned oc-
cluded regions.

2. Related Works

Cost-Volume-based Methods. Pioneer work DispNetC
[15] utilizes a correlation layer to calculate the inner product
of the left and right features at each disparity level for mea-
suring the similarity. Although correlation volume has been
proven to be effective and efficient, the loss of context infor-
mation during correlation limits the ultimate performance
of stereo-matching. GCNet [9] firstly employs the concate-
nation of left and right features to construct a 4D volume
that encodes abundant content information for similarity
measurement. The concatenation volume following stacked
3D convolution networks for aggregation is widely used
in most latest state-of-the-art works including [20, 33, 43].
In order to combine the advantages of the correlation vol-
ume and the concatenation volume, GwcNet [7] adopts a
group-wise correlation method to combine the correlation
volume and the concatenation volume. Later work such
as PCWNet [22] follows the same architecture and exploits
multi-scale volumes fusion to extract domain-invariant fea-
tures, which leads to better performance.
Guidance-Incorporated Stereo Matching. Besides, de-
pending on image similarity for stereo matching, some
other methods utilize extra guidance information to improve
stereo matching and achieve exceptional performance. Xiao
et al propose a multi-task network called EdgeStereo [24]
by applying a disparity-edge joint learning framework to
leverage edge maps as the guidance for disparity refine-
ment. Wu et al. [36] employ semantic guidance by in-
troducing a designed pyramid of cost volumes for de-
scribing semantic and spatial information on multiple lev-
els. Liu et al. [14] propose a normal incorporated joint
learning framework to explicitly leverage the surface nor-
mal as an intuitive geometric guidance to refine the ill-
conditioned regions with the surface normal affinities. Al-
though stereo-matching with guidance information is able
to introduce prior knowledge beyond RGB clues for robust
stereo-matching, the implementation of these approaches
requires a joint-learning framework with additional super-
vision, which may increase the complexity and training cost
of the network.

Attention Mechanism in Stereo Matching. Recently, at-
tention mechanisms have been introduced in the stereo-
matching task to improve the quality of disparity estima-
tion. Many works [2, 45, 46] use 2D attention block for
left-right feature aggregation to adaptively calibrate weight
response, improving the robustness of the feature repre-
sentation. Zhang et al. [44] use a warped photometric
error to generate a spatial attention mask for disparity
residual estimation which accelerates the training process.



Initial Disparity

Parallel Disparity and
Occlusion Estimation —
Module (PDO)

h]

|

1

|
TEm]

=
[
[
I

Left Feature
I_[ l |
2

Right Feature

|
|

o N

Occlusion Mask

2
Left Context !
o Iterative Occlusion-Aware Global Ag‘?;:‘::l:m
1 Aggregation Module (OGA) iayer ‘*

Refined Disparity Final Disparity

Figure 2. Overall architecture of Global Occlusion-Aware Transformer (GOAT).

ACVNet [37] learns an attention map from the correla-
tion volume to suppress redundant information and enhance
matching-related information in the concatenation volume.
Besides, other works use an attention mechanism to replace
the conventional cost volume for left-right image match-
ing. STTR [11] takes the first attempt to use alternating
self-cross attention modules to estimate the disparity and
corresponding occlusion mask from an aspect of the trans-
former. GMStereo [40] presents a unified formulation using
a cross-attention mechanism for three motion and 3D per-
ception tasks: optical flow, rectified stereo matching, and
unrectified stereo depth estimation from posed images.

3. Proposed Method

In this section, we provide a comprehensive intro-
duction to our proposed Global Occlusion-Aware Stereo
Transformer (GOAT). The overall architecture of the pro-
posed work is presented in Subsection 3.1, with detailed
descriptions of the proposed two specific modules provided
in Subsections 3.2 and 3.3. The training mechanism and
loss function are expounded upon in Subsection 3.4.

3.1. Overall Network Architecture

The overall architecture of the proposed GOAT is shown
in Figure 2. We decouple the stereo-matching process into
matching for non-occluded regions and disparity refinement
for occluded regions. In the matching phase, we propose a
parallel disparity and occlusion estimation module (PDO)
which leverages both positional and global correlations be-
tween the left and right views to estimate initial disparity
and the occlusion mask, respectively. In the refinement
phase, we propose an iterative occlusion-aware global ag-
gregation module (OGA) using restricted global correlation
with occlusion guidance to optimize the disparity within the
occluded regions. Finally, a context adjustment layer is em-
ployed to refine the disparity from a mono-depth aspect.

3.2. Parallel Disparity and Occlusion Estimation
Module (PDO)

Instead of using a cost volume with a predetermined
search, we proposed a global-attention-based module
named PDO to compute the initial disparity and the oc-
clusion mask. As illustrated in Figure 3, After obtaining
the F} and F, € RH¥*WXC from the shared image ex-
tractor, we follow the architecture in [26] by introducing
a self-cross alternating module to extract global context in-
formation and position bias, where the Swin-Transformers
Blocks [13] with a window size of [h/2,w/2] are utilized for
efficient feature aggregation. The self-cross attention mod-
ule can be described as follows:

T T
F, = softmax(Q\l/Ig Wi, B = softmaw(Q\r/[éT W,
T T
F = softmax(Q\r/[Ci’l Wi, Fr = softm(m(Q\l/lg We, (1)

where the first row represents the self-attentions of the left
feature and right feature, while the second row represents
the cross-attentions between two views. @, K, and V are
obtained using a shared-weight linear projection layer with
absolute positional encoding to indicate the position infor-
mation. The alternating self-cross attention modules use
the global receptive field to fully aggregate the informa-
tion of the left and right views, resulting in more repre-
sentative and distinguishable features. In addition, posi-
tional encoding helps to constrain the aggregation range and
prevent aggregating features from distant and unrelated re-
gions with similar textures. Once we obtained the aggre-
gated left and right features, a parallel cross-attention mod-
ule was applied to estimate the initial disparity and the oc-
clusion mask. As illustrated in Figure 3, we conduct paral-
lel cross-attention between the left feature and right feature
and get two cross-attention matrices C Attn! € RITXWxW
and CAttn? € RTXWXW  Since the normalized cross-
attention reflects the similarity of left and right features, the
CAttn' can be regarded as a cost volume with a global
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Figure 3. Parallel Disparity and Occlusion Estimation Module Architecture. (PDO)

search range. Besides, since occluded regions lack a cor-
responding pixel in the other image view, the summation of
attention values of potential matching pixels for occlusion
regions in C' Attn? should yield a low response. Accord-
ing to the characteristics of these two cross-attentions, we
compute the initial disparity and the occlusion mask:

disp(i, j) = Coordz™¢) — C Attn' @ RC,
w
occlusion; ;) = sigmoid(fg(z C’Attnfi7k,j))), (2)
k=1

where Coordz® (i, j) € RT*Wx1 ig the standard coordi-
nate of the left image in the horizontal direction, RC =
[0,1,...,W—1]7 is the range of all potential corresponding
coordinates in the right image, and ® denotes matrix multi-
plication. fy represents a small network that takes the sum-
mation of attention values of all potential matching points
in C' Attn? as input to regress the occlusion mask.

One related work is [31], which utilizes features ex-
tracted by a CNN for cross-attention to obtain the match-
ing matrix for unsupervised stereo matching. However, it
lacks the global context and positional encoding informa-
tion introduced by alternating self-cross attention. As a re-
sult, the proposed PDO module is more powerful in mod-
eling texture-less and occluded regions compared to [31].

3.3. Iterative Occlusion-Aware Global Aggregation
Module (OGA)

After obtaining the initial disparity and occlusion mask
at low resolution, the disparities in ill-conditioned regions,
such as occluded areas, remain problematic, since they are
difficult to estimate accurately via matching alone. To fur-
ther enhance the disparity estimation performance, we pro-
pose an iterative refinement module based on self-attention,
namely OGA module, which aggregates features from valid
non-occluded regions into invalid occluded regions using
global spatial correlation. Similar to RAFT [29], a con-
vex upsampling layer is used to upsample the disparity to
a higher resolution. The overall structure of the OGA mod-
ule is shown in Figure 4.

The input of the OGA module is the disparity d*~!

of stage t — 1 as well as the left context F7 extracted
from a CNN. We also construct a local cross-attention that
measures the similarity between the left and right features
around the d'~! with a search range of 7 by sampling from
the cross-attention matrix C' Attn' in the PDO module. The
current disparity d'~! and its corresponding local cross-
attention are then passed to a disparity encoder to obtain
the matching feature Fﬁwtchm g Meanwhile, the left con-
text FY is further concatenated with F . ... 4 to supple-
ment local feature F} , from a mono-depth aspect. Such
information is sufficient for disparity optimization in the
non-occluded regions. As for occluded regions, we calcu-
late the global spatial correlation of the left image through
the self-attention module and obtain a self-attention matrix
A € REXWXHXW = Ror arbitrary specific point (i, j), we
obtain its correlation with all other pixels in the left view by
consulting the attention map A; ; € R¥*W . Then, we per-
form feature aggregation to derive global feature Fyy,;,;-
With local feature F} ., and global feature F global Ob-
tained, we then adopt an occlusion-aware global aggrega-
tion mechanism as shown in Figure 4. We reserve the local
feature at the non-occluded region and keep the global fea-
ture at the occluded region to generate an adaptive feature
F!,, for overall disparity refinement. On the one hand, lo-
cal features are sufficient for non-occluded regions to per-
form disparity refinement. On the other hand, we can pre-
vent the local features of occluded regions, which are less
confident because of the matching ambiguity, from propa-
gating to non-occluded regions through the attention map
like [8]. This can effectively reduce the degradation of fea-
tures. Therefore, the proposed OGA module can make good
use of the global spatial correlations at the ill-conditioned
regions as well as avoid harmful propagation. The whole
process can be described as follows:

Flio=A® Flpu © Moce + Fglobal ® (I = Moce), (3)

’
'Flocal - conca’t(Fmatchzng7 F1)7

where M,.. indicates the occlusion mask, [ is an identity
matrix, and © denotes element-wise multiplication. After
feature aggregation, we employ a GRU [5] unit to regress
the disparity residual and an upsample mask, where we
compute the disparity d® at the current iteration and use the
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Figure 4. Iterative Occlusion-Aware Global Aggregation Module (OGA).

upsample mask to increase the resolution:

dt Mli[) = GRU(F;da)7

res’

d" = maz(0,d: , +d'™1), 4)
t t t
dyp = d" * My,

where the M}, € R¥*W>5%5 G is the upsample scale,
and * denotes convolution. The upsampled disparity dfp
of the last iteration 7" is further passed to a context adjust-
ment layer [ | 1] to derive final disparity d/**®!, which recov-
ers fine-grained disparity details from a mono-depth aspect.
This layer utilizes the left image and the current disparity
map to regress the disparity residual.

3.4. Occlusion and Disparity Supervision

We supervised the network with groundtruth disparity
and occlusion mask. Since the GOAT is an iterative net-
work, we follow the sequence loss proposed in [29] to su-
pervise the disparity at different iterations, which is the [y
distance between the ground truth disparity and the esti-
mated disparity at each iteration with exponentially increas-
ing weights. The loss can be defined as follows:

dgt _ dfinal

T
Laiop = 7" 7" (| — iy | + | G

=0

where the 7' is the iteration number which in our case equals
12 and set the increasing weight v to 0.95. For occlusion
supervision, the cross-entropy loss is deployed for effective
training:

1 2
Loce = =5 3 (041 10g(0:) + (1= Oye) log(1 = 0). (©)

The final loss is the weight summation of disparity loss and
occlusion loss.

Liotar = M X Lgisp + A2 X Loee. @)
4. Experimental Results
4.1. Datasets

We evaluate our method on multiple public benchmark
datasets including SceneFlow [15], Falling Things [30]

KITTT 2015 [16], and Middlebury [19]. As the proposed
network requires ground-truth occlusion masks for training,
which are not provided in the several datasets, we gener-
ate the ground-truth occlusion masks using left-right consis-
tency. More details can be seen in our supplementary mate-
rial. The SceneFlow dataset is a synthetic dataset contain-
ing 39,823 stereo image pairs with random flying objects.
The Falling Things dataset is another synthetic dataset with
more realistic indoor scenes. The KITTI 2015 dataset com-
prises real-world scenes that have sparse ground-truth dis-
parity captured using LiDAR. For the Middlebury dataset,
the evaluation is conducted using the standard Middlebury
Stereo Evaluation-Version 3.

4.2. Implementation Details

We implemented our GOAT network by PyTorch trained
with 4 NVIDIA 3090 GPUs. For the SceneFlow dataset,
we trained the networks for 80 epochs using a batch size
of 8 with an initial learning rate of 4e-4 following a step
learning rate decay strategy. For the Falling Things dataset,
we trained for 10 epochs with a constant learning rate of
4e-4. Compared to SceneFlow dataset, the Falling Things
dataset [30] has enhanced scene realism and better seman-
tics in occluded region, therefore we use it for more com-
prehensive ablation studies. For both above dataset, we ran-
domly cropped the input images to 320x 640. For the KITTI
2015 dataset, we fine-tune our networks with the Scene-
Flow pre-trained model. Mixed datasets of KITTI 2012 and
KITTI 2015, totaling 400 image pairs, were used for the ini-
tial 400 epochs with a random crop size of 320x1088. The
model with the best validation performance was chosen, fol-
lowed by another 200 epochs of fine-tuning on the KITTI
2015 training set to obtain the final model. For the Middle-
bury dataset with only 23 images, we first evaluated gen-
eralization on the Middlebury training set using the Scene-
Flow pre-trained model, then fine-tuned it at half-resolution
for benchmark assessment. Please refer to the supplemen-
tary material for more training details.



Table 1. Ablation study of our proposed GOAT network on the SceneFlow dataset. We conduct ablation studies on the proposed PDO and
OGA modules. As well as compared with other attention-based disparity estimation and refinement modules like STTR [11] and GMA [8].
The **’ represents a higher resolution. We calculated the EPE and P1(outliers) both in the overall and the occluded regions separately.

Disparity Update
Method Estimation Module CA EPE P1(%) m?ch
Cost GITR PDO|RAFT GMA OGA ||| All Occ| Al Occ
Volume
Baseline v v 0.79 2.27| 9.2% 25.6% -
STTR v v 0.78 2.31|10.0% 28.4% | 0.81
PDO v v 0.65 1.96| 7.2% 22.2% | 0.83
PDO + GMA v v 0.62 1.86| 7.0% 21.9% | 0.83
PDO + OGA v v 0.57 1.78| 6.7% 20.9% | 0.83
PDO + OGA + CA(Full) v v v 0.55 1.72]| 6.6% 19.9% | 0.83
PDO + OGA + CA*(Full) v v v 0.47 1.53| 5.6% 18.6% | 0.94
Left Image Right Image Baseline STTR PDO+ GMA PDO+OGA PDO+OGA+CA Ground Truth  Occlusion Mask
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Figure 5. Visualizations of ablation study on SceneFlow dataset. We cropped and enlarged the selected part of the disparity map for easier
viewing.

Table 2. Quantitative comparison of GOAT and other methods on the SceneFlow. We adopt the EPE-AII results from the original papers.
Due to incomplete disparity evaluation of the occluded regions in some works, we calculate EPE-Occ using the corresponding official
pre-trained models. Proposed GOAT ranks top for overall and occluded regions. Red Bold:Best. Bold:Second.

Model |PSMNet [1]| AANet++ [39] | RaftStereo [12] | PCW-Net [22] | STTR-light [1 1] | ACVNet [37] | IGEVStereo [38] | GOAT (Ours)
EPE-All 1.09 0.72 0.69 0.86 4.14 0.48 0.47 0.47
EPE-Occ 3.14 2.44 2.14 2.54 23.9 1.65 1.61 1.53

4.3. Ablation Studies

We conducted ablation studies on the SceneFlow and
Falling Things datasets. We report the standard end-point
error (EPE) and P1-value (outliers) for overall regions (All)
and occluded regions (Occ), respectively. For occlusion
mask evaluation, we compute the mean Intersection over
Union (mloU) between the ground truth and the predicted
occlusion mask. The relevant results of the Sceneflow
dataset are shown in Table 1, where we use a simplified
version of [12] as the Baseline. For more ablation studies in
the FallingThings Datset, please refer to our supplemenatry
aterials
Parallel Disparity and Occlusion Estimation Module
(PDO): As depicted by Table 1, compared with the Baseline
integrating the PDO module (designated as PDO) exhibits
a remarkable improvement in terms of EPE for both over-
all and occluded regions. We also compared our proposed
PDO modules with another transformer-based method by
replacing the PDO module with a disparity estimation mod-
ule proposed in STTR [ 1]. As demonstrated in Table 1, our
PDO shows better disparity estimation performance with

smaller errors, especially in the occluded regions, where the
STTR-based method reveals even bigger EPE errors than
the baseline. Further insight into the efficacy of the PDO
module can be gained from the 1st row of Figure 5, which
demonstrates that the PDO derives a more accurate struc-
tural representation of the object compared with Baseline
and STTR, as PDO module reduces the matching ambiguity
when dealing with the texture-less and occluded regions.

Iterative Occlusion-Aware Global Aggregation Module
(OGA): Table 1 illustrates the effectiveness of the OGA
module. Model with the OGA module, which is named
as PDO+OGA can reduce the EPE in the occluded regions
from 1.96 to 1.78 in the SceneFlow dataset with an improve-
ment of 10.1%, which is more effective compared with
naive global-attention-based GMA [8] module with an im-
provement of 5.1%. Moreover, The OGA module is also
able to maintain the disparity at the non-occluded regions
due to the restricted global attention mechanism. As de-
picted in Figure 5, the PDO+OGA shows less error and en-
hanced robustness in the occluded regions (marked by white
boxes) compared to the PDO only and PDO+GMA. Be-
sides, it also shows better disparity estimation at the non-
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Figure 6. Qualitative comparison on SceneFlow dataset with other
superior works.

occluded regions while the PDO+GMA fails to estimate
well. Moreover, incorporating the context adjustment mod-
ule into the whole, designated as PDO+OGA+CA, results
in further improved performance.

Resolution: Like [12], we employed the PDO and OGA
modules at both 1/8 and 1/4 resolutions. As shown in Ta-
ble 1, increasing the resolution yields better performance,
while consuming much bigger GPU memory for the self-
attention computation.

4.4. Performance Evaluation

In this subsection, we compare our method with other
top-performing methods using multiple datasets.
SceneFlow. For quantitative evaluation demonstrated in Ta-
ble 2, our proposed method ranks at the top for occluded re-
gions, surpassing all competing methods and even very re-
cent state-of-the-art methods such as IGEVStereo [38] and
PCW-Net [22]. Note that while IGEVStereo [38] requires
32 iterations for disparity refinement, our proposed GOAT
achieves equivalent disparity performance in overall regions
with only 12 iterations, and surpasses IGEVStereo [38] in
occluded regions by a large margin. This further illustrates
the advantages of our proposed GOAT in optimizing dis-
parity in the occluded regions.  For qualitative evalua-
tion shown in Figure 6, proposed GOAT generates disparity
maps with more detailed and precise structures in texture-
less areas. In contrast, other methods exhibit less satisfac-
tory performance, with missing details and artifacts.
KITTI 2015. For KITTI dataset evaluation, we follow the
standard protocol to submit our fine-tuned results to KITTI
leaderboard [16]. Table 3 demonstrates the evaluation per-
formance on the KITTI 2015 test set. In our assessment of
overall (All) regions, including occluded areas, our method
distinctly excels in its performance on foreground (fg) ob-
jects with key items like cars and pedestrians, achieving a
D1-Error of 2.51. The results surpass very recent methods
including PCWNet [22] and IGEV Stereo [38]. Importantly,
in the context of real-world autonomous driving applica-
tions, foreground regions like pedestrians and cars are of

Table 3. Benchmark results on KITTI 2015 test set. The ”Noc”
and ”All” indicate the non-occluded and overall regions, respec-
tively. The ”fg” and "all” indicate the foreground and overall re-
gions, respectively. The results report the percentage of outliers
over the available ground truth disparities.

Noc (%) All (%)
fg all fg all
GANet [43] 337 1.73 | 3.82 1.93 0.36
PSMNet [1] 431 2.14 | 462 232 0.41
GwcNet [7] 349 192 | 393 2.11 0.32
AANet [39] 493 232|539 255| 0075
DispNetC [15] 372 4.05 | 441 434 0.06
FADNet [32] 3.07 259 | 350 2.82 0.05
IGEVStereo [38] | 2.62 1.49 | 2.67 1.59 0.83
HITNet [28] 272 1.74 | 320 1.98 0.02
LEAStereo [4] | 2.65 1.51 | 291 1.65 0.30
RAFTStereo [12] | 294 145 | 294 1.82 0.38
GMStereo [40] | 297 1.61 | 3.14 1.77 0.38
CFNet [21] 325 1.73 | 3.56 1.88 0.38
ACVNet [37] 284 1.52 | 3.07 1.65 0.20
PCW-Net [23] 293 1.26 | 3.16 1.67 0.44
GOAT(Ours) 243 171 | 251 1.84 0.29

Method Time (s)

Left Image
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Figure 7. Visualization comparison on KITTI 2015 test set be-
tween IGEVStereo [38] and our GOAT. The 27 and 4*" line
show estimated disparity maps, and the 3" and 5" line display
the corresponding errors. The error map indicates that colored re-
gions have LiDAR annotation while black regions lack annotation,
which means the D1-All cannot fully represents the disparity es-
timation performance on the whole scene. Although our model
has a higher D1-All error, it exhibits improved structures and fewer
artifacts in regions where the ground-truth disparity is missing.

great importance, where our method proves notably profi-
cient. As evidenced in Figure 8, for out-of-view regions
marked by the red box which lack the corresponding pixels,
our proposed GOAT still succeeds in estimating the dispar-
ity by showing better depth consistency and clearer struc-
tures. At the same time, other methods fail to generate sat-



Left Image _ . IGEVStereo(CVPR2023)

_~ PCWNet (ECCV 2022)

o | —

GweNet (CVPR2019) _ LEAStereo (NIPS 2020)

STTR (ICCV2021) 7" GOAT (Ours)

Figure 8. Performance on KITTI 2015 test set. Our method obviously exhibits better results in the severely occluded regions.

Table 4. Quantitative generalization evaluation on the Middlebury
training dataset. ”’Qcc” represents occluded regions, and ’Non”
represents non-occluded regions. Note the Red Bold means the
best and the Bold means the second-best.

Method AvgErr RMSE Bad 4.0 Bad 2.0
Occ | Non | Occ | Non | Occ | Non | Occ | Non
AANet [39] 99 | 55 |153(10.8(39.5|28.2|56.428.3
PSMNet [1] 17.7110.729.9|22.1 |47.4|23.3]62.1 |32.3
GwcNet [7] 103 6.3 | 17.6|13.7|34.1|15.1479|21.9
ACVNet [32] 94 |63 |164|14.2(30.2|13.9|43.4|19.0
PCW-Net [22] | 7.7 | 3.9 {149 | 9.3 |26.5| 9.7 |39.1 | 149
STTR-light [11] |35.2| 3.0 |47.7|10.2|74.7| 83 |82.0|13.3
RAFTStereo [12] | 10.0| 3.6 | 159| 9.1 |34.4| 9.5 |46.5|14.4
GOAT(Ours) 57120194 |53 (280 9.2 |43.3]|15.7

isfactory results.

It is noteworthy that the KITTI dataset lacks LiDAR
ground truth for the upper portions of the images as shown
in Figure 7, s.t. these parts of results are not evaluated in
D1-All error. This lack of annotation may introduce bias
into the final D1-All error, preventing a complete revela-
tion of the network’s effectiveness. Figure 7 illustrates this
challenge by comparing the proposed GOAT with the most
advanced IGEVStereo [38]. Although GOAT produces a
larger D1-All error, the visualization results exhibit clearly
better structures and fewer artifacts in regions where the
ground-truth disparity is missing.

Middlebury. As the Middlebury dataset only includes
23 images for training, we first evaluate the generaliza-
tion of the pre-trained SceneFlow model on the Middlebury
training set with half resolution. As depicted in Table 4,
the proposed GOAT generates the best-performing disparity
map with the lowest AvgErr and RMSE compared to other
methods. Especially in occluded regions, proposed GOAT
outperforms the latest PCW-Net [22] by 26% in terms of
AvgErr and 33.6% in terms of RMSE. Figure 9 shows the
visual comparison. Besides, we also fine-tune our model
on the Middlebury dataset with half resolutions (H) be-
cause of memory issues. As depicted in Table 5, compared
with other competing methods submitted at the same resolu-
tion, our GOAT demonstrates state-of-the-art performance
by showing the smallest AvgErr and RMSE. Please refer to
the supplementary material for more results on datasets.

Left Image STTR PCWNet GOAT(Ours)
i “ ‘ ‘
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Figure 9. Generalization evaluation on Middlebury Dataset.

Table 5. Fine-Tuned Results on Middlebury Benchmarks with half
resolution in ’all’ regions. Red Bold: Best, Bold: Second.

Method AvgErr |[RMSE | Bad 4.0 | Bad 2.0
CFNet [21] 5.07 | 18.20 | 11.30 | 16.10
LEAStereo [4] 2.89 | 13.70 | 6.33 12.10
AANet++ [39] 9.77 | 2490 | 16.40 | 22.00
NOSS_ROB [35] | 4.80 | 19.80 | 8.37 | 11.20
LocalExp [27] 513 | 21.10 | 8.83 | 11.30
FADNet RVC [27] | 21.00 | 48.30 | 24.20 | 33.30
MC-CNN-acrt [42] | 17.90 | 55.00 | 15.80 | 19.10
HITNet [28] 329 | 1450 | 8.66 12.80
ACVNet [37] 12.10 | 38.60 | 12.60 | 19.50
GOAT (Ours) 271 | 11.20 | 8.18 | 13.80

5. Conclusions

In this paper, we have proposed a novel attention-based
stereo-matching network called GOAT that exploits long-
range dependency and global context for disparity estima-
tion in ill-conditioned regions. The parallel disparity and
occlusion estimation module (PDO) is proposed to estimate
the initial disparity and the occlusion with a parallel atten-
tion mechanism, which improves the disparity estimation
performance as well as provides the occlusion mask for
further disparity refinement. The iterative occlusion-aware
global aggregation module (OGA) uses a restricted global
correlation with a focus scope marked by the occlusion
mask to refine the disparity in the occluded regions. Ex-
tensive experiments on various datasets have demonstrated
the effectiveness and generalization ability of the proposed
method. By the time we finish this paper, our method out-
performs recent state-of-the-art methods on the SceneFlow
dataset and also ranks 1°¢ on the KITTI 2015 leaderboard
for foreground objects.
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1. More Implementation Details
1.1. Details About the Context Adjustment Layer.

The context adjustment layer in GOAT is designed to
refine the disparity map from a mono-depth aspect. We
employ a similar architecture adopted in STTR [?], which
is a simple refinement module comprised of multiple Res-
Blocks [?]. The architecture of the context adjustment layer
is demonstrated in Figure 1. It can recover disparity details
simply by using the left image I;cy; and the current dis-
parity I;,;+ as the guidance to regress the disparity residual
D, s and derive the final disparity D ;. Such an image-
based refinement module can help refine the disparities in
extremely large occluded regions where no matching clues
can be utilized.

ResBlocks /D——* ResBlocks

Figure 1. Context Adjustment Layer

1.2. Occlusion Mask Generation for Supervision

SceneFlow: Because the SceneFlow [?] dataset’s ground-
truth disparity for the left view and right view are both an-
notated for all pixels, it becomes feasible to generate dense
ground-truth occlusion mask M, by directly applying left-
right consistency check [?]. The process can be described
as follows:

if Dgop > 1,

1
Myee = 1
oce {O otherwise, M

Dg(ll):|DL(x’y)_DR(x+DL(x7y)ay)|a (2)

where D, is the disparity difference between the corre-
sponding pixels at the left and right views, and Dy, and Dg
are ground-truth disparity maps for left and right views, re-
spectively.
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Figure 2. Flipped inference consistency check for pseudo occlu-
sion mask generation.
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Figure 3. Predicted occlusion masks and corresponding ground
truth on different datasets.

KITTI and Middlebury: Generating the ground-truth
occlusion mask for the KITTI dataset [?] poses two sig-
nificant challenges: Firstly, KITTI’s ground-truth disparity
maps are derived through LiDAR, resulting in sparse dispar-
ity annotation. Secondly, the KITTI dataset only provides
the ground-truth disparity maps for the left images, which
makes it difficult to directly apply the left-right consistency
check to generate the occlusion masks. The STTR [?] at-
tempts to mitigate these challenges by solely focusing on
the out-of-bound occlusion mask, which comprises only the
pixels that fall outside the field of view (FOV) of the right
image. However, this method does not provide sufficient
supervision for the occlusion mask estimation. To tackle
this problem, we design a pipeline named flipped inference
consistency check to generate the pseudo occlusion masks.



As demonstrated in Figure 2, we leverage a model pre-
trained on the KITTTI dataset without occlusion supervision
as the disparity generator. Initially, the left-right image pair
is employed as input to produce a dense pseudo-left dispar-
ity. Subsequently, the left view image is horizontally flipped
to create a new right view, and similarly, the right view im-
age is flipped to generate a new left view. The new left-right
image pair will be sent to the identical disparity generator,
where the flipped pseudo-right disparity is obtained. Fi-
nally, the left-right consistency check between the pseudo
disparity maps for the left view and the right view is ap-
plied to generate a pseudo occlusion mask. For Middlebury
dataset [?], we use the same strategy for occlusion mask
generation. Figure 3 shows some examples of estimated
occlusion masks by proposed GOAT and their correspond-
ing ground truth on the SceneFlow, KITTI, and Middlebury
datasets.

2. More Training Details

In this section, we present further information regarding
the training process on different datasets.

2.1. Data Augmentation

A domain gap exists between synthetic SceneFlow
datasets and real-world KITTI and Middlebury datasets in
terms of color and disparity distribution. This poses a chal-
lenge for fine-tuning with SceneFlow pre-trained models,
which is further compounded by limited annotated training
data in real-world KITTI and Middlebury datasets. To en-
hance the network’s robustness and mitigate overfitting, we
employ augmentations as follows.

Asymmetric and Symmetric Chromatic Augmentations:
To address the issue of diverse lighting and exposure con-
ditions in real-world stereo images, we adopted a method
similar to that used in HSM [?]. This involved modifying
the brightness, contrast, and gamma of both left and right
images with random adjustment parameters from intervals
of [0.8,1.2], with the option of using different parameters
for the left and right images. This allowed us to simulate
color and exposure variations commonly observed in real
scenes.

Color Domain Adaption: To alleviate the difference in
color distribution between synthetic data and real-world
data, we used color domain adaptation augmentation fol-
lowing [?]. This method utilizes normalization techniques
in the LAB color space to reduce the distribution gap be-
tween the two types of data.

Vertical y-offset and Flip: To simulate the disparity drift
problem caused by imperfect calibration, we applied the y-
offset augmentation from [?], which randomly shifts the y-
direction pixels in the right image by an offset within [-2,2]
pixels. We also utilized symmetric vertical flipping for both
left and right views to improve disparity estimation accu-

racy across all image regions and prevent location bias.
Asymmetric Masking: Similar to [?], we replaced the
random patches of the right images with mean values of the
whole images. By applying this, it will increase the propor-
tion of occluded areas, making the Occlusion-Aware Global
Aggregation Module (OGA) more effective. The size of
the patch to be replaced was randomly sampled between
[40,40] and [120,180].

2.2, Training Setup

SceneFlow: As described in the paper, for training on
the SceneFlow dataset, we use all three sub-sets (Flyingth-
ings3D, Driving, and Monkaa) within a total of 35K images.
We consider a random crop of 320 x 640 with a batch size
of 8 and a maximum disparity of 192. The whole training
process on SceneFlow is performed with 4 NVIDIA RTX
3090 GPUs without data augmentation.

KITTI: In regards to the fine-tuning on the KITTI 2015
dataset, the color domain adaption described in Section 2.1
was initially employed to fine-tune the pre-trained model
for an additional 40 epochs on the SceneFlow dataset, uti-
lizing a learning rate of 1e-4. Following this, we used mixed
datasets containing KITTI 2012 and KITTI 2015 with in to-
tal of 400 pairs of images for the training of the first 400
epochs. We chose the model with the best performance
on the validation set, followed by another 200 epochs of
fine-tuning on the KITTI 2015 training set to obtain the fi-
nal model. The whole training process was conducted on 2
NVIDIA RTX6000 GPUs, with a patch size of 320x 1088.

Middlebury: To address the limited amount of training
data in the Middlebury dataset, we followed the simi-
lar strategy utilized in [?] by augmenting the Middlebury
dataset to the 20% amount of the SceneFlow dataset with
techniques mentioned in 2.1. We conducted mixed training
for 100 epochs and then fine-tuned the model on the Mid-
dlebury dataset alone for another 500 epochs to get the final
model.

3. Intermediate Outputs for the OGA Module

Similar to [?], the proposed OGA module is a GRU-
based iterative refinement module. To further demonstrate
how the OGA module uses global correlation to refine the
disparities in the occluded area, we illustrate intermediate
disparity outputs of the OGA module of each iteration in
the KITTI dataset in Figure 4.

The OGA module applies a global attention mechanism
to aggregate features within occluded regions, thereby en-
hancing the accuracy of disparity estimations. Our findings
indicate that as the number of iterations of the OGA module
increases, the estimated disparity progressively improves.
It is worth noting that applying the OGA module only once
can already yield considerable enhancement in the disparity
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Figure 4. Intermediate Outputs for OGA module. The third image of the first row illustrates the global attention map of the location
marked by a red dot in the left image. Images in the second row and the third row demonstrate the disparity estimation results at the
different iterations using the proposed OGA module. Through iterative refinement using the OGA module, the disparity estimation improves
progressively, particularly in occluded regions.

estimation compared with the preliminary results as shown
in Figure 4.

4. Additional Experiments Results
4.1. More Comparisons on the SceneFlow dataset

‘In this subsection, we will provide more comparisons
with the proposed GOAT and other SOTA methods on the
SceneFlow dataset. Based on the results presented in Table
1, it is apparent that the proposed GOAT surpasses all other
evaluated approaches in regards to both the overall end-
point-error (EPE) and the EPE at the occluded regions(EPE-
Occ). Furthermore, the proposed approach demonstrates a
lower rate of outliers, as indicated by P1 and P3 values.

Furthermore, an important aspect of efficient neural
network architecture is the training parameters (Params)
as well as their computing complexities, which are of-
ten quantified by the number of multi-accumulate opera-
tions (Macs). As shown in Table 2, our GOAT-T with
1/8 resolution can achieve a competitive performance with
the small-est Macs and rather small parameters compared
with the latest PCWNet [?] and IGEVStereo [?]. However,
transformer-based methods inherently suffer from quadratic
computational complexity where the GOAT-B has 4 times
larger Macs when increasing the resolution to 1/4.

We present a comprehensive analysis with visualization
of the estimated disparity on the SceneFlow dataset which
can be inferred in Figure 6. Compared with other notable
networks, the proposed GOAT can generate better dispar-
ity estimation results around the thin structures and in the
texture-less regions with the assistance of the proposed par-
allel disparity and occlusion estimation module (PDO). Be-
sides, our proposed method displays strong robustness in

OAG Module Iteratlon =1

- -

OAG Module Iteration =

OAG Module Iteration = 3

OAG Module Iteration = 18

Table 1. we compare the performance of our proposed methods
with other notable works on the SceneFlow dataset. We present
the end-point-error (EPE) results for disparities in overall (All) re-
gions, as well as occluded regions (Occ), and report P1 and P3
errors. The best-performing method is highlighted in Bold.

Method EPE- AllEPI;:EPE— Oce P1 Error | P3 Error
DispNetC [?] 1.68 - - -
StereoNet [?] 1.07 3.31 13.7% 5.3%
AANet++ [?] 0.72 2.44 10.4% 4.0%

PSMNet [?] 1.09 3.14 11.1% 4.6%
GANet [?] 0.84 2.83 8.8% 3.8%
GwcNet [?] 0.77 2.47 8.7% 3.9%
RAFT-Stereo [?] 0.69 2.14 7.9% 3.3%
STTR-light [?] 4.14 23.9 16.4% 10.7%
ACVNet [?] 0.48 1.65 6.2% 2.9%
EDNet [?] 0.63 2.08 8.2% 3.9%
IGEVStereo [?] 0.47 1.62 6.6% 3.3%
PCW-Net [?] 0.86 2.54 9.1% 4.0%
GOAT (Ours) 0.47 1.53 5.6% 2.7%

Table 2. Numbers of training parameters (Params) and multi-
accumulate operations (Macs) compared with other lastest meth-
ods. We use an input resolution of 320x 640 for Mac’s computa-
tion.

Method Params Macs EPE
ACVNet [?] 7.1M | 465.1G | 0.48
RAFTStereo [?] 11.1M | 654.8G | 0.69
PCW-Net [?] 35.8M | 768.6G | 0.86
IGEVStereo [?] 12.6M | 541.6G | 0.47
GOAT-T (Ours) 10.0M | 192.0G | 0.56
GOAT B(Ours) 12.1M | 858.3G | 0.47




Table 3. Ablation study of our proposed GOAT on the FallingThings [?] Dataset. ”PDO” is short for Parallel Disparity and Occlusion Es-
timation Module. "OGA” is short for Iterative Occlusion-Awareness Global Aggregation Module. We calculated the EPE and P1(outliers)
both in the overall and the occluded regions, separately.”*” means a higher resolution.

Disparit Update
Method EstirIT)]ati(z]n Ml())dule CA EPE P1(%) Oce Res
Cost Layer mIOU
PDO | RAFT OGA All  Occ All Occ
Volume
Baseline v v 0.53 230 | 59% 28.9% - 1/8
PDO v v 041 1.65 | 52% 26.7% | 0.905 | 1/8
PDO + OGA v v 031 122 | 3.6% 20.2% | 0.905 | 1/8
PDO + OGA + CA v v v 029 1.18 | 34% 19.1% | 0.906 | 1/8
PDO + OGA + CA* v v v 025 1.11 | 27% 17.6% | 0913 1/4
Left Image Right Image Baseline PDO +OGA  PDO+OGA+CA Ground Truth  Occlusion Mask

(Full)

Figure 5. Visualizations of ablation studies on FallingThings Datset. We cropped and enlarge the selected part of the disparity map for

easier viewing.

the occluded regions where other notable approaches fail to
yield a satisfactory result in such ill-conditioned regions.

4.2. Supplementary Ablation Studies on the
FallingThings Dataset.

Besides ablation studies shown in the main paper, we
also conduct the ablation studies on the FallingThings [?]
dataset. Compared to random floating objects in Scene-
Flow dataset, FallingThings dataset contains scenes with
carefully placed objects, thus it has more realistic semantics
and occlusions. The related results can be shown in Table
3.

Compared with the Baseline, the model integrates with
the PDO module (designated as PDO) is able to improve the
overall performance by a big margin from 0.53 to 0.41. As
demonstrated in Figure 5, applying the PDO shows better
structural disparity performance where the baseline shows
blur and ambiguous disparity values.

Furthermore, Table 3 exemplifies the efficacy of the
OGA module. It demonstrates an enhancement in the per-
formance of disparity estimation within occluded regions,
reducing the disparity from 1.65 to 1.22, resulting in a 26%
improvement. This pattern is also observable in Figure 5,
where the PDO + OGA clearly shows better disparities in
the occluded regions.

Finally, the complete model incorporated with PDO and
OGA modules witnesses the best performance by showing
an EPE-Occ of 1.18.

4.3. More Comparisons on the KITTI dataset.

In this section, we will provide more visualization com-
parison results on the KITTI 2015 test set. As illustrated in
Figure 7, the proposed GOAT has more continuous dispar-
ity estimation results in the occluded areas (regions within
the red bounding boxes.). But other most advanced meth-
ods, such as PCWNet [?] and IGEV Stereo [?], have obvious
outliers and disparity discontinuities. Furthermore, our pro-
posed GOAT model demonstrates superior robustness com-
pared to alternative networks, as evidenced by its ability to
produce more accurate structural modeling of street scenes
with fewer artifacts. This characteristic is highly advanta-
geous for autonomous driving applications.

4.4. More Comparisons on the Middlebury dataset.

In addition to the generalization evaluation visualization
mentioned in our paper, we also fine-tuned the SceneFlow
pre-trained model on the Middlebury dataset with half
resolution (H) following the training scheme outlined
in 2.2. More visualization results can be inferred from
Figure 8, where our proposed method demonstrates better
structural disparity estimation and fewer artifacts.
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Figure 6. Visualization comparison of estimated disparities on the SceneFlow dataset. Our proposed GOAT demonstrates more structured

and continuous disparity results in the white bounding box.
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Figure 7. Visualization comparison of estimated disparities on the KITTI 2015 dataset. Note our proposed GOAT can generate more
detailed disparities outputs, especially in the occluded regions compared with other SOTA networks.
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Figure 8. Visualization comparison of estimated disparities on the Middlebury test set.



