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Abstract

Detecting diffusion-generated deepfake images remains an open problem. Current
detection methods fail against an adversary who adds imperceptible adversarial
perturbations to the deepfake to evade detection. In this work, we propose Disjoint
Diffusion Deepfake Detection (D4), a deepfake detector designed to improve black-
box adversarial robustness beyond de facto solutions such as adversarial training.
D4 uses an ensemble of models over disjoint subsets of the frequency spectrum
to significantly improve adversarial robustness. Our key insight is to leverage a
redundancy in the frequency domain and apply a saliency partitioning technique to
disjointly distribute frequency components across multiple models. We formally
prove that these disjoint ensembles lead to a reduction in the dimensionality of
the input subspace where adversarial deepfakes lie, thereby making adversarial
deepfakes harder to find for black-box attacks. We then empirically validate the D4
method against several black-box attacks and find that D4 significantly outperforms
existing state-of-the-art defenses applied to diffusion-generated deepfake detection.
We also demonstrate that D4 provides robustness against adversarial deepfakes
from unseen data distributions as well as unseen generative techniques.

1 Introduction

Significant advances in deep learning are responsible for the advent of “deepfakes”, which can be
misused by bad actors for malicious purposes. Deepfakes broadly refer to digital media that has
been synthetically generated or modified by deep neural networks (DNNs). Modern DNNs such as
diffusion models [1, 2, 3, 4, 5, 6] and generative adversarial networks (GANs) [7, 8, 9, 10, 11, 12, 13]
are now capable of synthesizing hyper-realistic deepfakes, which can then be used to craft fake
social media profiles [14], generate pornography [15], spread political propaganda, and manipulate
elections.

The deepfake detection problem asks the defender to classify a given image as deepfake or real. While
recent work has made remarkable efforts towards solving the deepfake detection problem, many of
these detectors are rendered ineffective by adversarial examples (Fig. 1). Specifically, these state-of-
the-art detectors often leverage DNNs, and Carlini et al. [17] (amongst others) have shown that such
DNNs are vulnerable — the attacker can simply use adversarial perturbation techniques to evade
detection [18, 19, 20, 21]. Recent work has shown that these “adversarial deepfakes” can even be
crafted in a black-box setting, where the attacker only has query access to the detector [22, 23, 24, 25].
Defending against adversarial examples, in general, has been shown to be a difficult task [26], and is
a critical problem in the deepfake detection setting.
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Figure 1: Under the non-adversarial setting, the deepfake detector correctly classifies the image
produced by Stable Diffusion [16] on the text prompt “a photograph of an astronaut riding a horse.” as
fake. However, one can flip the detector’s prediction by adding imperceptible adversarial perturbations
to the deepfake.

Our key intuition to mitigate this problem is to utilize redundant information in the frequency feature
space of deepfakes to generate disjoint ensembles for adversarial deepfake detection. Specifically, we
show in Sec. 3.1 that we can achieve good detection performance with only a subset of the features,
particularly in the frequency domain. This enables us to build an ensemble of performant classifiers,
each using a disjoint set of frequencies. In contrast to traditional ensembles (where each model
shares the same set of frequencies), a key advantage of this design is that non-robust frequencies are
partitioned across all the models in the ensemble (see Sec. 3.2). Thus, an attacker is no longer able
to perturb a single non-robust frequency to evade all models — rather, they must find perturbations
to evade multiple sets of disjoint frequencies. D4 thus aims to thwart the attacker’s generation of
adversarial deepfakes.

To summarize, our key contributions are as follows:

1. We propose D4, a diffusion-generated deepfake detection framework designed to be adver-
sarially robust. D4 builds an ensemble of models that use disjoint partitions of the input
features. This is achieved by leveraging redundancy in the feature space. D4 achieves
robustness while still maintaining natural deepfake detection average precision scores as
high as 93%. (see Sec. 4 for details).

2. Extending the theoretical results by Tramer et al. [27] on dimensionality of adversarial
subspaces, we prove new bounds on the maximum number of adversarial directions that can
be found under an ensemble with disjoint inputs. Our bounds are tight for both the ℓ2 and
ℓ∞ perturbation norms (Lemmas 3.1 and 3.2 in Sec. 3.3) and indicate that D4 reduces the
dimension of the adversarial subspace, i.e., there are simply fewer adversarial examples to
be found.

3. We evaluate D4 against query-based black-box attacks, as well as adaptive frequency and
post-processing attacks. Across a variety of diffusion-generated deepfake images, we find
that D4 significantly outperforms state-of-the-art defenses such as the recently proposed
EnsembleDet [28, 29, 30], suggesting that D4 indeed provides a reduction in dimension of
the adversarial subspace. For example, as indicated by our evaluation in Sec. 4, D4 reduces
the attack success rate to 28%, whereas baselines incur attack success rates of more than
90%. These improvements also extend to unseen image domains and deepfake generation
models.

2 Background and Related Work

Notation. We consider a distribution D over X ×Y , where X ⊆ Rd is the input space and Y ⊆ Zc is
the finite class-label space. We denote vectors in boldface (e.g., x). We denote a trained classifier as a
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function F : X → Y (the classifier is usually parameterized by its weights w, omitted for brevity). We
denote the loss function as L(x, y). An ensemble classifier is a function M(F1,F2,...,Fn) : X → Y that
combines the logit outputs l1, l2, ..., ln of multiple classifiers F1,F2, ...,Fn with a voting aggregation
function A : Rn×c → Y .

For a classifier F and input-label pair (x, y), an adversarial example is a perturbed input x′ such that
(1) x′ is misclassified, i.e., F(x′) ̸= y and (2) ||x− x′|| is within a small ϵ ball, where ||.|| is a given
norm. The value of ϵ is chosen to be small so that the perturbation is imperceptible to humans.

Deepfake Image Generation. In this work, we focus on detection of deepfake images that are
generated entirely from scratch using a deep generative model. Two prominent techniques that
have achieved state-of-the-art for such generation are GANs [7] and diffusion models [1]. GANs
comprise two DNNs: a generator and a discriminator. The generator synthesizes images, while the
discriminator attempts to distinguish between real and deepfake samples. Through this adversarial
training procedure, GANs learn to generate increasingly realistic and high-quality outputs, and have
achieved remarkable success [31]. However, GANs have recently been superceded by diffusion
models. These models iteratively add noise to data samples and then remove it, thereby learning to
generate images from randomly sampled noise. Diffusion models have now also achieved new state-
of-the-art FID scores for image generation benchmarks [5]. Given the quality of images generated,
detection of diffusion model deepfakes poses a pressing concern.

Deepfake Image Detection. The research community has made rapid progress towards detecting
deepfake images. Some efforts propose classification DNNs that operate directly on pixel fea-
tures [32, 29, 33, 34]. Others have instead trained DNNs using features extracted from the deepfakes,
i.e., co-occurrence matrices [35], color-space anomalies [36], convolutional traces [37], texture repre-
sentations [38], pixel-patches [39], or more recently using neural features extracted from foundation
models such as CLIP [40].

One particular line of work that has shown great promise for deepfake detection is leveraging
frequency features. Specifically, Frank et al. [30] proposed the idea of detecting deepfakes with the
Discrete Cosine Transform (DCT) as a pre-processing transform before the DNN. Similar work has
also achieved remarkable performance using frequency features — [41, 42], and more recent efforts
have emphasized their utility in detecting deepfakes from both GANs and diffusion models [43]. D4
also leverages frequency features, but through a unique disjoint ensembling approach.

Adversarial Deepfakes. Unfortunately, regardless of the chosen feature space, the aforementioned
detectors have been rendered ineffective in adversarial settings. Specifically, Carlini et al. [17] showed
that DNN detectors are vulnerable to adversarial examples — an adversary can add imperceptible
adversarial perturbations to a deepfake that evade such detectors, rendering them ineffective. Others
have corroborated this observation [24, 25, 44, 23, 22, 18, 19, 20, 21].

An adversary can construct these “adversarial deepfakes” in either a white-box setting (with complete
knowledge of the detector’s weights and parameters), or black-box setting (with only query access
to the detector). In this work, we focus on the black-box setting. The DNN models of deepfake
detectors in the real world are often hidden from the users and likely to be black-box services, such
as those already offered by Intel [45], Deepware [46], Reality Defender [47] and Sensity AI [48].
These services are typically available through web-based platforms or through API access. Moreover,
defending against white-box attacks is a challenging open problem on all vision tasks. We leave
defense in the white-box setting to future work.

Adversarial Deepfake Detection. Existing defenses for adversarial deepfakes can be broadly
classified into (a) training time defenses (which adjust the training process), and (b) inference-time
defenses.

(a) Training time. The original training time defense is adversarial training, in which the model is
trained on adversarial examples generated during training [49]. However, Carlini et al. [17] suggest
that adversarial training alone is unlikely to achieve significant improvement in robustness in the
difficult deepfake detection setting (confirmed by our experiments in Sec. 4.2).

Instead of adversarial training, recent work has also proposed using an ensemble of models — in
principle, the adversary is then forced to attack multiple models, instead of just one. However, He et
al. [50] have shown that arbitrarily ensembling models does not necessarily lead to more robustness.
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Figure 2: The processing pipeline of D4. It partitions the DCT
spectrum of an image into disjoint partitions using a saliency-
based approach. Each frequency partition is fed to a separate
model that is adversarially trained. A voting mechanism over the
ensemble decides the output.
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Figure 3: Average Precision
(AP) values of a single CNN
classifier trained on a fixed
subset (randomly selected) of
the input features. Redun-
dancy in frequency spectra per-
mits good deepfake detection
even when using ∼ 6% of the
components (see black line).

Prior work suggests that each model in an ensemble tends to learn the same non-robust features, i.e.,
an adversary is able to perturb the same features to evade all models [51].

Most recently, Dutta et al. [28] and Khan et al. [52] proposed EnsembleDet and ARDD respectively
as ensemble defenses against adversarial deepfakes. Both defenses ensemble multiple different DNN
architectures, and posit that the different architectures will learn different features, thereby providing
improved robustness. Devasthale et al. [53] take this approach one step further and also adversarially
train each model in the ensemble.

Note that while D4 is also an ensemble-based detector, it is fundamentally different than existing
approaches since it does not require different architectures to avoid learning the same features — we
instead leverage artifact redundancy to design frequency-partitioned ensembles (see Sec. 3 for a
more detailed explanation). Furthermore, D4’s partitioning approach to achieve disjoint ensembles is
novel, and it offers theoretical and empirical advantages where such feature redundancy is available,
e.g., generated deepfakes, allowing it to outperform prior work (see Sec. 4).

(b) Inference time. Another class of defenses focuses on removing the effect of the adversarial
perturbation without any changes made to the underlying detection technique — unfortunately, these
approaches are computationally intensive, e.g., upto 30 minutes per image [23, 54], in comparison
to no additional overhead in D4. Nevertheless, both approaches are complementary in that pre-
processing could be combined with training-time defenses such as D4.

Finally, we note that there are other inference-time defenses that are not specific to deepfakes. For
example, stateful defenses [55] were proposed to defend against black-box adversarial examples,
but have been recently shown to be vulnerable [56]. Another group of defenses post-process the
detector’s response by manipulating the detector’s confidence scores [57, 58], but these do not work
against hard-label black-box attacks.

3 Our Approach

We now present D4 (Fig. 2), a deepfake detection framework that leverages an ensemble of disjoint
frequency models to achieve robust detection of diffusion-generated deepfake images. Sec. 3.1
presents our observation of redundant information in the frequency space of deepfakes. Sec. 3.2
details how redundancy allows frequencies to be partitioned between multiple models for robust
ensembling and explains our exact frequency partitioning schemes. Finally, Sec. 3.3 provides
theoretical insight into why D4 improves adversarial robustness.

3.1 Redundant Information in Deepfake Image Spectra

As discussed in Sec. 2, ensembles are a promising approach to adversarial robustness, so long as
perturbing the same set of features does not simultaneously evade the individual models. We propose
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designing an ensemble that avoids this shortcoming by disjointly partitioning the input feature space
amongst individual models.

As mentioned earlier, the frequency spectrum of images facilitates deepfake detection because
generation techniques leave discriminating artifacts that are more prominent in the frequency space.
We additionally observe that these artifacts are spread throughout the frequency feature space, and
they are more uniformly spread as compared to pixel space. We confirm this in Fig. 3, which plots
the performance of a simple convolutional classifier 2 on an increasingly smaller random subset of
the input features.

Our first key insight is thus that disjoint partitioning is feasible for deepfake detection. Specifically,
we observe a “redundancy” in frequency-space artifacts — signals relevant for deepfake detection3

are distributed throughout the frequency spectrum. This observation is best exemplified by the black
line in Fig. 3, which plots the deepfake detection performance using increasingly small subsets of the
spectrum using the same classifier. Using as few as ∼ 6% of the frequency components yields good
deepfake detection performance. We emphasize that this does not hold for subsets of pixels (red line),
as signals for detection are not well-distributed in the RGB space. Overall, these findings suggest that
the frequency-space contains plenty of redundancy, which can potentially be leveraged to design a
robust ensemble.

3.2 Leveraging Redundancy to Build a Robust Ensemble

Using the observations from Sec. 3.1, one can craft a robust ensemble by partitioning the frequency
components amongst multiple detector models, without hurting natural detection performance. Fig. 2
visualizes this partitioning as part of our ensembling pipeline. Specifically, for each individual model
we mask (i.e., zero out) the frequencies not used. For example, consider an ensemble of two such
“disjoint” models FA and FB , with the full-spectrum frequency feature vector f = [f1; f2]. Then, the
input feature vector to FA is [f1; 0] and to FB is [0; f2]. Since the input feature space (frequencies)
is not shared amongst the individual models, the adversary cannot simply attack the ensemble by
targeting common frequencies.

Furthermore, we note that choice of partitioning scheme, i.e., how the frequencies are partitioned
plays an important role in robustness of the ensemble. Specifically, the chosen scheme should aim to
design all models as “equals” — if some models are less robust than others, then the adversary can
target them to overturn the ensemble’s decision.

Saliency Partitioning. While signals for deepfake detection are distributed throughout the spectrum,
there still exists an adversarial saliency ordering of these frequencies that determines their robustness
for the deepfake detection task. For an ensemble of size n, our saliency partitioning technique is
aimed at ensuring each model receives a fair proportion of salient frequencies. To this end, we
follow [59] and [60] to compute saliency values for all frequencies. This is achieved by adversarially
perturbing deepfake x to x+ δx, where δx is the perturbation computed with the Carlini-Wagner ℓ2
attack for 1000 steps. Then, we compute saliency si for the ith frequency as

si = Ex∈X∇f(x+ δx)i · δxi (1)

where subscript i denotes the ith component. Intuitively, higher gradients and larger perturbation
magnitudes imply larger saliencies. Frequencies are then ordered by their saliencies, and distributed
in a round-robin fashion amongst the models.

3.3 Adversarial Subspace of Disjoint Ensembles

Given the partitioning approach in Sec. 3.2, we now show that an ensemble of such disjoint frequency
models increases robustness against adversarial examples by reducing the dimension of the adversarial
subspace. For a single model F and input x, Tramer et al. [27] approximate the k−dimensional
adversarial subspace as the span of orthogonal perturbations r1, · · · , rk ∈ Rd such that ri⊺g ≥
γ ∀ 1 ≤ i ≤ k where g = ∇xLF (x, y), LF is the loss function used to train F , and γ is the

2We use the same architecture as Frank et al. [30]
3Frank et al. [30] show that these artifacts manifest in the form of a grid-like spectral pattern, and attribute

their presence to the upsampling process in generative models. Existing work proposes detectors that leverage
the entire frequency spectrum for deepfake detection.
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increase in loss sufficient to cause a mis-classification. For perturbations satisfying the ℓ2-norm, i.e.
||ri||2 ≤ ϵ ∀ 1 ≤ i ≤ k, the adversarial dimension k is bounded by ϵ2||g||22

γ2 (tight). In what follows,
we extend this result and provide bounds for dimensionality of the shared adversarial subspace
between n disjoint models. We provide tight bounds for both ℓ2 and ℓ∞ norms in Lemma 3.1 and
Lemma 3.2 respectively (with detailed proofs in Appendix 7.1). We consider these bounds for two
voting mechanisms: (1) majority, where the ensemble outputs deepfake if at least ⌈n/2⌉ classifiers
predict deepfake, and (2) at-least-one, where the classifier outputs deepfake if at least one classifier
predicts deepfake, otherwise it outputs real.
Lemma 3.1. Given n disjoint models, F1, ...,Fn, having gradients g1, · · · ,gn ∈ Rd for input-
label pair (x, y) (where gj = ∇xLFj

(x, y)), the maximum number k of orthogonal vectors
r1, r2, · · · , rk ∈ Rd satisfying ||ri||2 ≤ ϵ and, ri⊺gj ≥ γj for all 1 ≤ j ≤ n (at-least-one
voting) or for at least ⌈n

2 ⌉ models (majority voting), for all 1 ≤ i ≤ k is given by:

k = min

d,

 ϵ2( n∑
j=1

γj
)2

n∑
j=1

||gj||22




(at-least-one voting)

(2)

k ≤ min

d,

 max
|K|=⌈n

2 ⌉

ϵ2( ∑
j∈K

γj
)2 ∑

j∈K

||gj||22




(majority voting)

(3)

k ≥ min

d,

 min
|K|=⌈n

2 ⌉

ϵ2( ∑
j∈K

γj
)2 ∑

j∈K

||gj||22




(majority voting)

(4)

Lemma 3.2. Given n disjoint models, F1, ...,Fn, having gradients g1, · · · ,gn ∈ Rd for input-
label pair (x, y) (where gj = ∇xLFj (x, y)), the maximum number k of orthogonal vectors
r1, r2, · · · , rk ∈ Rd satisfying ||ri||∞ ≤ ϵ and E[gj

⊺ri] ≥ γj for all 1 ≤ j ≤ n (at-least-one
voting) or for at least ⌈n

2 ⌉ models (majority voting), for all 1 ≤ i ≤ k

k = min

(
d,

⌊
min

(
ϵ2||g1||21
n2γ2

1

, ...,
ϵ2||gn||21
n2γ2

n

)⌋)
(at-least-one voting)

(5)

k = min

(
d,

⌊
median

(
ϵ2||g1||21
n2γ2

1

, ...,
ϵ2||gn||21
n2γ2

n

)⌋)
(majority voting)

(6)

Implications. If all n disjoint models in the ensemble are “near-identical" (as expected per our
saliency partitioning scheme), i.e., ||g1||22 ≈ · · · ≈ ||gn||22 and γ1 ≈ · · · ≈ γn, then Lemma 3.1
for at-least-one voting reduces to k ≈ min

(
d,
⌊
ϵ2||g1||22

nγ2
1

⌋)
. This implies that an ensemble of n

disjoint models offers potential reduction in dimensionality of the adversarial subspace by a factor of
n compared to any individual constituent disjoint model. Similar interpretation holds for Lemma 3.2,
where reductions are now by a factor of n2. Next, in Sec. 4, we empirically demonstrate that this
reduction in dimension of adversarial subspace leads to improved performance against black-box
adversarial examples.

4 Experimental Evaluation

Our experiments broadly aim to answer the following questions:
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Detector No Attack Attack (ASR)

(AP) SurFree HSJA QEBA Triangle Boundary SignOPT

EnsembleDet 100% 100% 100% 100% 77% 100% 100%
ARDD 100% 100% 100% 100% 99% 90% 100%

ARDD-AT 100% 91% 23% 97% 18% 19% 43%
D4 (SIZE=1) 98% 93% 11% 53% 51% 6% 10%
D4 (SIZE=4) 93% 28% 3% 2% 0% 8% 8%

Table 1: An attacker achieves lower attack success rates (ASRs) when attacking D4 (SIZE=4) as
compared to the baselines. Attacks are launched on LSUN bedroom deepfake images from an LDM
diffusion model, with a query budget of 50k queries and ℓ2 perturbation budget of ϵ = 10.
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Figure 4: SurFree ASR vs. query budget against all detectors, on LSUN bedroom deepfakes from the
LDM diffusion model.

Q1. How robust are D4 ensembles against black-box attackers, and how does D4 raise the attacker’s
cost of creating adversarial deepfakes?

Q2. Does D4’s robustness hold for deepfakes from different diffusion models? How well does D4
generalize to deepfakes from unseen image domains, diffusion models, or even different generative
architectures, i.e., GANs?

Q3. How does D4 fare against traditional post-processing, and more adaptive frequency-based
attacks?

In the following sections, we address these questions by detailing our setup and experiments.

4.1 Experimental Setup

We adopt the following settings to evaluate D4 for detecting deepfakes and adversarial deepfakes.

Datasets and Pre-processing. We perform our experiments using real images from the LSUN
Bedroom dataset [61], and the CelebaHQ dataset [8]. For each of these datasets, we obtain deepfake
images from the LDM [4], DDIM [3], and PNDM [6] diffusion models. Deepfakes for bedroom are
sourced from those already generated by prior work [43], and we generate deepfakes for CelebaHQ
ourselves using models from the HuggingFace public model repository [62]. For our generalization
evaluation with GANs, we source ProGAN [8], StyleGAN [9], and Diff-StyleGAN2 [11] images
again from [43]. For any given diffusion model and dataset, the training set comprises 39k training
images for each of the deepfake and real classes, 1k validation, and 10k testing (as per [43]). All
images are resized to 256x256, and then center-cropped to 224x224.

Baselines. We implement five baselines to evaluate D4. The first two baselines are the pixel-
space ensemble defenses EnsembleDet [28] and ARDD [52] proposed by prior work. EnsembleDet
comprises three models with the EfficientNet, XCeption, and Resnet50 architectures. ARDD is
similar, but instead comprises the VGG16, InceptionV3, and Xception architectures. Our third
baseline ARDD-AT is also from prior work [53], which changes the architectures of ARDD to
VGG19, Vision Transformer, Wide-ResNet, and also adversarially trains each individual model
using the PGD-150 attack on deepfake images only. Our fourth baseline is simply an adversarially
trained version of a full-spectrum frequency space detector — this is equivalent to a D4 ensemble of
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Model Detector No Attack
(AP)

Attack
(ASR)

LDM D4 (SIZE=1) 98% 95%
D4 (SIZE=4) 93% 28%

DDIM D4 (SIZE=1) 98% 97%
D4 (SIZE=4) 78% 15%

PNDM D4 (SIZE=1) 97% 100%
D4 (SIZE=4) 97% 0%

Table 2: D4 (SIZE=4) only trained on LSUN Bedroom is able to generalize its robustness to
CelebaHQ, an entirely different domain unseen during training time.

Model Detector
Attack (ASR)

SurFree HSJA QEBA Triangle Boundary SignOPT

LDM D4 (SIZE=1) 93% 11% 53% 51% 6% 10%
D4 (SIZE=4) 28% 3% 2% 0% 8% 8%

DDIM D4 (SIZE=1) 95% 18% 99% 4% 26% 24%
D4 (SIZE=4) 9% 13% 5% 6% 11% 15%

PNDM D4 (SIZE=1) 100% 87% 77% 16% 91% 89%
D4 (SIZE=4) 0% 0% 0% 0% 0% 0%

Table 3: D4 (SIZE=4) continues to reduce the attacker’s ASR more than the baselines, even when
trained and tested on adversarial deepfakes from diffusion models other than LDM.

size 1, i.e., D4 (SIZE=1) without multiple models or disjoint partitioning. We perform adversarial
training for D4 (SIZE=1) with PGD-50 attacks [49] using the TRADES loss [63]. Finally, we use the
pretrained CNNDet detector from [29] as an additional baseline for our generalization experiments
in Sec. 4.3.3, since this detector was designed for detection of unseen generative models 4. All
baseline models (except CNNDet) are trained using the Adam optimizer [64] with an initial learning
rate of 0.0001, batch size of 32, and a maximum of 20 epochs.

Attacks. We evaluate D4 and baselines against six popular black-box attacks spanning both the
gradient-based and random search-based categories. For gradient-based attacks, we select HSJA [65]
and QEBA [66]. For random search-based attacks, we select SurFree [67], Triangle [68], Bound-
ary [69], and SignOPT [70]. We employ the default hyperparameters for each attack, and focus our
attack evaluation on the ℓ2 norm with a standard perturbation ϵ = 10. We impose a query budget of
50,000 queries on each attack following [57] (roughly equivalent to between $50 - $75 as per modern
MLaaS platforms such as Clarifai).

D4 Architecture and Training. We implement a D4 ensemble D4 (SIZE=4) comprising four models.
Each model follows a ResNet50 architecture, and the 2D-Discrete Cosine Transform (DCT) is used
to convert images to the frequency space before distributing frequencies amongst the models. Each
individual model is also adversarially trained using the same procedure as the D4 (SIZE=1) baseline.

Metrics. We follow prior work [29, 43, 40] and use average precision (AP) to measure the natural, i.e.,
non-adversarial, unperturbed deepfake detection performance of D4. We then consider an adversary
that attempts to perturb deepfakes to the “real” class, and employ attack success rate, i.e., ASR
(fraction of successfully perturbed deepfakes) as our performance metric for robustness. Lower ASR
implies that the detector is more effective against adversarial deepfakes.

4The pre-trained models for the more recent generalization detector from [40] are currently unavailable.

Detector LDM DDIM PNDM StyleGAN ProGAN Diff-StyleGAN2

CNNDet 62% (-) 68% (100%) 64% (100%) 95 (100%) 100% (100%) 100% (100%)
D4 (SIZE=4) 93% (28%) 70% (9%) 79% (19%) 67% (14%) 59% (28%) 67% (11%)

Both 93% (28%) 70% (9%) 79% (19%) 80% (54%) 100% (63%) 94% (67%)

Table 4: Generalization of CNNDet (trained on ProGAN) and D4 (SIZE=4) (trained on LDM) to
diffusion and GAN deepfakes that were unseen during training. Results are presented in the following
format: non-adversarial AP (ASR).
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4.2 Robustness Against Adversarial Examples

We now present performance of D4 and baselines under the six attacks described in Sec. 4.1. For
each detector, we present ASR over 100 images under a 50k query budget.

Results for each baseline detector are presented in rows 1-4 of Tab. 1. Notably, these baselines
achieve excellent AP scores of ∼ 100% on non-adversarial deepfakes. However, we find that for
each detector at least one attack achieves ASR > 90%, rendering it entirely ineffective. Interestingly,
the random-search based SurFree attack is particularly effective against all the baselines, e.g., 91%
and 93% against the the ARDD-AT and D4 (SIZE=1) baselines respectively. In contrast D4 (SIZE=4)
(presented in row 5) is not vulnerable to any ASRs over 28% (again, achieved by SurFree). In some
cases, it can even reduce ASR to < 3%. Furthermore, D4 is able to withstand these attacks without
much drop in performance on non-adversarial deepfakes (93% AP). We re-emphasize that this is only
achievable due to the redundancy observation from Sec. 3.1.

To better visualize how D4 raises the cost of an attack, we also plot SurFree ASR against attack
query budget for all detectors in Fig. 4. An attacker can typically achieve over 80% ASR against all
baselines within 20k queries. However, D4 (SIZE=4) continues to prevent ASR over 28% even at
over double, i.e. 50k queries.

4.3 Generalization of Robustness

We now expand beyond the standard setting discussed in Sec. 4.2 and instead consider the generaliza-
tion capabilities of D4 in different contexts. First, we repeat the experiments from Sec. 4.2 for other
diffusion models. Second, we consider a more difficult setting and extend our evaluation of D4 to
adversarial deepfakes from models and domains unseen at training time. While this generalization is
known to be possible for non-adversarial deepfake detection [29, 40], to the best of our knowledge
generalization for adversarial deepfake detection has not yet been explored.

4.3.1 Different Diffusion Models

Tab. 3 presents the results of repeating the experiments in Sec. 4.2, but now for adversarial deepfakes
from the DDIM and PNDM diffusion models. As expected, we observe that the trends continue to
hold — in fact, D4 (SIZE=4) on PNDM is able to completely prevent all six attacks, i.e., ASR=0
across all images. For reference, the D4 (SIZE=1) baseline (one of the stronger ones from Tab. 1) is
again vulnerable to at least one attack with > 90% ASR.

4.3.2 Unseen Image Domains

Tab. 2 presents the results of evaluating the D4 (SIZE=4) models from Tab. 3 (which were trained
only on bedroom images) on adversarial deepfakes from an entirely different data domain, i.e., human
faces. We focus on the strongest SurFree attack. Again, D4 reduces ASR significantly more than
the baselines, with minimal cost to non-adversarial deepfake detection. One exception is DDIM, for
which non-adversarial AP drops to 78%. However, the decrease in an attacker’s ASR from 97% to
15% likely offsets this drop in adversarial settings.

On potential explanation for D4’s success over the baselines here is as follows: any detector using
the full feature set may overfit to a small set of non-robust features unique to the specific training
image domain. On the other hand, D4’s disjoint partitioning of non-robust features forces each model
to learn more from the robust artifacts caused by the diffusion model. Overall, D4 suggests that
generalizing adversarial robustness to a variety of domains is possible.

4.3.3 Unseen Generative Models

We now evaluate D4’s generalization to adversarial deepfakes from models unseen during training
time, including different diffusion models, as well as other architectures, i.e., GANs. To this end, we
select the D4 (SIZE=4) model from Tab. 1 trained on LSUN bedroom only. Since prior work has
only focused on generalization in the non-adversarial context, our baseline is the popular CNNDet
detector [29] renown for its detection capabilities across a wide variety of GANs. CNNDet is a
pixel-space detector trained only on ProGAN deepfake images, using heavy JPEG and blurring data
augmentation.
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Detector Noise Blur JPEG Freq-Peaks

D4 (SIZE=4) 78% 93% 83% 92%

Table 5: AP scores on LSUN Bedroom LDM deepfakes that are subject to post-processing, or an
adaptive frequency-peaks attack.

Row 1 of Tab. 4 presents CNNDet’s AP scores for non-adversarial deepfakes and ASR for adversarial
deepfakes, across the variety of diffusion and GAN models listed in Sec. 4.1. As expected, CN-
NDet performs well for detection of non-adversarial GAN deepfake images (all AP scores > 80%).
However, it performs poorly for diffusion deepfakes which can be explained by prior work’s obser-
vation that the high frequency artifacts differ between GANs and diffusion models [43]. Under the
adversarial setting, it is rendered completely ineffective with 100% ASR for both GAN and diffusion
deepfakes. This also suggests that simultaneously acheiving both generalization and robustness
against adversarial examples is a challenging problem. Row 2 presents D4 (SIZE=4) scores, which
exhibit the opposite trend — it is able to generalize better (both non-adversarial and adversarial) for
diffusion deepfakes, but worse for GANs (since it is trained on diffusion images).

The above observations suggest that combining the two detectors may yield improvements. To
this end, row 3 presents the results of ensembling D4 (SIZE=4) and CNNDet using an at-least-one
voting scheme. The resulting aggregate detector “merges” the benefits to an extent, presenting AP
scores >= 80% and >= 70% for non-adversarial GAN and diffusion model deepfakes respectively.
Furthermore, ASRs are significantly reduced from the 100% of CNNDet. Overall, this indicates that
D4 is complementary to existing detectors, and can be combined to improve adversarial (or even
non-adversarial) generalization.

4.4 Post-Processing and Adaptive Attacks

We now evaluate D4 (SIZE=4)’s robustness to standard post-processing image transforms that are
common, e.g., when distributed through social media. We focus on standard transforms leveraged
by prior work, including additive Gaussian noise (σ = 2), blurring (σ = 2), and JPEG compression
(80%). We also evaluate against the adaptive frequency-peaks attack proposed by recent work [71],
designed to evade frequency-based deepfake detectors by removing frequency artifacts. At a high
level, the attack manipulates frequency coefficients to remove “peaks" in the spectrum. Specifically,
it computes a fingerprint as the difference between the log-scaled mean spectra of deepfake and real
images. To attack a deepfake image, the attack then intensifies and subtracts this fingerprint from the
image.

Tab. 5 presents results of evaluating D4 (SIZE=4) under the above settings. We observe that D4 is
generally robust to post-processing, with the largest drop happening for Gaussian noise (78% AP).
This is to be expected, as prior work has shown that the frequency space is generally robust to all
standard transforms except noise [30]. Furthermore, the frequency-peaks attack does not appear
to hurt performance. This is likely because a disjoint partitioning of features ensures that many
frequency components are used for detection, and not just the peaks.

5 Discussion and Future Work

Societal impact and limitations. Modern deepfakes raise several societal and security threats; D4
is a step towards mitigating that. Nonetheless, adversarial deepfakes also have benign use cases,
e.g., anonymization of an end-user on an online network; D4 could prevent such anonymization.
Additionally, D4 is focused on diffusion-generated deepfake images — since it relies upon redundancy
in the frequency space, it may not be effective against against future types of deepfakes that avoid
these artifacts. We believe that the benefits of D4 outweigh such potential concerns.

Alternate Partitioning Strategies. Recall from Section 3.2 that saliency of a feature may be viewed
as a heuristic measure of its “robustness", as larger saliencies imply that the model is more sensitive
to perturbations of that frequency. Figure 5 plots the distribution of absolute saliency values for
D4 (SIZE=1) and D4 (SIZE=4) ensembles. We observe that saliencies for saliency-partitioning
configurations D4 (SIZE=4) are of relatively lower values, and are sharply concentrated around their
mode, implying higher feature robustness. This can be attributed to the round-robin, equal distribution
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Figure 5: Distribution of frequency feature saliencies for D4 (SIZE=1) and D4 (SIZE=4) ensembles.
Lower saliency implies higher feature robustness.

of robust frequencies amongst the constituent models. Improved approaches to saliency partitioning
could increase this separation, improving model robustness even further. We leave this exploration to
future work.

Applicability to domains other than deepfake detection. We presented D4 as a framework for
adversarially robust deepfake detection. However, we hypothesize that this approach could apply to
other classification tasks that exhibit redundancy in a feature space. While we are unaware of such
a space for the popular CIFAR10 and ImageNet classification tasks, there are several classification
tasks in, say, the audio domain that exhibit redundancy in features, e.g., keyword spotting and fake
speech detection. Exploring this hypothesis is an interesting future research direction.

6 Conclusions

In this paper, we present D4, an ensemble approach to deepfake detection that exploits redundancy in
frequency feature space by partitioning the frequencies across multiple models. We show theoretical
advantages to such disjoint partitioning of input features, that reduces the dimensionality of the
adversarial subspace. We empirically validate that D4 offers significant gains in robustness under
black-box attacks, reducing attack success rates to as low as 0%.
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7 Appendix

In Appendix 7.1, we provide proofs for our bounds on dimensionality of the adversarial subspace of
disjoint ensembles, such as D4. In Appendix 7.2, we provide details of our baseline configurations
and attack settings for reproducibility purposes, as well as additional experimental results on other
datasets.

7.1 Proofs

7.1.1 Orthogonal Gradients

Prior to providing proofs for the adversarial dimensions, we demonstrate that gradients for disjoint
classifiers are always orthogonal to each other. We will use this for our later results. Given input
space X and class-label space Y , we have n disjoint classifiers F1, ...,Fn. If T is the DCT transfor-
mation matrix, we can define Ti to be the transformation matrix for the classifier Fi. Each disjoint
transformation Ti has a lot of zeros. Only the rows corresponding to the unmasked frequencies of
classifier Fi have non-zero entries. Moreover, since no frequency is shared by any two classifiers,
the jth row will have non-zero entries in exactly one of the n disjoint transformation matrices, i.e.
TiT

⊺
j = O ∀i ̸= j.

Next, the n disjoint classifiers F1, ...,Fn, where Fi : Tix → y, are trained using loss functions
LF1

, ...,LFn
respectively. Now, the dot product between the gradients of classifiers Fi and Fj is

given by

(∇xLFi
)
⊺ (∇xLFj

)
= (T ⊺

i ∇TixLFi
)
⊺ (

T ⊺
j ∇TjxLFj

)
= (∇TixLFi)

⊺
TiT

⊺
j

(
∇TjxLFj

)
= 0

(7)

7.1.2 Proof of Lemma 3.1

From [27], we know that for a classifier F : X → Y where X ∈ Rd is the input space and Yc ∈ Z is
the finite class label space, the dimension of the adversarial subspace around input-label pair (x, y)
where x ∈ X and y ∈ Y , is approximated by the maximal number of orthogonal perturbations
r1, r2, ..., rk such that ||ri||2 ≤ ϵ and g⊺ri ≥ γ ∀ 1 ≤ i ≤ k. Here, g = ∇xL(F(x), y) and γ is the
increase in loss function L sufficient to cause a mis-classification. [27] provide a tight bound for k:

k = min

(
d,

⌊
ϵ2||g||22
γ2

⌋)
(8)

We now extend this result for n disjoint classifiers. Let g′ =

n∑
j=1

gj

n .
Now, for at-least-one voting,

g′⊺ri =

n∑
j=1

gj
⊺ri

n
≥

n∑
j=1

γj

n
∀ 1 ≤ i ≤ k (9)

Applying the result from [27] (Equation 8) on the above inequality (Equation 9), we get:
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k = min

d,


ϵ2n2||g′||22(

n∑
j=1

γj

)2





= min

d,


ϵ2

n∑
j=1

||gj||22(
n∑

j=1

γj

)2



 .

(since gi
⊺gj = 0 ∀i ̸= j, using Equation 7)

(10)

Now, for majority voting, we again apply the results from [27] (Equation 8). However, the derivation
now depends on the selection of

⌈
n
2

⌉
models that the adversary chooses to target. To obtain the lower

and upper bounds, we can select
⌈
n
2

⌉
with the most and least adversarial dimensions respectively.

Following a similar derivation as before, we get :

k ≥ min

d,

 min
|K|=⌈n

2 ⌉

ϵ2
n∑

j=1

||gj||22(
n∑

j=1

γj

)2



 (11)

k ≤ min

d,

 max
|K|=⌈n

2 ⌉

ϵ2
n∑

j=1

||gj||22(
n∑

j=1

γj

)2



 (12)

7.1.3 Proof of Lemma 3.2

Follow up work from [72] also provides a tight bound for the adversarial dimension in the ℓ∞ case.
They provide a tight bound for the number of k orthogonal perturbations r1, ..., rk ∈ Rd such that
||ri||∞ ≤ ϵ, given by sign(g)⊺ri =

ϵd√
k
∀1 ≤ i ≤ k where sign(g) is the signed gradient.

We now extend this result for n disjoint classifiers. For g′ =

n∑
j=1

gj

n , since gj
′s are non-zero only on

non-overlapping dimensions, we can see that sign(g′)⊺r =
n∑

j=1

sign(gj)
⊺r ∀r ∈ Rd. Applying the

above results here, we get

n∑
j=1

sign(gj)
⊺ri =

ϵd√
k
∀1 ≤ i ≤ k (13)

Now, similar to [72], we compute the perturbation magnitude along a random permutation of the
signed gradient. For each 1 ≤ j ≤ n and 1 ≤ i ≤ k, we get :
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E[gj
⊺ri] = E

[
d∑

p=1

|g(p)j | · sign(g(p)j ) · r(p)i

]

=

d∑
p=1

|g(p)j |E
[
sign(g

(p)
j ) · r(p)i

]
=

ϵ||gj||1
n
√
k

(14)

7.2 Additional Evaluation Details

7.2.1 Details for Attacks

We consider the following attacks for our evaluation. These attacks constitute the entire ensemble of
attacks used in the AutoAttack Benchmark. We tune the attacks where necessary to get the strongest
attack setting.

APGD-CE/CW [73] is a step-size free variant of the standard PGD attack. It adjusts the step size
during the attack based on the convergence of the loss and the overall perturbation budget. We
optimize the adaptive PGD-attack on the Cross Entropy (CE) and Carlini Wagner (CW) loss functions.
We use the same set of parameters for the attack as mentioned in AutoAttack Benchmark other than
the step size decay parameter α which we set to 0.1 instead of 2.

FAB [74] is a iterative first order attack that utilizes geometry of the decision boundary to minimize the
perturbation required to cause mis-classification. We use the same set of parameters as AutoAttack.

Square [75] is an efficient black-box attack that uses random square shaped updates to approximate
the decision boundary. We use the same set of parameters as AutoAttack.

7.2.2 Evaluation on CIFAR10

Table 6 presents results for attacking the D3-S(4) ensemble and AT baseline, for the CIFAR10
classification task. While D3-S(4) offers some improvements at the smallest perturbation budgets,
it quickly drops off. We suspect that a more carefully chosen feature space with redundancies for
animal/vehicle classification would improve these results.

Table 6: CIFAR10 adversarial accuracies for ℓ∞ and ℓ2 perturbation attacks for same configurations
as in Table ??.

Attacks ϵ D4 (SIZE=1) D4 (SIZE=4)

ℓ∞

APGD-
CE(50)

1/255 1.7 59.8
4/255 0.1 1.2
8/255 0.1 0

16/255 0.1 0

ℓ2

APGD-
CE(50)

0.5 15.1 63.5
1 13.6 39.7
5 0.9 8.2

10 0.8 6.2
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