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Abstract

Labeling datasets for supervised object detection is a dull
and time-consuming task. Errors can be easily introduced
during annotation and overlooked during review, yielding in-
accurate benchmarks and performance degradation of deep
neural networks trained on noisy labels. In this work, we
introduce a benchmark for label error detection methods
on object detection datasets as well as a theoretically un-
derpinned label error detection method and a number of
baselines. We simulate four different types of randomly intro-
duced label errors on train and test sets of well-labeled ob-
ject detection datasets. For our label error detection method
we assume a two-stage object detector to be given and con-
sider the sum of both stages’ classification and regression
losses. The losses are computed with respect to the predic-
tions and the noisy labels including simulated label errors,
aiming at detecting the latter. We compare our method to
four baselines: a naive one without deep learning, the object
detector’s score, the entropy of the classification softmax
distribution and a probability margin based method from
related work. We outperform all baselines and demonstrate
that among the considered methods, ours is the only one that
detects label errors of all four types efficiently, which we
also derive theoretically. Furthermore, we detect real label
errors a) on commonly used test datasets in object detection
and b) on a proprietary dataset. In both cases we achieve
low false positives rates, i.e., we detect label errors with a
precision for a) of up to 71.5% and for b) with 97%.

Figure 1. Example image from the Pascal VOC 2007 test dataset
with two labeled boats marked by the blue boxes and multiple
unlabeled boats.

1. Introduction

Nowadays, the predominant paradigm in computer vision is
to learn models from data. The performance of the model
largely depends on the amount of data and its quality, i.e.
the diversity of input images and label accuracy [10, 17, 18,
21, 23]. Deep neural networks (DNNs) are particularly data
hungry [34]. In this work, we focus on the case of object
detection where multiple objects per scene belonging to a
fixed set of classes are annotated via bounding boxes [9, 30].

In many industrial and scientific applications, the label-
ing process consists of an iterative cycle of data acquisition,
labeling, quality assessment, and model training. Labeling
data is costly, time consuming and error prone, e.g. due
to inconsistencies caused by multiple human labelers or a
change in label policy over time. Therefore, at least a partial
automation of the label process is desirable. One research
direction that aims at this goal is automated label error de-
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tection [8, 27, 32]. The extent to which noisy labels affect
the model performance is studied by [1, 38]. Wu et al. [38]
observe that the model is able to tolerate a certain amount
of missing annotations in training data without losing too
much performance on Pascal VOC and Open Images V3
test sets. In contrast, Buttner et al. [1] show that inaccurate
labels in terms of annotations size in training data yields to
significant decrease of test performance for calculus detec-
tion on bitewing radiographs. Other methods model label
uncertainty [26, 31] or improve robustness w.r.t. noisy la-
bels [2, 11, 24, 43].

Up to now, automated detection of label errors has re-
ceived less attention. There exist some works on image
classification datasets [27, 28, 35], one work on semantic
segmentation datasets [32] and some works for object detec-
tion [16, 22]. Label errors may affect generalization perfor-
mance, which makes their detection desirable [28]. Further-
more, there is business interest in improving and accelerating
the review process by partial automation.

Here, we study the task of label error detection in ob-
ject detection datasets by a) introducing a benchmark and
b) developing a detection method and compare it against
four baselines. We introduce a benchmark by simulating
label errors on the BDD100k [41] and EMNIST-Det [30]
dataset. The latter is a semi-synthetic dataset consisting
of EMNIST letters [5] pasted into COCO images [25] of
which we expect to possess highly accurate labels. The types
of label errors that we consider are missing labels (drops),
correct localization but wrong classification (flips), correct
classification but inaccurate localization (shifts), and labels
that actually represent background (spawns). We address
the detection of these errors by a novel method based on
monitoring instance-wise object detection loss. We study the
effectiveness of our method in comparison to four baselines.
Then, we demonstrate for commonly used object detection
test datasets, such as BDD100k [41], MS-COCO [25], Pas-
cal VOC [9] and Kitti [12], and also for a proprietary dataset
on car part detection that our method detects label errors by
reviewing moderate sample sizes of 200 images per dataset.
Our contributions can be summarized as follows: a) we in-
troduce a novel method based on the instance-wise loss for
detecting label errors in object detection, b) we introduce
a benchmark for identifying four types of label errors on
BDD100k and EMNIST-Det, and c) we apply our method to
detect label errors in commonly used and proprietary object
detection datasets and manually evaluate the error detection
performance for moderate sample sizes.

2. Related Work
The influence of noisy labels in the training as well as in the
test data is an active and current research topic. The labels for
commonly used image classification datasets are noisy [28]
and this also applies to object detection. Figure 1 shows an

image from the Pascal VOC 2007 test dataset containing just
two labeled boats, but clearly more can be seen.

For the task of image classification, some learning meth-
ods exist that are more robust to label noise [13–15, 19, 27,
29,37,40,42]. Also the task of label error detection has been
tackled in [4,28] and theoretically underpinned in [27]. Chen
et al. [4] filter whole samples with noisy labels but individual
label errors are not detected. Northcutt et al. present label
errors in image classification datasets and study to which
extent they affect benchmark results [28] followed by the in-
troduction of the task of label error detection [27]. The latter
introduces a confident learning approach, assuming that the
label errors are image-independent. Then, the joint distribu-
tion between the noisy and the true labels with class-agnostic
label uncertainties is estimated and utilized to find label er-
rors. This method allows to find label errors on commonly
used image classification (i.e. MNIST or ImageNet) and sen-
timent classification datasets (Amazon Reviews), resulting
in improved model performance by re-training on cleaned
training data. This line of works has been recently extended
to the task of multi-label classification in [35], where a single
object is shown per image but may carry multiple labels.

For object detection, Wu et al. [38] as well as Xu
et al. [39] study how noisy training labels affect the
model performance, observing that the model is reason-
ably robust when dropping labels. To counter label er-
rors in object detection, methods that model label uncer-
tainty [26, 31] or more robust object detectors have been
developed [1, 11, 20, 24, 39, 43]. Buttner et al. [1] simulate
label errors and introduce a co-teaching approach for more
robust training with noisy training data. For the task of label
error detection, Koksal et al. [22] simulate different types of
label errors in video sequences. Predictions and labels of con-
secutive frames are compared and then manually reviewed to
eliminate erroneous annotations. Hu et al. [16] introduce a
probability differential method (PD) to identify and exclude
annotations with wrong class labels during training.

For semantic segmentation, a benchmark is introduced by
Rottmann and Reese [32] to detect missing labels. For this
purpose, uncertainty estimates are used to predict for each
false positive connected component whether a label error is
present or not. Detection is performed by considering the
discrepancy of the given (noisy) label and the corresponding
uncertainty estimate.

Our work introduces the first benchmark with four types
of label errors for label error detection methods on object
detection datasets as well as a label error detection method
(that detects all four types of label errors) and a number
of baselines. The label error detection methods simulate
a) different types of label errors and detect these with the
help of a tracking algorithm [22] for images derived from
video sequences or b) class-flips and identify these via a
probability differential (PD) [16], where, however, the focus
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(a) Label Drop (b) Class Flip (c) Label Spawn (d) Loc. Inaccuracy

Figure 2. Examples of the different types of simulated label errors. The images are from the EMNIST-Det test dataset [30].

is on training. For our benchmark, we randomly simulate
four types of label errors and detect them simultaneously
with a new and four baseline methods, including PD. In our
method, the discrepancy between the prediction or expecta-
tion of the network and the actual labels is used to find label
errors. This discrepancy is determined by the classification
and regression loss from the first and second stage of the
detector. This allows to find not only simulated but also real
label errors on commonly used object detection test datasets.

3. Label Error Detection
In this section we describe our label error benchmark as
well as the setup and evaluation for real label errors on com-
monly used object detection test datasets and a proprietary
dataset. We describe which datasets are used, which types
of label errors are considered and the way we simulate label
errors inspired by observations that we made in commonly
used datasets and by related work. We then introduce our
detection method as well as four additional baseline meth-
ods. This is complemented with evaluation metrics used
to compare the methods with each other on our label error
benchmark and the evaluation procedure for commonly used
test datasets where we manually review the findings of our
method for moderate sample sizes.

3.1. Label Error Benchmark

In the following, we distinguish between the label error
benchmark and the detection of real label errors, where in
the former, label errors are simulated (and therefore known)
and the performance of the five different methods are eval-
uated automatically. In the latter case, label errors are not
simulated but real and therefore automated evaluation is im-
possible as the real label errors are unknown. To enable a reli-
able evaluation, only datasets containing almost no real label
errors are used for the benchmark. We observe that com-
monly used datasets in object detection, such as MS-COCO,
Pascal VOC or Kitti, contain significant amounts of label
errors, thus they are not suitable for the benchmark. Never-
theless, to demonstrate the performance of our instance-wise
loss method on these datasets, a moderate sample size of 200
label error proposals are manually reviewed and counted for
each dataset.

3.1.1 Datasets

For our benchmark we use the semi-synthetic EMNIST-Det
dataset and BDD100k, referred to as BDD. EMNIST-Det
consists of 20,000 training and 2,000 test images. To have
the best possible labels for BDD, we filter the training and
validation split, such that we only use daytime images with
clear weather conditions. This results in 12,454 training
images and the validation split is split into equally-sized test
and validation sets, each consisting of 882 images.

3.1.2 Simulated Label Errors

We consider four different types of label errors: missing
labels (drops), correct localization but wrong classifica-
tion (flips), correct classification but inaccurate localiza-
tion (shifts), and labels that actually represent background
(spawns). Any dataset is equipped with a set of G labels,
i.e. Y = {b(i) : i = 1, ..., G} where each label is a tuple
b(i) = (x(i), y(i), w(i), h(i), c(i)) containing the box center
(x(i), y(i)), the box extent (w(i), h(i)) and a class index c(i)

from the set of classes {1, ..., C}. Let I = {1, . . . , G} be
the set of indices of all boxes b(i) ∈ Y, i = 1, . . . , G. We
now describe all types of label errors applied to Y and we
make the assumption that a single label is only perturbed by
one type of label error instead of multiple types. We choose
a parameter γ ∈ [0, 1] representing the relative frequency of
label errors.

Drops For dropping labels, we randomly choose a subset
Id of I with cardinality |Id| = ⌊γ

4 ·G⌋. We drop all labels
Yd = {b(i) : i ∈ Id} and denote I\d = I\Id. Analogously,
Y\d = Y \ Yd.

Flips For flipping class labels, we randomly choose a sub-
set If of I\d with cardinality |If | = ⌊γ

4 · G⌋ and copy
Ỹf = Yf = {b(i) : i ∈ If}. Then, we randomly flip the
class of every label in Ỹf to a different label. We denote
I\f = I\d \ If and Y\f = (Y\d \ Yf ) ∪ Ỹf .

Shifts To insert shifts, we change the localization of labels.
We randomly choose a subset Ish of I\f with cardinality

3
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Figure 3. Visualization of our instance-wise loss method for detecting label errors. The red label indicates a spawn, the blue one a drop and
the yellow one a correct label.

|Ish| = ⌊γ
4 · G⌋ and copy Ỹsh = Ysh = {b(i) : i ∈ Ish}.

For the shift of a box b̃(i) ∈ Ỹsh, the new values ỹ, h̃
are determined analogously to x̃ = N (x, 0.15 · w) and
w̃ = N (w, 0.15 · w) drawn from a normal distribution with
itself as the expected value and 0.15 · w as the standard
deviation. To avoid the shift being too small or too large, the
parameters are repeatedly chosen until the intersection over
union (IoU ) of the original label b(i) ∈ Ysh and b̃(i) ∈ Ỹsh

is in the interval of [0.4, 0.7], ∀i = 1, ..., ⌊γ
4 ·G⌋. We denote

I\sh = I\f \ Ish and Y\sh = (Y\f \ Ysh) ∪ Ỹsh.

Spawns For spawning labels, we randomly choose a subset
Isp of I\sh with cardinality |Isp| = ⌊γ

4 ·G⌋ and copy Ỹsp =

Ysp = {b(i) : i ∈ Isp}. Then, we assign every label b̃(i) ∈
Ỹsp randomly to another image. Since in our experiments
all images in a dataset have the same resolution, this ensures
that objects do not appear in unusual positions or outside of
an image. For instance, a car in BDD is more likely to be
found on the bottom part of the image rather than in the sky.
We denote the set of noisy labels as Ỹ = Y\sh ∪ Ỹsp.

One example per label error type is shown in Fig. 2. Note
that the number of labels G is unchanged as the number of
drops and spawns is the same.

3.2. Baseline Methods

The four baselines that we compare our instance-wise loss
method with are based on a) inspecting the labels without
the use of deep learning, b) the box-wise detection score c)
the classification entropy of the two-stage object detectors
and d) the probability differential from [16].

Naive Baseline We introduce a naive baseline to show
the significant improvement of deep learning in label error
detection for object detection over manual label review. We
assume that all label errors can be smoothly found by taking
a single look at all existing noisy labels and the (actually

unknown) drops, i.e. by performing ⌊(1+ γ
4 ) ·G⌋ operations.

This simplified assumption is of course unrealistic, however
the corresponding results can serve as a lower bound for the
effort of manual label review.

Detection Score Baseline The detection score baseline
works as follows: For a given image from the set of all
images of the dataset z ∈ Z, a neural network predicts
a fixed number N0 of bounding boxes for the first stage
B̂0,z = {(x̂(i), ŷ(i), ŵ(i), ĥ(i), ŝ

(i)
0 ) : i = 1, . . . , N0},

where x̂(i), ŷ(i), ŵ(i), ĥ(i) represent the localization and
ŝ
(i)
0 ∈ [0, 1] the objectness score. Then, we add the boxes

of the labels as proposals for the second stage to ensure
that at least one prediction exists for each label, which is
particularly important for the detection of spawns. For
this purpose, each ground truth label from Y is assigned
with a detection score of ŝ0 = 1. After adding the la-
bels to B̂0,z , only those N1 boxes that remain after class-
independent non-maximum suppression (NMS) and score
thresholding on ŝ0 with sϵ ≥ 0, get into the second stage
B̂1,z = {(x̂(i), ŷ(i), ŵ(i), ĥ(i), ŝ

(i)
0 ) : i = 1, . . . , N1}. After

box refinement and classification as well as NMS on the
detection score ŝ

(i)
2 , N2 label error proposals remain. Here,

ŝ
(i)
2 is the detection score of the detection head and unlike
ŝ
(i)
0 , ŝ(i)2 represents not only the presence of an object, but

also takes the class probabilities of the predicted object into
account. The remaining N2 label error proposals B̂2,z =

{(x̂(i), ŷ(i), ŵ(i), ĥ(i), ŝ
(i)
2 , p̂

(i)
1 , . . . , p̂

(i)
C ) : i = 1, . . . , N2},

are defined by the localization (x̂(i), ŷ(i), ŵ(i), ĥ(i)), the de-
tection score ŝ

(i)
2 and the class probabilities p̂

(i)
1 , . . . , p̂

(i)
C .

The predicted class is given by ĉ(i) = argmaxk=1,...,C p̂
(i)
k .

Score thresholding is omitted here, or the score τ used for
this is equal to 0, since τ > 10−4 would suppress most of
the label error proposals that detect spawns. The detection
score of these proposals is mostly very close to zero unless
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a second true label is nearby. After inferring each image
z ∈ Z as described above, we get label error proposals for
the whole dataset by

⋃
z∈Z

B̂2,z .

Entropy Baseline The entropy baseline follows the same
procedure, only the NMS in the first and second stage are
based on the respective box-wise entropy rather than the
detection score.

Probability Differential Baseline For the PD baseline
from Hu et al. [16], we do not add the boxes of the la-
bels as proposals. Furthermore, score thresholding and
NMS is not applied, such that every box b̂ ∈ B̂0,z also
remains in B̂2,z . After assigning every label with suffi-
ciently overlapping predictions, the probability differen-
tial (PD) for every label b ∈ Y with class c and the m
assigned predictions b̂(i) (i = 1, . . . ,m) is defined as:

PD(b) =

m∑
i=1

(
1+ max

k∈{1,...,C}\{c}
p̂
(i)
k −p̂(i)

c

)
2m . The PD of a la-

bel is in [0, 1] and intuitively, the more the probabilities of
the predictions and the class of the label differ (higher PD)
the more likely a label error is present. Note that drops are
always overlooked.

3.3. Instance-wise Loss Method

Our method to detect the introduced label error types
(Sec. 3.1) is based on an instance-wise loss for two-stage
object detectors. The NMS is no longer based on the de-
tection score or the entropy, but on the box-wise loss of the
respective stage. Every prediction b̂0 ∈ B̂0,z is assigned with
a region proposal loss (LRPN ), which is the sum of a classi-
fication (binary cross-entropy) and regression (smooth-L1)
loss for the labels and the prediction itself. The computation
of the loss is identical to the one in training. Since not all
labels are associated with a proposal after the first stage, i.e.
the model may predict only background near a label, we
add the labels themselves to the set of label error proposals.
After box refinement and classification, every box b̂1 ∈ B̂1,z

is assigned with a region of interest loss (LROI ), which
is the sum of a classification (cross entropy) and regression
(smooth-L1) loss for the labels and the prediction itself. Then
LRPN and LROI are summed up to obtain an instance-wise
loss score. A sketch of our method is shown in Fig. 3. We
can find the dropped blue label for “N” since the predictions
near the object should have a high detection score, resulting
in a high first stage classification loss. The spawned red
label is assigned with a high classification loss from the first
and second stage, since the assigned predictions should have
a score close to zero in the first stage and an almost uniform
class distribution in the second stage. Whether the yellow
label is a flip is irrelevant for the first stage, since the loss
should be small either way. If the box is classified correctly

according to the associated label, there is a large classifica-
tion loss for a flip and a small one otherwise. The shifts are
addressed by the first and second stage regression loss.

The intuition behind our method is that a sufficiently
well-specified and fitted model has small expected loss on
data sampled during training. Sufficient data sampling and
moderate label error rates lead to label errors giving rise to
outlier losses which are identified as proposals. We show
that our method separates correct from incorrect labels for
a classification model p̂ trained with the cross entropy loss
ℓCE.

Proposition 1 (Statistical Separation of the Cross Entropy
Loss). Let training and testing labels be given under a
stochastic flip in p(·|x) with probability pF. A correct label
y = f(x) is given by a true labeling function f and has
probability p(f(x)|x) = 1− pF. Incorrect labels ỹ ̸= f(x)
are drawn with probability p(ỹ|x) = pF/(C − 1). Let the
label distribution p(·|x) be PAC-learnable by the hypothesis
space of p̂(·|x) w.r.t. DKL (to precision ε and confidence
1− δ) and let κ > 0. If pF < C−1

C (1− 2κ), we obtain strict
separation of the loss function

ℓCE(p̂(x)∥f(x)) < − log(1− pF − κ)

< − log(κ+ pF

C−1 ) < ℓCE(p̂(x)∥ỹ)
(1)

for any incorrect label ỹ ̸= f(x) with probability 1− δ over
chosen training data and with probability 1 − 2ε

κ2 over the
choice of x.

We include a proof of this statement in the supplementary
material. The PAC-learnability assumption [33] yields rigor-
ous bounds for the deviation of the model p̂ from the label
distribution p which contains label flips. Conditioned to the
events of drawing correct versus drawing incorrect labels,
these bounds carry over to the cross entropy. These bounds
separate the two events with certain probability given in the
statement above.

3.4. Evaluation Metrics

Ignoring that natural label errors exist in EMNIST-Det and
BDD, we benchmark the five methods introduced in above
by means of our label error simulation. To this end, we take
the label error proposals of the respective method and the set
of original labels Y and decide for every proposal whether it
is a label error, which corresponds to a true positive (TPl ),
or no label error, which corresponds to a false positive (FPl ).
Label errors that are not detected are called false negatives
(FNl ). A proposal of a label error detector is a TPl if the
IoU between the proposal under consideration and a noisy la-
bel on the image is greater or equal to a threshold 1 ≥ α > 0.
Here, the noisy label categorizes what type of label error
is detected by the proposal. If the IoU is less than α, the
proposal is a FPl . After determining this for each proposal

5
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Figure 4. The two left plots in (a) show evaluations based on the predictions of a model trained on original training data and the two right
ones in (b) based on noisy training data with γ = 0.2. The number of considered label error proposals depends on threshold τ .

Dataset Backbone mAP50 mAP
(∗)
50

EMNIST-Det Swin-T 98.2 98.0
EMNIST-Det ResNeSt101 96.4 95.2

BDD Swin-T 52.1 50.3
BDD ResNeSt101 56.8 52.9

COCO Swin-T 54.1
Kitti Swin-T 38.6
VOC Swin-T 83.3
CE Swin-T 70.0

Table 1. Validation of object detection performance on our datasets.
(∗) indicates learning with simulated label errors (γ = 0.2).

from the dataset, the area under the receiver operator char-
acteristic curve (AUROC , see [6]) and F1 values, which
is the harmonic mean of precision and recall (see [7]), is
calculated according to the decision between TPl and FPl .
F1 values are determined with thresholding on the score of
the respective method (loss/detection score/entropy/PD). We
always choose the optimal threshold, i.e. the threshold at
which the F1 value is maximized (max F1). Note, since
the naive baseline considers images and thus label error pro-
posals in random order, the associated AUROC values are
always 0.5.

3.5. Detection of Real Label Errors

For commonly used datasets we proceed as follows. We
consider for each dataset 200 proposals of our method with
highest loss and manually flag them as TPl or FPl , based
on the label policy corresponding to the given dataset. Note
that we can still compute precision values but we are not
able to determine AUROC or max F1 values as the number
of total label errors is unknown. Since several label errors
can be detected with one proposal, precision describes the
ratio of proposals with at least one label error and the total
number of proposals considered, i.e. 200.

4. Numerical Results
In this section we study label error detection performance on
our label error benchmark as well as for real label errors in
BDD, VOC, MS-COCO (COCO), Kitti and the proprietary
dataset (CE). The benchmark results are presented in terms

of AUROC and max F1 values for the joint evaluation of all
label error types, i.e. when all label error types are present
simultaneously, in Sec. 4.2. For the latter, we show how
many real label errors we can detect among the top-200
proposals for each real-world dataset in Sec. 4.3.

4.1. Implementation Details

We implemented our benchmark and methods in the open
source MMDetection toolbox [3]. Our models are based
on a Swin-T transformer and a ResNeSt101 backbone, both
with a CascadeRoIHead as the object detection head, with
a total number of trainable parameters of approx. 72M and
95M. As hyperparameters for the label error benchmark we
choose relative frequency of label errors γ = 0.2, the value
for score thresholding after the first stage sϵ = 0.25, the
value for score thresholding after the second stage τ = 0 and
the IoU -value α = 0.3 from which a proposal for a label
error is considered a TPl . We show performance results for
the respective models and for each dataset in Tab. 1. The
upper half shows results on original (mAP50) and noisy
training data (mAP∗

50), for which γ = 0.2 also holds. With
sufficient training data and a moderate label error rate (γ =
0.2), the models still generalize well, resulting in mAP
values comparable to models trained without simulated label
errors. Thus, to make benchmarks evaluations trustworthy,
whether already published or still under development, in
particular the underlying test datasets should contain as few
label errors as possible. The bottom half of Tab. 1 presents
the performance of the models that we use for predicting
label errors on real datasets. All models have been trained
and evaluated on the original datasets (without any label
modification).

Datasets For the detection of real label errors we use the
same split for BDD as introduced in Sec. 3.1 as well as VOC,
COCO, Kitti and CE. The training data for VOC consists of
“2007 train” + “2012 trainval” and we predict label errors on
the “2007 test”-split. COCO is trained on the train split and
label errors are predicted on the validation split from 2017.
For Kitti we use a scene-wise split, resulting in 5 scenes
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AUROC max F1

Dataset Backbone Train Labels Loss Detection Score Entropy PD Loss Detection Score Entropy PD

EMNIST-Det Swin-T Original 99.46 73.24 71.49 59.67 95.54 64.74 49.58 62.32
EMNIST-Det Swin-T Noisy 99.40 82.44 77.32 62.26 93.43 62.37 45.25 62.24
EMNIST-Det ResNeSt101 Original 99.84 88.45 86.70 60.59 94.31 62.56 38.81 60.82
EMNIST-Det ResNeSt101 Noisy 99.87 93.11 86.40 61.82 90.74 59.50 34.53 59.01

BDD Swin-T Original 96.30 76.82 71.73 60.59 56.59 31.14 22.21 52.66
BDD Swin-T Noisy 92.16 89.21 69.42 57.58 35.97 31.68 18.33 34.72
BDD ResNeSt101 Original 95.79 87.47 83.58 60.31 54.62 31.99 20.37 47.16
BDD ResNeSt101 Noisy 92.97 90.76 78.18 56.79 27.85 25.65 18.10 27.74

Table 2. Label error detection experiments with two different backbones; higher values are better. Bold numbers indicate the highest
AUROC or max F1 per experiment and underlined numbers are the second highest.

Dataset Label Error Prec. Spawn Drop Flip Shift

BDD 34 15.5 3 2 26 3

Kitti 96 47.5 75 0 4 17

COCO 50 24.5 14 1 18 17
COCO(∗) 125 61.0 0 125 0 0

VOC 23 11.5 13 0 10 0
VOC(∗) 175 71.5 0 175 0 0

CE(∗) 194 97.0 0 0 0 0

Table 3. Categorization of the top-200 proposals for real label
errors with the loss method for the Swin-T backbone. (∗) indicates
the evaluation of proposals based on the detection of drops.

(S = {2, 8, 10, 13, 17}) and 1,402 images for evaluation
as well as 16 scenes ({0, 1, . . . , 20} \ S) and 6,407 images
for training. The subset of CE data used includes 20,100
images for training and 1,070 images for evaluation. In the
images, a car is in focus and the task is to do a car part
detection. The labels consist of 29 different classes and
divide the car into different parts, i.e. the four wheels, doors,
number plate, mirrors, bumper, etc. Compared to the static
academic datasets, the CE dataset is dynamic and thus of
heterogeneous quality.

4.2. Benchmark Results for Simulated Label Errors

Table 1 shows that although 20% of the training labels are
modified, the performance in terms of mAP50 to mAP∗

50

only decreases by a maximum of 1.2 percent points (pp) for
EMNIST-Det and 3.9 pp for BDD. In both cases, the per-
formance decreases more for the backbone containing more
trainable parameters (ResNeSt101). This is consistent with
the results for image classification from Northcutt et al. [28].
Architectures with fewer trainable parameters seem more
suitable for handling label errors in the training data, pos-
sibly due to the network having less capacity to overfit the
label errors. Figure 4 shows exemplary plots for AUROC
and F1 curves for the Swin-T backbone and BDD. On the
two left plots we show results based on original training data
and the two right plots based on noisy training data. The
ranking of the methods is not identical everywhere: in terms
of AUROC , loss (our method) is superior, followed by de-

tection score, then entropy (our baselines) and finally PD. In
terms of max F1, PD outperforms the detection score and
the entropy but is inferior compared to the loss. Because
AUROC considers rates and (max) F1 considers absolute
values and the number of label error proposals varies widely
(PD = number of labels G, here 17,064; others > 80,000), the
methods behave very differently with respect to AUROC
and max F1. However, our loss method outperforms all
other methods on both metrics. Note, that the small step in
the upper right of each of the AUROC plots are the false
negatives according to the label errors (FNl ), i.e. the simu-
lated label errors that are not found by the methods. This
number of FNl is vanishingly small in relation to all simu-
lated label errors, with the exception of PD as the method is
not able to detect drops. The generally observed behavior
for BDD also does not change when looking at the results
for the ResNeSt101 backbone in Tab. 2. When compar-
ing the results for the different backbones with each other
the AUROC for the loss and PD seems to remain similar,
whereas the AUROC for detection score/entropy increases
by 10.65/11.85 pp for original training data and 1.55/8.76
pp for noisy training data. The situation is different for the
max F1 values. For label error detection, loss/entropy/PD
performs superior with the Swin-T backbone for original
training data (1.97/1.84/5.50 pp). In particular, the loss and
PD seem to handle the noisy training data more effectively,
resulting in 8.12 pp max F1 difference between Swin-T and
ResNeSt for the loss and 6.98 pp difference for PD. The
detection score increases by 0.85 pp with the ResNeSt101
backbone on original training data, but on noisy data the
Swin-T outperforms the ResNeSt101 by 6.03 pp. Also for
EMNIST-Det it holds that the loss outperforms the detection
score and both outperform the entropy. In contrast to the
results of BDD, the detection score slightly outperforms PD
in all EMNIST-Det experiments also in terms of max F1.
The AUROC for loss appears to be stable across backbone
and training data quality with only a maximum 0.47 pp dif-
ference overall. The AUROC values for the detection score
and entropy are superior with the ResNeSt101 backbone,
but inferior in terms of max F1 and the detection score per-
forms superior in terms of AUROC based on noisy training
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Figure 5. Visualization of detected label errors in real test datasets. The top row of images depicts the label error proposals and the bottom
row the corresponding labels from the dataset. The image pairs belong from left to right in steps of two to BDD, Kitti, COCO and VOC.

data, but inferior in terms of max F1. For PD, the AUROC
seems to be rather stable comparing the two backbones, but
the max F1 is superior for Swin-T.

4.3. Evaluation for Real Label Errors

We now aim at detecting real instead of simulated label
errors. The considered real-world datasets apart from BDD
(VOC, COCO, Kitti, CE) are more similar in complexity
to BDD than to EMNIST-Det. For BDD we observed in
Sec. 4.2 that the loss method for the Swin-T backbone seems
to be more stable according to label errors in the training
data, as especially the max F1 values for the loss and noisy
labels are superior for Swin-T than for ResNeSt101. As we
suspect label errors in the VOC, COCO, Kitti and CE training
datasets, we use the Swin-T backbone to detect as many label
errors as possible. Furthermore, we showed in Tab. 2 that
the loss method outperforms the detection score, entropy
and PD in each presented experiment, hence we detect label
errors using only the loss method in the following. Since we
manually look at all proposals individually and we are not
able to look at all proposals (i.e. about 265,000 for VOC),
we categorize the top-200 proposals into TPl or FPl . If
a TPl is found we also note which type of label error is
present and if we are not sure whether the proposal is TPl or
FPl , we conservatively interpret it as FPl . The results are
summarized in Tab. 3. For BDD, there are at least 34 label
errors, which mostly consist of flips. Since Kitti consists of
image sequences, it happens that one label error appears on
several consecutive frames. When this happens, it usually
affects objects that are visible on previous frames but are
covered by, for instance, a bus for several frames but are
still labeled. Label error proposals that fall into “Don’t
Care” areas are not considered. In total, we find 96 label
errors with a precision of 47.5% on Kitti. As COCO and
VOC consist of images of different everyday scenes that
really differ from image to image, the variability of the
representation of objects is very high in these two datasets.
Since a label error proposal is enforced for each label, this
also applies to the labels that are classified as background.
In a usual test setting, these labels would have been false

negatives of the model, i.e. overlooked labels. The resulting
loss is so high that these proposals end up in the reviewed top-
200 proposals. Nevertheless, 50 label errors can be detected
on COCO and 23 on VOC. When dealing with these two
datasets, we noticed that drops are the most present label
error type, although we did not find any among the top-200
proposals. We use this knowledge to restrict the proposals to
those that have a class-independent IoU with the labels of
the image of less than α. Using this subset and re-reviewing
the top-200 proposals, we are able to find 125 drops with a
precision of 61.0% for COCO and 175 drops with a precision
of 71.5% for VOC. For the calculation of the precision see
Sec. 3.5. Prior knowledge about the label quality of the
dataset and the types of label errors that occur helps to detect
a specific type of label error. From the high precisions for
VOC and COCO, we conclude that our method can help
to correct the label errors resulting in cleaner benchmarks.
Exemplary label errors for the above datasets are shown in
Fig. 5. The first proposal detects a shift, the second a flip, the
third and fourth a spawn and the remaining proposals detect
drops. For CE, we filter the proposals by drops, resulting in
194 detected drops with a precision of 97%.

5. Conclusion
In this work, we introduced a benchmark for label error
detection for object detection datasets. We for the first time
simulated and evaluated four different types of label errors
on two selected datasets. We also developed a novel method
based on instance-wise loss scoring and compare it with four
baselines. Our method prevails by a significant margin in
experiments on our simulated label error benchmark. In our
experiments with real label errors, we found a number of
label errors in prominent datasets as well as in a proprietary
production-level dataset. With the evaluation for individual
label error types we can detect real label errors on commonly
used test datasets in object detection with a precision of up
to 71.5%. Furthermore, we presented additional findings.
Models with less parameters are more robust to label errors
in training sets while models with more parameters suffer
more. We make our code publicly available at GitHub.
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Supplementary Material

Proprietary Dataset An exemplary test image including
labels for the proprietary dataset (CE) is shown in Fig. 6.
The labels divide the car into parts, such as the two wheels
“WheelFrontRight” and “WheelRearRight” as well as doors,
roof, etc. The example also includes a drop with the missing
mirror “MirrorRight”.

Dataset Dependent Parameters for Training The
dataset-dependent hyperparameters for training are stated in
Tab. 4. The original images from EMNIST-Det have an im-
age resolution of 320× 320 pixels, i.e., we do not artificially
scale them to a higher image resolution. The BDD images
also contain many small labels while having a high original
resolution (1280 × 720), which is a challenging setup. To
get the best possible label error detection, we keep this high
resolution and rescale the images to 1333×800 pixels. Kitti,
COCO, VOC and CE are each rescaled to an image resolu-
tion of 1000× 600 pixels. The batch size for all datasets is
in the range of 4-24, the initial learning rate is either 0.02 or
0.01 depending on the dataset, and the number of training
iterations is in the range of 24,000-250,000. All numbers
apply to the Swin-T backbone except the numbers (∗) for the
training iterations of EMNIST-Det and BDD, which apply
to the ResNeSt101 backbone. All other hyperparameters
are identical for the different architectures. The files for the
configurations used in training, also containing the precise
values of the above hyperparameters, are published with the
code on GitHub.

Benchmark Results for Individual Simulated Label Er-
ror Types In our experiments, all label errors occur simul-
taneously, but the evaluation can also be conditioned on the
individual label error types. For drops or flips we consider
only the false positives according to ỹ, i.e. all boxes that have
a maximum class-wise IoU of less than α(= 0.3) with all
noisy labels of the associated image. Then, we can calculate
AUROC and max F1 values on this subset. We do the same
for the shifts, except that we only consider the true positives
according to Ỹ . For the spawns, we must consider both
true positives and false positives according to Ỹ , since the
predicted class, that overlaps sufficiently with the spawned
label, can be the same as the class of the spawn itself.

The benchmark results for individual simulated label er-
rors are stated in Tab. 5. For drops, the detection score and
instance-wise loss perform similarly well, with the AUROC
values differing by at most 1.92 pp and a minimal AUROC
of 91.72%. The difference in the max F1 values is more
pronounced, with the loss at EMNIST-Det outperforming
the detection score by 3.03 to 6.56 pp. For BDD, the detec-
tion score of Swin-T is superior to the loss by up to 9 pp,
whereas the loss for ResNeSt101 outperforms the detection

score by up to 10.22 pp. The entropy reaches a maximum of
88.22%/56.70% AUROC/max F1 for EMNIST-Det and
73.14%/7.11% for BDD, which is far from the numbers
achieved for the loss and the detection score. PD is not able
to detect drops, as the bounding boxes of the labels are also
the label error proposals itself.

A similar behavior can be observed for the flips, where
the AUROC values for loss and detection score only differ
by a maximum of 1.64 pp. In terms of max F1 the loss
outperforms the detection score and entropy in every case.
PD performs inferior in terms of AUROC compared to the
loss, but in terms of max F1 PD outperforms the loss for
BDD based on both backbones trained on noisy data.

For the shifts, the detection score and PD have similar
performance as the naive baseline in terms of AUROC and
all max F1 values are < 14%. Except for BDD trained on
noisy data, where entropy performs superior to the loss, loss
outperforms all baselines.

For the spawns, the detection score performs similar
compared to the shifts. PD performs well especially in
terms of max F1, where PD even outperforms the loss for
RestNeSt101 on BDD with noisy training data by 20.16 pp,
otherwise loss is superior to PD. In the cases where entropy
outperforms loss, the difference is at most 5.44 pp in terms
of AUROC and 3.69 pp in terms of max F1.

The detection score can neither reliably detect the shifts
nor the spawns, whereas the entropy cannot detect the drops
and flips well, especially for complicated problems such as
BDD. PD cannot reliably detect the shifts and is not able to
detect drops by design. All in all, the loss method is the only
one of those presented that can detect all four different types
of label errors efficiently.

Different Noise Intensity in Training Table 6 shows
mAP , AUROC and max F1 values for different noise in-
tensities for Swin-T on the BDD training dataset. In our
experiments, it makes no difference whether the labels of the
training data contain 5% or 20% noise, the mAP is between
50.2% and 50.4%, where the model has an mAP of 52.1%
due to training on the original training data. All mAP eval-
uations are based on the test data with original and thus
unmodified labels.

On the one hand, the AUROC /max F1 values decrease
with increasing noise intensity by 3.69/20.62 pp for loss,
by 2.31/3.88 pp for entropy and by 3.01/17.94 pp for
PD, respectively. For the detection score, on the other
hand, the AUROC value increases by 12.39 pp from
76.82% to 89.21% and the max F1 value increases only
marginally by 0.54 pp to 31.68%. Nevertheless, the loss
outperforms the detection score/entropy/PD in every case
by at least 3.40/21.68/35.71 pp in terms of AUROC and
by at least 4.29/17.64/0.38 pp in terms of max F1. All
AUROC /max F1 evaluations are based on the test data with
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Figure 6. Example image from the CE test data with labels and a missing “MirrorRight”.

Dataset Batch Size Image Resolution # Training Iterations Learning Rate

EMNIST-Det 24 300× 300 24,000/48,000(∗) 0.02
BDD 4 1333× 800 150,000/250,000(∗) 0.01

Kitti 6 1000× 600 70,000 0.01
COCO 12 1000× 600 250,000 0.02
VOC 6 1000× 600 70,000 0.02
CE 4 1000× 600 200,000 0.01

Table 4. Training hyperparameters for the Swin-T and the ResNeSt101 ((∗)) backbone.

γ = 0.2 and thus on the identical label basis as for Tab. 2.

Different Amount of Training Images Table 7 shows
mAP , AUROC and max F1 values for different amounts of
training images for Swin-T on BDD. Therefore, the subsets
with fewer images are always included in the subsets with
more images and the identically sized subsets with different
noise intensities contain the same images.

The mAP increases the more images are used for training
and the less label errors exist in the training data. Here,
the model trained on 6,227 and unmodified labels (γ = 0)
has a 0.8 points higher mAP than the model trained on
12,454 images with γ = 0.2. In this case, after comparing
the performances, it is worth to review and improve the
underlying labels instead of labeling new images and add
them to the training set.

The AUROC values increase as the number of images
increases with γ = 0. With γ = 0.2, the values for loss and

entropy decrease as the number of images increases. The
max F1 values decrease independently of γ with increasing
number of images for loss and entropy, whereas the values
increase for detection score. The decrease in AUROC and
max F1 values for loss and entropy could be due to over-
fitting of the model. For PD, AUROC and max F1 values
remain almost constant for the respective datasets. How-
ever, the loss always outperforms all baselines in terms of
AUROC and max F1. All AUROC /max F1 evaluations
are based on the test data with γ = 0.2 and thus on the
identical label basis as for Tab. 2.

Real Label Errors Further detected real label errors are
presented in Fig. 7. The top row shows examples for BDD,
where all found label errors are flips, except for the third
proposal from the right. This proposals can be interpreted as
two label errors. Either the “car” label on the “bus” is wrong
(spawn) and the bus was forgotten to be labeled (drop), or the
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AUROC max F1

Label Error Type Dataset Backbone Train Labels Loss Score Entropy PD Loss Score Entropy PD

Drop

EMNIST-Det Swin-T Original 98.94 99.12 88.16 0.00 94.91 89.63 56.70 0.00
EMNIST-Det Swin-T Noisy 98.85 99.19 88.22 0.00 93.27 90.24 48.97 0.00
EMNIST-Det ResNeSt101 Original 99.66 99.65 78.33 0.00 93.58 87.02 32.82 0.00
EMNIST-Det ResNeSt101 Noisy 99.91 99.94 78.79 0.00 86.42 81.03 19.21 0.00

BDD Swin-T Original 94.92 96.05 51.48 0.00 41.80 48.38 2.37 0.00
BDD Swin-T Noisy 91.72 93.64 52.88 0.00 37.93 46.93 1.45 0.00
BDD ResNeSt101 Original 94.52 93.61 73.14 0.00 45.89 35.67 7.11 0.00
BDD ResNeSt101 Noisy 91.89 91.84 62.25 0.00 26.29 22.62 1.75 0.00

Flip

EMNIST-Det Swin-T Original 99.74 99.78 91.09 99.34 92.89 90.08 59.51 86.79
EMNIST-Det Swin-T Noisy 99.62 99.83 90.79 99.51 89.42 88.70 49.32 87.44
EMNIST-Det ResNeSt101 Original 99.96 99.97 78.95 99.07 90.77 86.70 31.65 82.93
EMNIST-Det ResNeSt101 Noisy 99.89 99.94 78.50 98.83 81.49 80.35 18.98 80.49

BDD Swin-T Original 99.68 98.36 50.63 98.53 74.54 58.79 2.75 73.86
BDD Swin-T Noisy 99.56 98.12 50.06 98.32 60.31 58.91 2.13 71.23
BDD ResNeSt101 Original 99.80 98.16 75.93 97.96 72.81 54.38 7.12 69.95
BDD ResNeSt101 Noisy 99.31 97.24 64.34 97.13 44.94 40.15 2.18 61.75

Shift

EMNIST-Det Swin-T Original 99.80 51.52 93.55 40.71 91.76 11.14 49.41 10.61
EMNIST-Det Swin-T Noisy 99.56 50.26 88.01 50.70 87.86 10.92 40.71 10.88
EMNIST-Det ResNeSt101 Original 99.67 51.28 86.14 45.54 88.65 11.28 30.32 10.56
EMNIST-Det ResNeSt101 Noisy 99.30 53.73 80.52 51.91 85.97 13.99 25.65 10.95

BDD Swin-T Original 65.49 51.76 61.17 50.24 16.78 11.22 14.99 10.55
BDD Swin-T Noisy 57.23 52.57 57.91 52.85 12.73 11.44 12.88 10.94
BDD ResNeSt101 Original 65.84 51.51 63.37 54.19 17.56 11.40 14.76 11.86
BDD ResNeSt101 Noisy 55.92 50.85 56.18 52.54 12.58 10.87 12.17 11.13

Spawn

EMNIST-Det Swin-T Original 99.37 75.62 97.92 97.04 98.87 19.89 65.08 78.97
EMNIST-Det Swin-T Noisy 99.68 50.95 98.48 97.16 97.77 19.26 59.18 79.33
EMNIST-Det ResNeSt101 Original 99.84 57.98 99.40 96.12 98.06 18.96 37.84 74.19
EMNIST-Det ResNeSt101 Noisy 99.93 76.31 99.33 94.89 94.93 15.89 35.39 67.92

BDD Swin-T Original 98.48 66.33 98.07 92.09 74.97 2.23 20.24 50.81
BDD Swin-T Noisy 90.55 78.13 92.98 78.00 17.98 9.21 11.32 10.94
BDD ResNeSt101 Original 95.80 79.79 97.00 87.57 60.38 5.04 13.75 38.71
BDD ResNeSt101 Noisy 90.30 89.19 95.74 76.07 7.39 6.92 11.08 28.55

Table 5. AUROC and max F1 values for loss, detection score (Score), entropy and PD for all dataset-backbone-training label combinations;
higher values are better. Bold numbers indicate the highest AUROC or max F1 per experiment and underlined numbers are the second
highest.

AUROC max F1

γ # train images mAP50 Loss Detection Score Entropy PD Loss Detection Score Entropy PD

0 12,454 52.1 96.30 76.82 71.73 60.59 56.59 31.14 22.21 52.66
0.05 12,454 50.4 93.44 88.09 71.76 59.16 43.36 30.78 18.54 42.98
0.1 12,454 50.2 93.21 89.05 70.98 58.56 39.36 30.79 18.53 37.92
0.2 12,454 50.3 92.61 89.21 69.42 57.58 35.97 31.68 18.33 34.72

Table 6. Validation of object detection performance and label error detection experiments for different noise for training Swin-T on BDD;
higher values are better. Bold numbers indicate the highest AUROC or max F1 per experiment and underlined numbers are the second
highest.

localization is inaccurate (shift) and the label has a wrongly
assigned class (flip). The middle and bottom rows represent
detected real label errors on COCO and VOC. All proposals
show drops and at the fourth proposal from the left in the
middle row “pizza”, the two small labels “pizza” are also

count as spawns resulting in three label errors for this single
proposal.
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AUROC max F1

γ # train images mAP50 Loss Detection Score Entropy PD Loss Detection Score Entropy PD

0 1,556 45.1 94.79 69.56 72.61 59.86 58.67 30.59 25.95 50.77
0 3,113 49.7 95.25 73.69 72.70 59.93 56.48 31.38 24.64 50.13
0 6,227 51.3 95.18 74.95 73.21 60.12 55.79 31.55 24.52 49.78
0 12,454 52.1 96.30 76.82 71.73 60.59 56.59 31.14 22.21 52.66

0.2 1,556 40.7 94.82 84.98 73.53 58.73 44.47 27.07 18.72 33.87
0.2 3,113 46.9 93.35 88.90 70.31 58.98 35.45 28.38 18.28 33.45
0.2 6,227 49.1 93.08 90.31 70.80 58.37 33.60 30.38 18.18 33.43
0.2 12,454 50.3 92.61 89.21 69.42 57.58 35.97 31.68 18.33 34.72

Table 7. Validation of object detection performance and label error detection experiments for different noise and number of images for
training Swin-T on BDD; higher values are better. Bold numbers indicate the highest AUROC or max F1 per experiment and underlined
numbers are the second highest.
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Figure 7. Visualization of further detected real label errors in test datasets for BDD (top), COCO (center) and VOC (below).

Theoretical Justification of our Instance-Wise Loss
Method Our goal is to show that the flip of a test label is
statistically captured by the cross entropy loss evaluated at a

deep neural network’s (DNN1) prediction on a test sample x

1Technically, it is not required that the model is a DNN as long as
PAC-learnability is fulfilled.
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Figure 8. Illustration of the probabilistic statement about predicted
confidences conditioned to correct and incorrect given labels. PAC
learning leads to concentration of the confidences around 1− pF
and pF

C−1
, respectively. The separation on the confidences carries

over to the cross entropy loss.

and the corresponding label y.
The rough intuition for this statement is that a probably

approximate correct learner [33] (PAC-learner) p̂ has prob-
abilistic bounds for having predictive distribution close to
the data-generating distribution p. Therefore, sufficient data
sampling and empirical loss minimization will lead to sta-
tistical concentration of confidences p̂ around p. If p does
not suffer from too strong label noise, we obtain separation
between confidences on incorrect and confidences on cor-
rect labels. This separation then carries over to the negative
log-likelihood (i.e., cross entropy) loss by monotony.

We assume data points (x, y) ∼ p following some noisy
data generating distribution p, where x ∼ Px follows a
marginal distribution Px. In practice, training and test data
originate from the same data pool and we do not see any rea-
son to assume that they follow different labeling procedures.
However, it is sufficient to require that for testing data (x, y),
x follows the same marginal distribution x ∼ Px. Our proof
builds on the existence of a true labeling function f : x 7→ y
and the assumption that the data distribution p introduces
stochastic flips of labels that occur with a fixed uniform rate
pF ∈ [0, 1). This flip probability pF uniformly distributed
over all C − 1 incorrect classes which are not f(x) leads to
the following constraints on p when conditioned to x:

p(f(x)|x) := 1− pF, p(y|x) := pF/(C − 1) (2)

∀y ̸= f(x). A statistical model p̂ = p̂(y|x) PAC-learns clas-
sification on samples of the (noisy) data generating distribu-
tion p = p(y|x). In the present treatment, we assume PAC-
learning with respect to the Kullback-Leibler (KL) diver-
gence DKL(p(·|x)∥p̂(·|x)) = −

∫
log

(
dp̂(y|x)
dp(y|x)

)
p(y|x) dy.

In the following our goal is to show probabilistic statements
about the cross entropy loss

ℓCE(p̂(x)∥y) := −
C∑

c=1

yc · log(p̂c(x)) (3)

on test data pairs (x, y). We show that the loss is above a
certain threshold if an incorrect label is given and below
some threshold in case of a correct, non-flipped label. Non-
overlapping intervals indicate that the statistical separation
between losses given correct and false labels seen in our
experiments can be explained theoretically.

We assume PAC-learnability for the proof. This assump-
tion can be justified via the error decomposition of empirical
risk minimization for the KL divergence over the hypothesis
space H with training data {(x1, y1), . . . , (xn, yn)}:

D(p∥p̂) := Ex∼px [DKL(p(·|x)∥p̂(·|x))]
≤ inf

h∈H
D(p∥h)

+

 1

n

n∑
j=1

ℓCE(p̂(xj)∥yj)− inf
h∈H

ℓCE(h(xj)∥yj)


+ 2 · sup

h∈H

∣∣∣∣∣∣D(p∥h)− 1

n

n∑
j=1

ℓCE(h(xj)∥yj)−H(p(·|x))

∣∣∣∣∣∣
< ε

(4)

where H = −
∑C

c=1 p(c|x)·log(p(c|x)) is the entropy of the
data generating distribution2. The first term is the model mis-
specification error given by H . In practice, we assume an
expressive DNN with a large amount of capacity (appealing
to universal approximation) which allows for this error to be
negligible. In particular, in this case, no restrictions need to
be made in the choice of H . The second term measures the
error of the learning algorithm w.r.t. an empirical risk mini-
mizer h. Similarly to the term, an expressive DNN trained to
convergence leads to small contributions by this term. Lastly,
the third term is the sampling error made as compared to the
loss D(p∥h) in the true distribution. The third term can be
controlled by application of concentration inequalities and
chaining under certain assumptions (see [36]) which is why
the sum of the three terms can be made smaller than some
fixed ε > 0 given sufficient amount of data.

2Together with the cross entropy ℓCE, the entropy H yields an unbiased
risk function for DKL.
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Proposition 1 (Statistical Separation of the Cross Entropy
Loss). Let training and testing labels be given under a
stochastic flip in p(·|x) with probability pF as above, let
the label distribution p(·|x) be PAC-learnable by the hypoth-
esis space of p̂(·|x) w.r.t. DKL (to precision ε and confidence
1− δ) and let κ > 0. If pF < C−1

C (1− 2κ), we obtain strict
separation of the loss function

ℓCE(p̂(x)∥f(x)) < − log(1− pF − κ)

< − log(κ+ pF

C−1 ) < ℓCE(p̂(x)∥ỹ)
(5)

for any incorrect label ỹ ̸= f(x) with probability 1− δ over
chosen training data and with probability 1 − 2ε

κ2 over the
choice of x.

Proof. We aim at bounding maxy=1,...,C |p(y|x)− p̂(y|x)|
by the total variation distance. PAC-learnability asserts that
given enough data, the p̂-distributions illustrated in Fig. 8
are concentrated around 1− pF for true labels and pF

C−1 for
incorrect labels. In particular, PAC-learnability implies

Ex∼px
[DKL(p(·|x)∥p̂(·|x))] < ε (6)

with probability 1− δ over the choice of training data. Let
κ > 0. From this PAC result, we derive bounds for the
probability of maxy=1,...,C |p(y|x) − p̂(y|x)| exceeding κ
via the total variation distance. We have

Px(∥p(·|x)− p̂(·|x)∥TV ≥ κ)

≤Px(
√
2DKL(p(·|x)∥p̂(·|x)) ≥ κ)

≤Px

(
DKL(p(·|x)∥p̂(·|x)) ≥

κ2

2

)
≤ 2

κ2
Ex∼px

[DKL(p(·|x)∥p̂(·|x))] <
2ε

κ2

(7)

with probability 1− δ over the choice of training data. Here,
the first inequality is the application of Pinsker’s inequality
and the third due to the Markov inequality.

Assume that we are given a correct label y for x, then
with probability 1− δ over training data and with probability
1− 2ε

κ2 over sampling x, we have that

|p(y|x)− p̂(y|x)| = |(1− pF)− p̂(y|x)|
≤ max

y
|p(y|x)− p̂(y|x)|

≤ ∥p(·|x)− p̂(·|x)∥TV < κ.

(8)

This implies p̂(y|x) > 1−pF−κ and therefore, by monotony
of the logarithm ℓCE(p̂(y|x)∥y) < − log(1− pF − κ). Sim-
ilarly, if y is any incorrect label, we have the probabilistic
statement

|p(y|x)− p̂(y|x)| =
∣∣∣∣ pF
C − 1

− p̂(y|x)
∣∣∣∣

≤ max
y

|p(y|x)− p̂(y|x)| < κ,
(9)

i.e., p̂(y|x) < κ + pF

C−1 and we have ℓCE(p̂(x)∥y) >

− log
(
κ+ pF

C−1

)
. Finally, we obtain separability of losses

with true versus false labels in probability if

1−pF−κ > κ+
pF

C − 1
⇐⇒ pF <

C − 1

C
(1−2κ). (10)
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