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Abstract

Motion transfer of talking-head videos involves gen-
erating a new video with the appearance of a subject
video and the motion pattern of a driving video. Cur-
rent methodologies primarily depend on a limited number
of subject images and 2D representations, thereby neglect-
ing to fully utilize the multi-view appearance features in-
herent in the subject video. In this paper, we propose a
novel 3D-aware talking-head video motion transfer net-
work, Head3D, which fully exploits the subject appear-
ance information by generating a visually-interpretable 3D
canonical head from the 2D subject frames with a recur-
rent network. A key component of our approach is a self-
supervised 3D head geometry learning module, designed
to predict head poses and depth maps from 2D subject
video frames. This module facilitates the estimation of
a 3D head in canonical space, which can then be trans-
formed to align with driving video frames. Additionally,
we employ an attention-based fusion network to combine
the background and other details from subject frames with
the 3D subject head to produce the synthetic target video.
Our extensive experiments on two public talking-head video
datasets demonstrate that Head3D outperforms both 2D
and 3D prior arts in the practical cross-identity setting,
with evidence showing it can be readily adapted to the pose-
controllable novel view synthesis task.

1. Introduction

The task of transferring motion between talking-head
videos, while maintaining the identity of the target sub-
ject, is a compelling research area with broad applications
in special effects, entertainment, and video editing. De-
spite the significant progress in guided image-to-image syn-
thesis, such as person image generation [1, 25, 30] and fa-
cial expression generation [4, 21, 31], the challenge of cap-
turing the temporal dynamics of motion in video-to-video
transfer remains unsolved [5, 29]. Most current methods
for talking-head video motion transfer use one subject im-
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Figure 1. Illustration of advantages of our proposed Head3D. This
3D-aware framework can directly generate a 3D canonical head
including RGB and depth map (top left), better deal with extreme
poses (bottom left), and achieve pose-controllable novel view syn-
thesis (right panel; changing yaw angle for the examples shown).

age [35, 36, 38] or a simple combination of a few subject
images [13, 28, 44, 45, 48] with 2D representations. These
approaches may struggle to fully leverage the multi-view
appearance information inherent in the subject video.

In this paper, we introduce Head3D, a novel 3D-aware
framework for transferring motion between talking-head
videos. This framework operates in a self-supervised, non-
adversarial training manner, and is capable of recovering 3D
structural information (i.e., head pose and depth) from each
2D video frame through self-supervised 3D head geome-
try learning, without the need for a 3D graphical model of
the human head. By mapping each selected subject video
frame to a 3D canonical space, Head3D further estimates
a 3D subject canonical head using a recurrent network.
To synthesize the final video frames, Head3D employs an
attention-based fusion mechanism to combine appearance
features from the 3D subject head with background and
other details (e.g., facial expression, shoulder) from the sub-
ject. Unlike previous 3D-based methods that operate on the
canonical feature space [6,37,46], Head3D offers visual in-
terpretability by explicitly modeling the 3D canonical head.
Compared with NeRF-based methods [7, 15, 26], Head3D
shows better generalization ability without the need to re-
train the model on unseen faces. Moreover, with the gener-
ated 3D subject head, Head3D can effectively handle large
pose changes or extreme poses and achieve novel view syn-
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thesis with user-provided pose inputs, as demonstrated in
Fig. 1. Our contributions are summarized as follows:

• We introduce Head3D, a 3D-aware generative network
for talking-head video motion transfer, which explic-
itly estimates a 3D canonical head without the need
for any 3D shape priors.

• We propose a self-supervised 3D head geometry learn-
ing module with a recurrent network to generate a 3D
visually-interpretable canonical head from the 2D sub-
ject video.

• Comprehensive experiments demonstrate that our pro-
posed Head3D outperforms other 2D- and 3D-based
methods in the practical cross-identity motion transfer
setting. Our model can also be easily adapted to pose-
controllable novel view synthesis.

2. Related Work
According to whether 3D information is utilized during

generation, talking-head video motion transfer methods can
be categorized into 2D- or 3D-based frameworks.

2D-based talking-head video motion transfer. Based
on whether to use multiple frames from the subject video,
2D-based methods can be further classified into one-shot
[35, 36, 38, 41, 47, 54] and few-shot methods [13, 28, 44, 45,
48,51,52]. One-shot 2D methods, also known as image ani-
mation, focus on generating videos based on one given sub-
ject image and one driving video. Siarohin et al. [36] pro-
posed a general self-supervised first-order-motion frame-
work (FOMM) to predict dense motion flow for animat-
ing arbitrary objects with learned keypoints and local affine
transformations. In [38], the authors further improved their
network by modeling object movement through unsuper-
vised region detection. Tao et al. [41] improved FOMM
by introducing a deformable anchor model (DAM) to en-
sure that the object structure is well captured and preserved.
However, these one-shot 2D methods are limited to using a
single subject image, which makes it hard for them to uti-
lize the multi-view appearance features of the subject when
the subject video is available.

Few-shot 2D methods instead utilize the subject video
more effectively by synthesizing a video based on a number
of subject video frames. Wang et al. [45] proposed a video-
to-video synthesis approach (vid2vid) under the generative
adversarial learning framework [12], which produces one
new video frame based on several previously generated im-
ages and the corresponding landmarks of the driving frame.
In [44], they further proposed a few-shot vid2vid frame-
work to learn how to synthesize videos of unseen subjects
by leveraging a few example images of the target at test-
time. Ha et al. [13] proposed a few-shot face reenactment

framework, MarioNETte, which employed image attention
block, target feature alignment, and landmark transformer
to address unseen identity and large-pose gaps. While few-
shot methods have shown promising performance by uti-
lizing appearance information from multiple frames, they
operate only on 2D features and thus fail to fully exploit the
multi-view information available in subject videos.

3D-based talking-head video motion transfer. 3D-
based models have seen substantial progress in recent years.
Some recent methods [3, 9, 10, 19, 24, 40] incorporate pre-
defined shape models (e.g., 3DMM [2] or FLAME [23]) to
model 3D face for face manipulation. Liu et al. [24] pro-
posed 3D-FM GAN for 3D-controllable face manipulation
by encoding both the input face image and a physically-
based rendering of 3D edits into the latent space of Style-
GAN [18]. However, these methods depend on predefined
3D graphical models that may have limitations in model-
ing the unique shape details of different subjects. Other re-
cent methods [7,8,15] instead used Neural Radiance Fields
(NeRFs) [26] as a 3D representation of the human head.
Gafni et al. [7] proposed dynamic neural fields for modeling
the appearance and dynamics of a human face tracked by
3DMM [2]. However, it can be hard for these NeRF-based
models to generalize to unseen subject videos and they re-
quire fine-tuning or retraining when applied to new subjects.
Some other methods [6,14,42,46] are based on 3D geomet-
rical transformation. Wang et al. [46] proposed a one-shot
free-view neural talking-head video synthesis model which
represents a video using a sparse 3D keypoint representa-
tion. Hong et al. [14] introduced a self-supervised geom-
etry learning method to automatically recover depth from
face videos and leverage them to estimate sparse facial key-
points for talking head generation. Though also using 3D
geometrical transformation, our proposed Head3D is differ-
ent from these methods by explicitly modeling and visual-
izing the 3D canonical head estimated from the 2D subject
video, thus providing an easily interpretable representation
of the subject’s head.

3. Methodology
Figure 2 shows the training framework of our Head3D.

In general, Head3D is trained in an unsupervised manner,
using self-reconstruction loss to restore one video frame
with several randomly sampled frames from the same video.
This training process neither requires any human annotation
nor involves adversarial training. The training of Head3D
consists of three stages: (1) 3D head geometry learning,
(2) recurrent canonical head generation, and (3) attention-
based fusion mechanism. To ease the training, we train the
modules in these three stages separately. Given a set of ran-
domly sampled N reference frames Sref = {s1, s2, . . . , sN}
and a driving frame sdri from the same training video S, in
the first stage, we utilize a self-supervised 3D head geom-
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Figure 2. Illustration of the training framework of our proposed Head3D. During training, a set of reference subject frames Sref and a
driving frame sdri are randomly sampled from the same video S. The final output frame ŝdri will be used to compute a self-reconstruction
loss against the driving frame sdri to train the network. Note that these three stages are trained separately.

etry learning framework to train a depth network FD and
a pose network FP for predicting the head pose and depth
of each 2D video frame. During the second stage, we use
a recurrent canonical head generation network that lever-
ages ConvLSTM-based feature aggregation to create a 3D
canonical head x̂c incorporating warped reference frame
features. Finally, in stage three, we employ an attention-
based fusion mechanism to synthesize each final output
frame ŝdri by combining head appearance from the canon-
ical head x̂c, the background and other appearance details
(e.g., neck and shoulder) from one randomly selected sub-
ject frame sref, and motion and expression information from
the driving frame sdri. Details of each component of our
proposed framework are introduced as follows. More im-
plementation details can be found in Sec 4.2.

3.1. 3D Head Geometry Learning

Given a talking-head video S, we first randomly sam-
ple a set of N reference frames Sref = {s1, s2, . . . , sN}
and one driving frame sdri from S. To recover the 3D ge-
ometry of the subject’s head from a 2D talking-head video,
we assume that videos are captured with a static perspec-
tive camera and that the subject’s head can be treated as a
rigid object. Our motivation is, by estimating a 3D head in
canonical space, i.e., a 3D canonical head, the head region
of each target video frame can be reconstructed by trans-
forming the points of the 3D canonical head using a rigid
pose transformation P = {R, t} ∈ SE(3). To only recon-
struct the head part in subject video frames, we employ a
pretrained face parsing network [50] to extract the facial and
hair regions. This results in a set of reference head images
Xref = {x1, x2, . . . , xN} and a driving head image xdri.

As shown in Fig 2, after head extraction, we apply a
depth estimation network FD and a head pose prediction
network FP to each frame in Xref and xdri for estimating
their depth maps Dref = {d1, d2, . . . , dN}, ddri, and their

head poses Pref = {P1,P2, . . . ,PN}, Pdri. For each ref-
erence frame xi in Xref, where i = 1, . . . , N , we compute
the corresponding canonical frame xc

i based on the image
formation model in [49]. Let pixel q = (u, v, 1) be the ho-
mogeneous coordinate of one pixel in the reference frame
xi, and pixel qc = (uc, vc, 1) be the corresponding pixel in
the canonical frame xc

i . We can transform each pixel q to qc

to generate canonical frame xc by:

qc ∝ K(RT (d[u, v] ·K−1q − t)) , (1)

where d[u, v] is the depth value of pixel (u, v) in the depth
map d, {R, t} is the head pose of frame xi, and K is the
camera intrinsic matrix, which can be computed by:

K =

f 0 cu
0 f cv
0 0 1

 ,



cu =
W − 1

2

cv =
H − 1

2

f =
W − 1

2 tan θFOV
2

, (2)

where H and W are the height and width of image, θFOV
is the field of view of the perspective camera. Following
[49], we assume θFOV ≈ 10◦ and the nominal distance of
the subject from the camera is about 1m. To simplify the
training, we take the average of all the warped canonical
frames xc

i to produce the final canonical frame x̄c. We also
apply FD to obtain its depth map d̄c. Similar to Eq. (1), we
can transform each pixel qc in the canonical frame to the
pixel q in the target frame by:

q ∝ K(dc[uc, vc] ·RK−1qc + t) , (3)

where q = (u, v, 1) is the homogeneous coordinate of one
pixel in the target frame. By applying FP to driving head
frame xdri to estimate the head pose Pdri = {Rdri, tdri},
using Eq. (3), we can transform the canonical frame x̄c to
frame x̄dri with Pdri. Then we can train depth network FD
and pose network FP with the following head reconstruction
loss function:

lgeo = ||x̄dri − xdri||1 + λsymLsym(x̄
c) + λDLD(d̄

c) , (4)
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where Lsym is designed to ensure the estimated 3D head
under the canonical pose by imposing symmetry constraint.
Here Lsym = ||x̄c − x̄c′ ||1, where x̄c′ is the horizontally-
flipped version of x̄c. LD is the depth smoothness loss used
in [11]. λsym and λD are balancing coefficients.

3.2. Recurrent Canonical Head Generation
The canonical head image x̄c is computed by averaging

each transformed reference head frame in Xref. Thus x̄c is
often blurry and not ready for the subsequent target frame
generation. To produce a high-quality fine-grained canoni-
cal head, we propose a novel recurrent canonical head gen-
eration network to combine transformed reference frames.
As shown in Fig. 2, for each reference head frame xi, we
utilize head image encoder EH to encode xi as feature hi

and also use its corresponding depth di and pose Pi to
compute backward optical flow fRi←C (i.e., warping from
canonical head xc to reference head xi) by:

fRi←C [u, v] = (u, v)T − (uc, vc)T , (5)

where (uc, vc) is one pixel in xc and (u, v) is the corre-
sponding warped pixel in xi by applying Eq. (3) to each
(uc, vc) with Pi. Here we adopt the backward warping op-
eration because it can be implemented efficiently in a dif-
ferentiable manner using bilinear sampling [16].

We later apply flow fRi←C to warp reference head fea-
ture hi to hc

i . Then we employ a Convolutional LSTM [34]
module Λ to aggregate all hc

i to generate the final canonical
head feature hc. A head image decoder ΩH is finally used
to decode feature hc to be canonical head x̂c. Then we can
apply FD to x̂c and combine the estimated depth d̂c with x̂c

to form a 3D canonical head. This 3D head helps to fully
utilize the multi-view appearance information provided by
different reference frames. By applying Eq. (3) to x̂c using
the driving head pose Pdri = {Rdri, tdri}, we transform x̂c

to the estimated driving head frame x̂dri. So we can train
head image encoder EH, image decoder ΩH, and ConvL-
STM Λ by the following head reconstruction loss function:

lhead = ||x̂dri − xdri||1 . (6)

3.3. Attention-based Fusion Mechanism
Because of modeling with rigid transformation, the esti-

mated canonical head x̂c can only describe movements of
the whole head. To model facial expressions as well as
the appearance and motion of non-head regions, we pro-
pose an attention-based fusion mechanism to combine x̂c, a
randomly selected reference frame sref, and the motion and
expression from driving frame sdri to produce the final tar-
get video frame ŝdri. As Fig. 2 shows, we first transform the
estimated canonical head x̂c to driving head x̂dri using the
driving head pose Pdri = {Rdri, tdri}. We then employ a
frame encoder EF to represent x̂dri and sref as features êdri
and eref. We also design a flow and attention map predictor
Φ, to which x̂dri, sref and sdri are fed, in order to estimate two
backward warping feature flows fx̂dri←sdri and fsref←sdri , and

three attention maps ax̂dri , asref and adec. Then the combined
feature eout can be computed by:

eout =ax̂dri ⊙W(êdri, fx̂dri←sdri) + asref ⊙W(eref, fsref←sdri)

+ adec ⊙ edec ,
(7)

where W(·, ·) is backward warping, and fx̂dri←sdri is used
for warping estimated head x̂dri to sdri for adding facial
expression to x̂dri. fsref←sdri is used for warping reference
frame sref to sdri for providing the background and other
appearance details. edec is the intermediate feature from
decoder for synthesizing unseen novel regions. Attention
maps ax̂dri , asref , and adec are designed to indicate which
parts in the feature maps can be kept and which parts should
be masked out. The sum of the attention weights for corre-
sponding pixels in the three attention maps should be equal
to 1. Finally we employ a frame decoder ΩF to decode fea-
ture eout to target frame ŝdri. ŝdri should be identical to sdri
and thus we can train the frame encoder EF, flow and at-
tention map predictor Φ, the frame decoder ΩF using the
following frame reconstruction loss:

lframe = Lrec(ŝdri, sdri) , (8)

where Lrec is the loss measuring the difference between
reconstructed frame ŝdri and ground truth frame sdri. Per
[36, 38], we implement Lrec using the perceptual loss [17]
based on pretrained VGG network [39] and also add the
equivariance loss [36] to stabilize the training.

3.4. Inference

During testing, given one subject video S and one driv-
ing video Y = {y1, y2, . . . , yM}, we first randomly sample
one reference image sref and a set of reference frames Sref
from video S, and estimate 3D canonical head x̂c from Sref
through our proposed recurrent canonical head generation
framework. Then for each driving frame yi in Y , we adopt
our attention-based fusion mechanism to combine x̂c, sref,
and yi to generate the corresponding novel frame ŝi. The
final target video Ŝ = {ŝ1, ŝ2, . . . , ŝM} is generated in a
frame-by-frame manner.

Pose-controllable novel view synthesis. Our proposed
Head3D can be easily adapted to the pose-controllable
novel view synthesis task by manually inputting the desired
pose transformation, Pdri = {Rdri, tdri}, to generate the
novel view x̂dri from the canonical head representation, x̂c,
rather than obtaining Pdri from the driving frame sdri. Then
instead of inputting a sdri to the flow and attention map pre-
dictor Φ, we input x̂dri to the predictor, and the final output
frame ŝ will have the pose Pdri.

4. Experiments
4.1. Datasets and Metrics

Datasets. We conduct comprehensive experiments on
two public datasets: VoxCeleb dataset [27] and FaceForen-
sics dataset [32]. The VoxCeleb dataset includes 22,496
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Subject Driving FOMM MRAA DAGAN OursFaceV2V

Figure 3. Qualitative comparison with state-of-the-art methods (FOMM [36], MRAA [38], DAGAN [14] and FaceV2V [46]). The top two
rows are the results of self-reconstruction and the bottom two rows are that of cross-identity transfer. Artifacts and unnatural details are
highlighted with blue boxes.

videos downloaded from Youtube. To simplify the training,
we only keep 7,500 videos for training and 400 videos for
testing. The FaceForensics dataset contains 1,004 videos
of news briefings from different reporters. We find that
models trained on the VoxCeleb dataset can be generalized
well to this new dataset. So we only randomly choose 150
videos for testing without any additional training. Follow-
ing the preprocessing approach in [36], we crop videos in
these datasets to mainly keep the head regions and resize all
video frames to 128×128. Since the original videos in these
datasets are long, we randomly select a short segment of 40
continuous frames from each video and use these selected
short videos in our experiments.

Metrics. Following [36], we compute metrics based on
two testing settings, self-reconstruction and cross-identity
transfer. For self-reconstruction, we segment a video of
the same subject into two non-overlapping clips. We use
one clip as the subject video and the other as the driving
video. In this setting, the driving video serves as ground
truth. Similar to [7, 47], we compute the normalized mean
L2 distance and Learned Perceptual Image Patch Similarity
(LPIPS) [53] metrics between self-reconstructed results and
driving videos. For cross-identity transfer, which is more
practical in real-world applications, subject video and driv-
ing video are of different subjects in this setting. As there is
no ground truth available, we conduct a paired user study to
compare our model with state-of-the-art methods. Specif-
ically, we generated 100 videos for each baseline method
on each dataset and paired them with videos produced by

our model. We then invited 10 human evaluators to make
judgments regarding the better video in each pair, consid-
ering aspects such as visual realism, motion accuracy, and
identity consistency.

4.2. Implementation

Model Implementation. We employ a public pretrained
face parsing network1 to extract the head regions (face and
hair) from each video frame. For 3D head geometry learn-
ing, we implement the depth network FD with a similar ar-
chitecture used in [20]. To stabilize the training, we add
instance normalization layer [43] to the decoder of FD. We
adopt a similar architecture to HopeNet [33] for the pose
network FP in our implementation. The original HopeNet
only predicts the yaw, pitch, and roll of the head (i.e., R).
To enable estimation of the 3D head translation t, we modi-
fied the final layer of the network. To accelerate the training,
we initialize most parameters in FD and FP with pretrained
models provided in [20] and [33]. For the recurrent canon-
ical head generation, we choose the architecture in [17] to
implement the head image encoder EH and decoder ΩH with
2 downsampling blocks. We employ a one-layer ConvL-
STM [34] to implement Λ. In our attention-based fusion
mechanism, we also construct the frame encoder EF and
decoder ΩF using the same architecture as EH and ΩF. The
flow and attention map predictor Φ is built based on the

1https://github.com/zllrunning/face- parsing.
PyTorch

5

https://github.com/zllrunning/face-parsing.PyTorch
https://github.com/zllrunning/face-parsing.PyTorch


Figure 4. Examples of generated talking-head videos using our proposed Head3D. For each block, Head3D synthesizes the new video (3rd
row) with the appearance from the subject video (1st row) and motions from the driving video (2nd row).

flow predictor in MRAA [38]. We slightly change its archi-
tecture to enable the prediction of three attention maps.

As mentioned in Sec. 3, the whole training process of
Head3D includes three separate stages. In the first stage, we
train the depth network FD and pose network FP through
3D head geometry learning. In the second stage, we train
the head image encoder EH, head decoder ΩH, and Con-
vLSTM Λ for the recurrent canonical head generation. We
finally train frame encoder EF, frame decoder ΩF, and flow
and attention map predictor Φ for the attention-based fu-
sion mechanism in the third stage. We set batch size as 5
videos and use the Adam optimizer [22] with (β1, β2) =
(0.5, 0.999) during all three-staged training. Unless other-
wise specified, the number of reference frames is set to 5.
During 3D head geometry learning, we train FD and FP for
10 epochs. The learning rate of FD and FP is 2× 10−4 and
2×10−5 and drops by 0.1 at epoch 5. The balancing param-
eter λsym and λD in Eq. 4 are all set to be 0.1. When training
recurrent canonical head generation, we train EH, ΩH and Λ
for 20 epochs with the learning rate of 2 × 10−4 and drop
learning rate by 0.1 at epoch 10. We train the attention-

based fusion modules (EF, ΩF and Φ) for 50 epochs with a
fixed learning rate of 2× 10−4.

Baseline Implementation. We compare the proposed
Head3D with three state-of-the-art motion transfer baseline
models: 2D-based methods FOMM [36] and MRAA [35],
and 3D-based methods DAGAN [14] and FaceV2V [46].
We follow the default settings in the methods’ original im-
plementations wherever possible2 and retrain all the base-
lines using the same training videos on the VoxCeleb dataset
as ours with the same 128× 128 resolution.

4.3. Result Analysis

Comparison with state-of-the-art methods. We com-
pare our Head3D with state-of-the-art (SOTA) methods un-
der the self-reconstruction setting in Table 1. As shown
in Table 1, Head3D achieves comparable or better perfor-
mance when compared with the SOTA methods. While
MRAA [38] performs better in most metrics under the self-

2Due to the lack of official implementation, we implement FaceV2V
with the code from https://github.com/zhanglonghao1992/
One-Shot_Free-View_Neural_Talking_Head_Synthesis.
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Yaw Pitch Roll 𝑡, 𝑡- 𝑡.
Figure 5. Examples of pose-controllable novel view synthesis. Each column demonstrates changing of a 3D rotation or translation
parameter.

Table 1. Comparison of proposed Head3D with state-of-the-art
methods under the self-reconstruction setting on VoxCeleb and
FaceForensics datasets.

Dataset Method L2 ↓ LPIPS↓

VoxCeleb

FOMM [36] 0.0114 0.0856
MRAA [38] 0.0108 0.0830
DAGAN [14] 0.0123 0.0885
FaceV2V [46] 0.0186 0.0994
Head3D (Ours) 0.0113 0.0855

FaceForensics

FOMM [36] 0.0102 0.0543
MRAA [38] 0.0075 0.0449
DAGAN [14] 0.0106 0.0490
FaceV2V [46] 0.0119 0.0509
Head3D (Ours) 0.0079 0.0442

Table 2. User preferences in the paired study: our approach vs.
state-of-the-art methods under cross-identity setting on VoxCeleb
and FaceForensics datasets.

Methods VoxCeleb (%) FaceForensics (%)
Ours/FOMM [36] 72/28 68/32
Ours/MRAA [38] 57/43 59/41
Ours/DAGAN [14] 80/20 86/14
Ours/FaceV2V [46] 53/47 54/46

reconstruction setting, our proposed Head3D outperforms
it under the more practical cross-identity setting as shown
in Table 2. Under the self-reconstruction setting, we spec-
ulate that the advantage of using the 3D canonical head in
Head3D may not be apparent, as the head motion and pose
changes are limited due to the subject and driving videos be-
ing clipped from the same original video. When applied to
the cross-identity motion transfer task, which typically in-
volves larger head movements, Head3D benefits from lever-
aging the multi-view appearance information from the 3D

canonical head, as is also shown in Fig. 3 and Fig. 4. More
importantly, different from 2D-based FOMM and MRAA,
Head3D can be easily applied to pose-controllable novel
view synthesis, as shown in Fig. 1 and Fig. 5. Addition-
ally, unlike 3D-based DAGAN and FaceV2V, the canonical
head representation in Head3D is visually interpretable, as
shown in Fig. 1 and Fig. 6.

Ablation Study. To analyze the effectiveness of each
module in Head3D, we conduct an ablation study on the
VoxCeleb dataset. Table 3 shows quantitative comparison
results of the ablation study under the self-reconstruction
setting. We first evaluate the effect of using different num-
bers of reference frames N . Since ConvLSTM can utilize
different number of reference frames during training and
testing, in our experiments, we specifically train a model
with 5 reference frames and then evaluate its performance
with different number of reference frames during testing.
Compared with our final model with 5 reference frames, us-
ing fewer frames (N = 1, 3) generated worse results while
increasing the number of frames (N = 10) can lead to bet-
ter LPIPS but also longer inference time. So we choose
N = 5 as our default setting. To evaluate the effective-
ness of proposed recurrent canonical head generation, we
compare our model with [Head3D w/ x̄c], which employs
the mean canonical head x̄c instead of the x̂c generated by
the recurrent network to synthesize the final frames. One
can observe that using mean canonical head x̄c noticeably
diminishes performance. The reason may be that x̄c is gen-
erated by simply taking the average of all the canonical
head images warped from reference frames, which makes
it blurry and not capturing some important details. We also
experiment with removing the canonical head input x̂dri dur-
ing attention-based fusion and evaluate this variant model
[Head3D w/o x̂dri]. Without using the appearance informa-
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Driving Subject Deformed Attention Canonical Transformed Attention

Figure 6. Illustration of the effect of attention maps in our proposed attention-based fusion mechanism. The red regions indicate a higher
degree of attention, while the blue regions suggest a lower degree of attention. “Deformed” refers to applying warping flow fsref←sdri to the
subject frame and “Transformed” means applying driving pose Pdri to the canonical head.

Table 3. Ablation Study under the self-reconstruction setting on
VoxCeleb dataset.

Methods L2 ↓ LPIPS↓
Head3D (N = 1) 0.0117 0.0873
Head3D (N = 3) 0.0115 0.0880
Head3D (N = 10) 0.0116 0.0839
Head3D w/ x̄c 0.0117 0.0897
Head3D w/o x̂dri 0.0117 0.0872
Head3D (N = 5) 0.0113 0.0855

tion from x̂dri, the performance of [Head3D w/o x̂dri] de-
creases as Table 3 shows.

We also illustrate the effectiveness of our proposed
attention-based fusion mechanism by visualizing some ex-
amples of attention maps in Fig. 6. As shown in Fig. 6,
when a significant pose difference exists between the sub-
ject and driving frames, as in the first row, our model will
assign higher attention values to the transformed canonical
head to synthesize facial areas. In cases where the poses
are more similar, such as in the second row, our model
will combine information from both the subject frame and
canonical head to generate the facial regions.

5. Limitation and Discussion

Head3D can achieve promising performance in most
cases (see Fig. 4 and Supp. videos). However, it still suffers
from several limitations. First, our current framework em-
ploys an off-the-shelf face parsing network to segment the
head regions from video frames. Imprecise segmentation
performed by the pretrained network may result in incon-
sistent or incorrect extraction of head regions, which could
further adversely impact the estimation of the 3D canon-
ical head (see the 1st row in Fig. 7). Second, when the
subject video only provides a single side-view of the per-
son, it can be challenging to generate a high-quality canon-
ical head (see the 2nd row in Fig. 7). Currently, our pro-
posed attention-based fusion mechanism can mitigate these

Subject Head 3D Canonical Head

Figure 7. Examples of failure cases in canonical head estimation.

limitations by assigning lower attention values to incorrect
details of the canonical head, thereby reducing their influ-
ence on the final synthesized output. In future work, we
will investigate the use of a more robust pretrained face
parsing network or incorporate an unsupervised face pars-
ing model into the current framework to enable end-to-end
training. Recently, there has been a growing interest in
high-resolution video generation [6]. We have provided a
Supp. video at the 256 × 256 resolution, produced by our
Head3D trained with different size parameters. In our sub-
sequent research, we will also explore the video generation
at the megapixel resolution such as 512× 512.

6. Conclusion

In this paper, we present Head3D, a novel 3D-aware
approach for transferring motion in talking-head videos.
Head3D capitalizes on the multi-view appearance informa-
tion inherent in a 2D subject video by estimating a 3D
canonical head using a recurrent network. We introduce
a self-supervised 3D geometry learning module to predict
pose and depth map, and an attention-based fusion network
to generate the final synthesized video. The explicit model-
ing of a 3D canonical head in Head3D allows for easy ap-
plication to novel view synthesis tasks using user-provided
pose inputs. Comprehensive experiments on two public
talking-head datasets demonstrate the state-of-the-art video
motion transfer capabilities of Head3D.
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