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Abstract

In this paper, we propose a style-based conditional video
generative model. We introduce a novel temporal generator
based on a set of learned sinusoidal bases. Our method
learns dynamic representations of various actions that are
independent of image content and can be transferred be-
tween different actors. Beyond the significant enhancement
of video quality compared to prevalent methods, we demon-
strate that the disentangled dynamic and content permit
their independent manipulation, as well as temporal GAN-
inversion to retrieve and transfer a video motion from one
content or identity to another without further preprocessing
such as landmark points.

Keywords — conditional video generation, temporal
style, dynamics transfer

1. Introduction

Image synthesis has seen significant advancements with
the development of generative models. However, generative
models of videos have not been as successful, and control-
ling the dynamic generation process has been a major chal-
lenge. This is largely due to the complex spatio-temporal
relationships between content/actors and dynamic/actions,
which makes it difficult to synthesize and control the dy-
namics independently. Several methods have been pro-
posed to address this challenge, each with their own de-
sign principles. Broadly speaking, there are two primary
classes of video generative models: 3D models that learn
from 2D+time volumetric data by employing 3D convolu-
tional neural networks (CNNs), and 2D models that gener-
ate a sequence of 2D frames while disentangling the spatio-
temporal components of a given video distribution. Many
of the earlier methods took the former approach treating
each video clip as a point in latent space, thus making the
manipulation in such space hardly possible. The latter ap-
proach is not only more resource-efficient, but also allows
for greater control over the generation process, as demon-
strated by [42, 45,47]. However, these methods require
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some pre processing (optical flow, pose information) to ma-
nipulate the generated videos.

In their work, [12] introduced a variational encoder for
visual learning, which assumes that higher-level semantic
information within a short video clip can be decomposed
into two independent sets: static and dynamic. With simi-
lar notion, [7] employed two separate encoders to produce
content and pose feature representations. Pose features are
processed by an LSTM to predict future pose information
which is then used along with the current content informa-
tion to generate the next frame. The idea of treating content
and motion information independently has laid a foundation
for many works in video generation.

Instead of considering a video as a rigid 3D volume, one
can model it as a sequence of 2D video frames z(t) €
R3*H*W "\where t is the temporal point, (H, W) are the
height and the width of the video frame. An image gener-
ator G(z) can be trained to produce an image =’ ~ z(t)
from a vector z coming from a latent space Z € R%, where
d < H x W. However, the problem at hand is to come up
with a sequence of z(¢) that can be fed into G(z) to pro-
duce a realistic video frame sequence. And, if such z(t) can
be obtained, how can we manipulate the video generation
process?

The authors of [26] proposed to first map a latent vector
to a series of latent codes using a temporal generator. An
image generator would then use the set of codes to output
video frames. MOCOGAN, [33], on the other hand pro-
posed to decompose the latent space Z into two independent
subspaces of content Z. and motion Z,,. Z. is modeled by
the standard Gaussian distribution, whereas ~Z,,, is modeled
by a recurrent neural network (RNN). The content code re-
mains the same for a generated video, while motion codes
varies for each generated frames. MOCOGAN-HD [32] and
StyleVideoGAN [10] took advantage of a pretrained Style-
GAN?2 [17] image latent space and proposed to traverse in
the latent space using RNNs to produce video frames.

Interestingly, in the context of a pretrained StyleGAN2
network, one can perform GAN inversion [42] on a image
sequence to obtain its latent representation. StyleGAN2



produces a continuous and consistent latent space, where
close by latent vectors map to similar realistic images. Tak-
ing advantage of this property, the latent vector obtained
by optimization from the previous frame can be used as
the starting point to search for the latent vector of the next
frame, thus optimizing for minor changes. Upon simple lin-
ear projection (such as PCA) of the latent trajectory of a
movie optimized in such manner, we can observe that the
higher components are similar to cosine waves (see Ap-
pendix Section 1). The author in [13] also made this obser-
vation in the context of protein trajectory simulation, where
he finds that the cosine content of the principal components
are negatively related to the randomness of the simulation.
In the case of optimized vectors corresponding to the in-
verted images, they are correlated. Hence, the waves are ob-
vious and visible. This hints us that sinusoidal bases could
naturally facilitate training of a StyleGAN generator to pro-
duce image sequences.

To this end, we propose a temporal style generator in or-
der to generate videos using StyleGAN2’s sythesis network.
We use a time2vec [ 1 8] network to introduce a temporal em-
bedding from where the temporal styles will be generated.
time2vec network provides a learnable Fourier bases. By
scaling the Fourier bases using a single motion style vector,
we propose to produce diverse and arbitrary length videos.
Main contributions of our work are as follow:

* We integrate a novel temporal latent space in Style-
GAN’s generator network using a sinusoid-based tem-
poral embedding.

* We evaluate our method against prevalent methods in
an unconditional setting, demonstrating a significant
enhancement of video quality.

* We propose several approaches to rigorously evaluate
conditional video generation through contexts such as
talking faces and human activities.

* We recover motion from real input videos and map
it to our learned latent motion style space via GAN-
inversion. This further facilitates the manipulation of
temporal style of the generated videos.

We trained our model on videos of talking head (MEAD
[37], RAVDESS [20]) and human activities (UTD-MHAD
[3]). Besides the Fréchet video distance (FVD) [34] metric,
we conducted human evaluation focused on the realism of
the generated videos using the MEAD dataset. Additionally
we proposed LiA (Lips Area) metric to evaluate the videos
generated from the MEAD dataset. We also benchmarked
our results using publicly available method for human ac-
tion recognition with UTD-MHAD dataset.

2. Related work

The domain of video synthesis consists of tasks such
as future frame prediction [7, 9, 21, 36], frame interpola-
tion [15,24,41] and in our context, video generation from
scratch [35]. Video generation follows the success of im-
age generative adversarial models which can produce highly
controllable images of remarkable quality [11]. Much fo-
cus has been given to temporal extension of such GANSs.
[23, 26,27, 33] have adopted the strategy to use content
and motion codes by leveraging on 2D image generator.
MOCOGAN-HD [33] used a pretrained StyleGAN2’s net-
work [17] and trained a RNN model to simply explore along
the principal components of the latent space. Recently, [2]
also proposed a style-based temporal encoding for a 3D ver-
sion of StyleGAN3’s synthesis network [16] where tempo-
ral codes are generated by a noise vector filtered by a fixed
set of temporal low pass-filters. [44] used implicit neural
representation (INR) [4, 5] to model videos as continuous
signal. Finally, StyleGAN-V [30], relied on training a mod-
ified StyleGAN2 generator with an INR-inspired positional
embedding for the successive video frames. Both of these
methods produce videos with arbitrary frame rates. Our
method is related to StyleGAN-V as it uses StyleGAN2
synthesis network. However, while StyleGAN-V requires
multiple random input vectors to obtain a single trajectory,
our approach requires only one such input vector. The latter
allows us to manipulate the temporal aspect of the generated
videos [25,42].

Conditional generative models are another exciting field
of research. Besides explicit vector based labels, text, audio
and images have been used in conditioning for frame gen-
eration. [39] proposes a simple and efficient 3D CNN based
generator that takes a single image and a conditioning la-
bel as an input to generate videos. [40] takes a source frame
with one human face and generates video that has pose and
expression of another face in a driving video. [38] condi-
tioned their video generation on semantic maps where ob-
jects present in the frame are labelled with colors. The net-
work can also take information like optical flow and pose
information during the training. [31] generated videos of
talking face using sequence of facial landmarks of target
face. [47] is yet another image-conditioned video genera-
tion model, which has dedicated networks for motion pre-
diction and keypoint detection. However, it is not straight-
forward to generated videos with arbitrary frame rates with
image-conditioned models. Recently diffusion based mod-
els have been employed to generate videos as they can out-
put high quality images and demonstrated great flexibility
while used with language based prompts. [14] proposed a
3D U-Net based diffusion model for text-to-video gener-
ation. Following this [29] proposed another text-to-video
generation method that makes use of efficient 3D convolu-
tions and temporal attention modules. They also added an



embedding in order to specify the frame rates. The authors
of [1] introduced a temporal dimension to the latent space
of a pretrained text-to-image diffusion model to generate
videos. The work in [43] introduces a video encoder that
projects a video clip to a 2D latent representation, which is
further processed by a diffusion model to synthesize videos.
However, diffusion models are notorious for being resource
hungry and slow due to their gradual iterative denoising pro-
cess at training and inference times. In our study, we have
limited our comparative study to GAN-based models only.

3. Method

Our method contains two main components: (1) a tem-
poral style generator that drives StyleGAN2’s synthesis net-
work to produce frames in time-conditioned manner, (2)
two discriminators to impose content consistency and tem-
poral consistency. Our generator is further conditioned on
actor identity and action classes, though it can be used in
unconditional setting.

3.1. Generator

Our generator consists of three distinct networks: a syn-
thesis network G, a temporal style generator F¢, and a con-
ditional embedding F'. as shown in Fig. 1. The synthesis
network G, which is based on StyleGAN2, is inherently
agnostic to temporal cues when generating images. To en-
sure the generation of temporally coherent video frames, we
introduce a specific temporal embedding, which interfaces
with G to guide the synthesis process using a latent trajec-
tory. This trajectory is derived from the network F, which
comprises a 4-layer Perceptron (MLP) that maps a random
vector z,, to a k-dimensional motion style vector m. At this
stage, the vector m does not encompass any temporal con-
text. An auxiliary network time2vec produces sinusoidal
bases that are scaled by m to finally output the temporal
style vectors w,,.

Time2vec: Our proposed k£ dimensional time embedding
consists of k£ — 1 sinusoidal bases and a linear term as seen
in Eq. 1, where the parameters w; and ¢; are trainable.

v;(t) = Flwjt + ¢;), (D

where F is the identity function when 7 = 0 and the sine
function for 1 < j < k — 1. The linear term v (t) repre-
sents the time direction. The time ¢ does not need to be dis-
crete as the fime2vec embedding is continuous. This allows
us to generate videos with arbitrary frame rates. However,
during the training we use integer valued time-points. We
note that StyleGAN-V’s time representation lacks the lin-
ear term, which might explain why its generation is plagued
by unnatural repetitive motion despite its elaborate interpo-
lation scheme. By restricting the dynamics to a fixed set
of sinusoidal functions, we avoid over-fitting to the training

data, and make the model more robust and generalizable to
unseen data. Moreover, since sinusoidal functions are peri-
odic, they can naturally capture cyclic patterns in the data
(e.g. lip movement, hand waving). We obtain a tempo-
ral style vector as an input to G using the following set of
equations:

m=Fi(zm), 2)
wt, =mxv(t), 3)
wy ' =moro(t+1). 4)

The product of motion style m and temporal embedding
vector v(t) is a temporal style vector w?,. Note that a sin-
gle m is used to compute temporal styles for consecutive
frames. Additionally, F. encodes the action and actor em-
beddings and outputs a content style vector w.. It defines
the general appearance of the actor along with the nature
of the action. To generate a frame at time ¢, both temporal
and content styles [w,., w?,] are concatenated and injected to
the synthesis blocks. During the training, we generate three
consecutive frames for each video element of the batch. The
triplets share the same vector m while their temporal em-
beddings are generated from their respective time points.
During the inference, a single vector m is enough to gener-
ate a long duration video. We leverage this ability of m to
encapsulate the entire dynamics of a sequence to compute
a temporal GAN inversion, as described in Section 5.4. A
basic structure of the generator network is shown in Figure
1. To ensure the smooth integration of action-id embed-
dings, we employ a ramp function [28] that linearly scales
the vectors derived from the action-id embedding with a fac-
tor ranging from O to 1, in a scheduled manner.

Unlike StyleGAN-V, we choose to stay closer to the
StyleGAN’s original principle, which is to allow variations
in input only through the style vectors. Furthermore, our
time embedding fundamentally differs from StyleGAN-V’s
in its design. StyleGAN-V requires multiple randomly sam-
pled vectors to compute wave parameters which ultimately
defines the motion of a generated video. In contrast, our
wave parameters are independently learned and are fixed
during inference. Our latent vector m interacts with the
waves only as an amplitude scaling factor. Hence, our time
representation is simpler and manipulable. We leverage
these advantages in Section 5.4 to perform GAN-inversion
of the motion style using off-the-self methods, which can-
not be achieved with StyleGAN-V.

3.2. Discriminators

Shuffle discriminator: Consistency in content over time
is a crucial aspect of video generation. Although the
time2vec module in G provides temporal bases to guide
motion learning, it does not ensure consistency in content
across the sequence. In order to address this, we design
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Figure 1. Proposed model: a temporal style generator F; equipped with a time2vec module generates the motion code. F. outputs a vector
formed by concatenation of actor and action embeddings. Similar embeddings are activated in D¢’s final layer. A ramp function [28],
which gradually increases from O to 1, is used to scale the action embedding vectors in both F. and D¢. Here, G is the StyleGAN2’s

synthesis block.

a 2D-CNN based discriminator Dy (as seen in Figure 1)
that evaluates whether the frame features are consistent or
not. During the training of Dyg, each batch element con-
sists of two frames. For the fake adversarial example, pairs
of frames are shuffled among the batch to contain two dif-
ferent contents. In contrast, for the real example, the pairs
are consecutive frames drawn from real videos. The feature
maps of the pairs undergo a series of 2D convolutions, are
flattened, and then concatenated into a single vector before
passing through a fully connected layer. During the training
of G, a batch of unshuffled fake pairs is input to Dyg.

Conditional discriminator: To ensure temporal consis-
tency in the generated videos, we adopt a time-conditioned
discriminator, inspired by prior works of [22,44]. The dis-
criminator, denoted as Dy, takes in a batch of video triplets
(three consecutive frames per video) along with their re-
spective time information, and learns to distinguish real
videos from fake ones based on their temporal coherence.
Then the video frames are processed by a set of 2D CNNs
and a linear layer d;(.) to produce frame features. These
features are then concatenated following the temporal or-
der. Dy is equipped with another time2vec module which
enforces learning of a time representation. The temporal en-
coding for the three input time points are also concatenated.
The dot product of these concatenated vectors is computed
to generate the final score [22]. Design-wise, Dy is similar

to StyleGAN-V’s discriminator as it was also inspired by
the aforementioned works. However, our D¢ learns the tem-
poral order using absolute time information via time2vec in
contrast to time difference conditioning used in StyleGAN-
V. The use of absolute time information increases flexibility
as it allows Dy to evaluate an arbitrary number of frames.
We demonstrate this in our ablation studies where we use a
single frame instead of three time frames.

As shown in Figure 1, two additional linear layers
(daction(.), dactor(.)) are present at the level of d;(.), which
produce actor and action representations. Dot products are
computed between the corresponding embedded vector and
the feature vector. The final output of the discriminator is
the weighted sum of the three dot products. We use the same
ramp-up function to scale dgction (.) as in the generator [28].

4. Experimental settings

We focus on the conditional generation of videos. How-
ever, we also present the results of unconditional generation
for comparative studies.

4.1. Datasets

We have used three publicly available video datasets
with their labels: MEAD [37], RAVDESS [20] and UTD-
MHAD [3]. Our MEAD training set contains 30 individ-
uals talking while expressing 8 different emotions (18883
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Figure 2. Here, we show few samples of generated frames by different methods. Please refer to the accompanying supplementary videos
for more examples. Note that the generation of StyleGAN-V lacks natural facial motion. MOCOGAN-HD and ImaGINator’s generated
videos are ridden with artefacts. Meanwhile, our generation does not have these issues.

videos). We train our network only with the sequences
where generic sentences are being recited. We set aside the
emotion specific dialogues as unseen test sequences. For the
training, we chose 128 x 128 image dimension and between
60 — 170 frames as the dataset contains videos of variable
length.

The RAVDESS dataset contains 24 talking faces also
with 8 different emotions (not same categories as MEAD).
To create a test set, we exclude sequences of 7 different
emotions for four individuals. Though the dataset set con-
tains only two dialogues, compared to over 20 dialogues in
MEAD, RAVDESS contains more variation in head move-
ments of the actors.

UTD-MHAD contains 754 videos of 8 individuals per-
forming 27 different actions. The video frame size is
128 x 128 with variable video length (33 — 81) as provided
in the dataset. We created a test set by excluding videos of
each action sequence performed by few selected target ac-
tor from the training set. Thus, we train the network to learn
motion and content independently.

4.2. Baseline Methods

For the conditional video generation, we choose ImaGI-
Nator [39] as our baseline. Though it requires a conditional
input image to generate videos, it is free of any additional
representation like pose or motion maps. We adapted its
network to output 128 x 128 x 32 size image (originally
64 x 64 x 32). We trained it on MEAD and UTD-MHAD
datasets for up to 5K epochs.

To demonstrate that our generator does not falter in video
quality, we choose MOCOGAN-HD [33] and StyleGAN-
V [30] as our baselines in unconditional setting as they both
use StyleGAN2’s image synthesizer. For MOCOGAN-HD,
we first trained a StyleGAN2 network on MEAD dataset
with 2562 image size for upto 150K iterations. Then

the MOCOGAN-HD network was trained with the hyper-
parameters set as suggested in the author’s implementation.
For StyleGAN-V, we trained on with image of dimension
2562, with a batch size of 64 and with up to 25000K images
according to the author’s implementation.

4.3. Training

We trained our method on a single Nvidia’s A100 GPU
with 80GB VRAM. The training image size was 1282 with
a batch size of 16 triplet frames. The hyperparameters for
the generator, discriminators and the optimizers were kept
the same as suggested in [17]. The transition factor A of
action-id vectors in both generator and discriminator started
at 4000 iterations and ended at 6000 iterations, which was
set empirically. We trained our model on all datasets for up
to 120k iterations which took about 2 weeks. Our method
can generate longer videos with diverse motion types and
arbitrary frame rates.

5. Results
5.1. Video quality is improved

Table 1 reports the FVD scores of the generated videos
by all the methods. Our conditional method (Ours(C))
scores the best which is in agreement with the videos
provided in the supplementary data. Few frames of the
generated video samples are depicted in Figure 2. Mo-
tion artifacts are strongly present in MOCOGAN-HD and
ImaGINator’s output. Though StyleGAN-V generates long
duration videos, it suffers from erratic, repeated motion.
Our methods (both conditional Ours(C) and unconditional
Ours(UC)) produce far better results. We have reported
FVD score computed over 64 frames only for StyleGAN-
V and our method as other baselines are incapable of long
duration video generation.



Method FVDyg/64 | | T+ T | ArcFace T
ImaGINator 319 0.041 | 0.9340.03
MOCOGAN-HD 272 0.52 | 0.80+0.13
StyleGANV 191/920 0.77 | 0.92+0.05
Ours(UC) 140 0.79 | 0.97+0.018
Ours(C) 115/655 0.7 | 0.964+0.02

Table 1. All the scores pertain to the training with MEAD dataset.
FVDj¢/64 is computed with 16 and 64 (only for StyleGAN-V and
ours(C)) frames. T is the average correlation coefficient of the LiA
signals. ArcFace is the average of the cosine similarity between
the features of the first frame and the successive frames.

To assess the preservation of the actor’s identity, we
computed the ArcFace [6] similarity between the frames of
the generated videos. ArcFace computes the cosine similar-
ity between the feature vector of the first and the successive
frames obtained from face recognition network. As seen
in Table 1, our methods preserve the appearance of the ac-
tor throughout the sequence while MOCOGAN-HD is not
consistent generating the same face over the sequence. The
authors of [30] also made this observation.

The FVD score is widely used to evaluate video quality.
However, as it is a comparison of distributions of represen-
tations in a high dimensional space, it may not accurately
characterize the true quality of the video. The same can be
said about the ArcFace score. Furthermore, these metrics
can be influenced by factors such as spatial resolution, video
length, etc. To complement these metrics, a human evalu-
ation was conducted to assess the realism of the generated
videos. To conduct the human evaluation, we generated 10
sets of videos, each consisting of 6 videos with 32 frames (1
real video and 5 generated videos using the proposed meth-
ods and the baselines). We asked 25 university students and
researchers to watch 3 randomly selected sets and rank the
6 videos based on their perceived realism. The ranking dis-
tributions of the survey is presented in Figure 3. Notably,
videos generated with Ours(C) and Ours(UC) models con-
sistently ranked higher than those generated using the base-
line methods. This demonstrates that our method produces
more realistic videos compared to existing approaches.

5.2. Temporal style encodes temporal semantic

While we demonstrated that the video quality is im-
proved, the aforementioned metric cannot assess the preser-
vation of temporal semantics across different sequences.
We then propose a new metric named LiA (for Lips Area)
to evaluate our ability to reproduce the semantic of talking-
face videos while changing the content such as the actor-id
or action-id (emotion). LiA value computes the polygonal
area of the lips detected using face landmark detectors [19].
A LiA signal is then obtained by computing LiA value se-
quentially for each frames of a generated or a real video.
Though there are other factors such as eye brows and head

Methods StyleGAN-V | ImaGINator | Ours(C)
FVDyg | 421.32 649.23 184.55
(top-1, top-3)% 1 | n/a (0,25) (68.5, 93.5)

Table 2. FVD score for the UTD-MHAD dataset. Though we
train StyleGAN-V unconditionally, it serves as a good baseline
for assessing the video quality. We also report top-(1,3) action
recognition accuracies among 27 action classes.

15

Vieg,, Ou o)
D Oy Uy sy Reg,

St
Ny,

10

/ Mo,
Mma G”Vato COGA
r

3 4
Ranking

Figure 3. Human preference ranking for different videos. Videos
generated by our conditional model (Ours(C)) tops the preference
over other methods.

orientation that contribute to the overall dynamics of a talk-
ing face, we focus on lip motion as it appears to be the most
dynamic part of the face on this dataset. We generated 100
different sequences using different content styles and the
same temporal style for the baseline methods. The average
correlation coefficient 1; of the LiA signals of the gener-
ated videos by all the methods are reported in Table 1. We
observed that even for the same temporal style, the ImaG-
INator produced different motion pattern depending on the
starting input frame. MOCOGAN-HD has relatively low 1
score as the face unusually distorts over time.

5.3. Generation of unseen coupled conditions

We generate videos of unseen actor-action combination
only present in the test set. Figure 4 shows a few selected
frames of real videos, and generated videos by ImaGINa-
tor, and our conditional method. Our method is able to suc-
cessfully transfer a learnt action to an actor who was never
seen performing this action in the training set. To evalu-
ate our method in this dataset, we additionally train an ac-
tion recognition model using the implementation of [8]. We
train the model on skeletal key points extracted from the
video frames of our training set which contains 27 differ-
ent actions. The trained model was able to achieve (77%,
100%) top-1 and top-3 accuracies on the real test cases. In
our generated case, it was able to achieve (68.5%, 93.5%)
top-1 and top-3 accuracies. We present the confusion ma-
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Figure 5. (a) The correlation coefficients (p) between LiA signals of real and inverted videos suggest that the network with a higher number
of sinusoidal bases generates more faithful videos. (b) Pivotal tuning further improves the facial structure even though most of the motion

is already recovered in the first step.

trices for 27 different classes in the supplementary data (in
Appendix Section 4). Our model not only generated high-
quality videos, as shown in Table 2, but also accurately cap-
tured many actions. On the other hand, ImaGINator per-
formed poorly on this dataset, with evidence of mode col-
lapse in the type of motion despite the conditioning during
inference. We have included the generated videos in the
supplementary data.

5.4. Motion recovery with GAN inversion

A talking face video can be generated with a random
temporal style, however it is a challenging task to map a
real motion to a learned temporal representation. However,
thanks to our simple temporal representation m, it is possi-
ble to extract a temporal style of real lip movement, with-

out the need of any motion computation or landmark point
detection, directly by GAN-inversion. To the best of our
knowledge, it is the first time a GAN-inversion for temporal
styles is proposed to recover a reusable dynamic represen-
tation.

In the following experiments, we invert the temporal style
of unseen videos from test cases of MEAD and RAVDESS
dataset. For the MEAD dataset, we recover the motion from
real video of actors pronouncing sentences which were ex-
cluded from the training set. We assume that the excluded
dialogues carry unseen lip motions, and recovering such
motion should demonstrate the flexibility of our temporal
representation. In these experiments, conditional labels are
set to the known actor and emotion of the real input se-
quence and only m is recovered by optimization. To this
end, we minimize the sum of the LPIPS loss [46] and the



Ablation FVD;4 | accuracy (top-1/top-3)%
D¢ (1 time-point) | 179.73 | 59.2/79.6
D¢ (3 time-points) | 184.55 | 68.5/93.5
w/o Dy 526.21 | 42.6/80.5

Table 3. FVD and classification accuracy for UTD-MHAD with
three different versions of our model.

MSE between N real and generated frames:

N
m* = argminzﬁ(f(t),G([wcawfn]))a o)
mo =0

where, I(t) is the real video frame at time ¢, £ is the sum-
mation of the two losses, and m™* is the optimized motion
style vector. Figure 5a shows an example of LiA signals
for real and inverted videos using our model trained with
k = 64,128,256. The higher the number of sinusoidal
bases used in the generator, the more faithful the recovered
motion is to the real video. We performed the inversion and
LiA signal analysis for 39 different emotion specific sen-
tences excluded from the training set (see Appendix Sec-
tion 6 for the complete list), and report the average correla-
tion to be 0.6, 0.79 and 0.91 for & = 64, 128, 256 respec-
tively. The evaluation was done for input videos with 120
frames because of the memory limitation. This implies that
a single vector m* can faithfully represent the dynamic of
at least up to 120 frames. Furthermore, in Figure 5b, the
inversion is able to recover the large movement of head in
the RAVDESS dataset. The facial structure is further im-
proved using pivotal tuning [25] where we adjust genera-
tor’s weight by fixing the previously optimized m™*. Thus
the recovered motion in the form of m* can then be trans-
ferred to another actor. We believe this is a novel way for
re-enactment between different actors and actions.

5.5. Interpolating conditions over time

Because our content and motion spaces are highly dis-
entangled, it is possible to edit the attributes of the videos
over time. We choreograph a sequence where actors change
their expression over time by a linear interpolation in the
action embedding space (see supplementary videos). The
interpolation does not interfere with the general motion.

6. Ablation

In our ablation studies, we investigate the impact of dif-
ferent components on the performance of our model. Using
a higher number of sinusoidal bases improves the recov-
ered motion with GAN-inversion as discussed in the previ-
ous section. However, higher number of % leads to small
intermittent motion artefacts of eyes in MEAD dataset. For
k = 128, most of the artefacts are unnoticeable. We trained
D¢ using only one time point instead of three time points,

which resulted in a decrease in action recognition accuracy
from 68% to 57% for unseen conditions. Secondly, we re-
moved Dyg in the training on the MEAD dataset, which led
to an FVD score of 600. We report the affect of tweaking of
D on UTD-MHAD dataset in Table 3. We also examined
the effect of using a ramp function to schedule scaling of
the action-id vectors. We found that without the ramp func-
tion, introducing the action-id at the beginning of the train-
ing caused the generator to favor one class over the other,
while using the ramp function stabilized the quality of the
videos for all classes.

7. Limitations and Future work

While our study has achieved convincing and promising
results in the realm of style-based conditional video gen-
eration and video GAN inversion, several limitations and
avenues for future research warrant consideration. First,
it is important to note that our experiments are primarily
concentrated on scenarios involving single actors executing
simple actions. The current method could encounter chal-
lenges when attempting to generate video scenes featuring
multiple actors with intricate interactions. The empirical
choice of k, i.e. the number of Fourier bases in our ex-
periments may not be optimal to capture complex dynam-
ics. A possible solution could consist of adopting a multi-
resolution approach, whereby lower-frequency bases are in-
troduced during coarser stages, progressively incorporat-
ing higher-frequency elements in finer stages. Furthermore,
our current video GAN-inversion succeeds in a conditional
setting. Without providning the actor-id, the optimization
methods fail so far. This model would benefit a robust op-
timization method that could disentangle the actor from the
action during the inversion process.

8. Conclusion

In this study, we proposed a video generation model
which produces high quality videos in both conditional and
unconditional settings. Through various experiments, we
show that the temporal style can independently encode the
dynamics of the training data and can be transferred to un-
seen targets. We demonstrated that it is possible to gener-
ate different types of action with high accuracy as seen in
UTD-MHAD videos. Our generator produces videos with
better fidelity than the prevalent style-based video genera-
tion methods as shown by various metrics as well as human
preference score. We demonstrate that our method can re-
cover motion of real input videos via GAN-inversion and
can faithfully encode the motion of at least 120 frames with
a single temporal style vector. A Pytorch implementation
of this work can be found on our project webpage at sand-
man002.github.io/CTSVG.


https://sandman002.github.io/CTSVG
https://sandman002.github.io/CTSVG
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