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Abstract

Diffusion models (DMs) synthesize high-quality images
in various domains. However, controlling their generative
process is still hazy because the intermediate variables in
the process are not rigorously studied. Recently, the bot-
tleneck feature of the U-Net, namely h-space, is found to
convey the semantics of the resulting image. It enables
StyleCLIP-like latent editing within DMs. In this paper,
we explore further usage of h-space beyond attribute edit-
ing, and introduce a method to inject the content of one
image into another image by combining their features in
the generative processes. Briefly, given the original gen-
erative process of the other image, 1) we gradually blend
the bottleneck feature of the content with proper normal-
ization, and 2) we calibrate the skip connections to match
the injected content. Unlike custom-diffusion approaches,
our method does not require time-consuming optimization
or fine-tuning. Instead, our method manipulates intermedi-
ate features within a feed-forward generative process. Fur-
thermore, our method does not require supervision from ex-
ternal networks. Project Page

1. Introduction
Diffusion models (DMs) have gained recognition in var-

ious domains due to their remarkable performance in ran-
dom generation [29, 68]. Naturally, researchers and practi-
tioners seek ways to control the generative process. In this
sense, text-to-image DMs provide a way to reflect a given
text for generating diverse images using classifier-free guid-
ance [3,20,53,59,60,65]. In the same context, image guid-
ance synthesizes random images that resemble the refer-
ence images that are given for the guidance [1,8,13,48,49].
On the other hand, deterministic DMs, such as ODE sam-
plers, have been used to edit real images while preserving
most of the original image [32, 45, 47, 68, 69]. Diffusion-
CLIP [39] and Imagic [38] first embed an input image into
noise and finetune DMs for editing. While these approaches
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Figure 1. Overview of InjectFusion. During the content injec-
tion, the bottleneck feature map is recursively injected during the
sampling process started from the inverted xT of images. The tar-
get content is reflected in the result images while preserving the
original images.

provide some control for DMs, the intermediate variables in
the process are not rigorously studied, as opposed to the la-
tent space of generative adversarial networks (GANs). Crit-
ically, previous studies do not provide insight into the inter-
mediate features of DMs.

Recently, Asyrp [43] discovered a hidden latent space
of pretrained DMs located at the bottleneck of the U-Net,
named h-space. Shifting the latent feature maps along a
certain direction enables semantic attribute changes, such as
adding a smile. When combined with deterministic inver-
sion, it allows real image manipulation using a pretrained
frozen DM. However, its application is limited to changing
certain attributes, and it does not provide as explicit opera-
tions as in GANs, such as replacing feature maps.

In this paper, we explore further usage of h-space be-
yond attribute editing and introduce a method that injects
the content of one image into another image. Figure 1
overviews our new generative process for content injection.
It starts by inverting two images into noises. Instead of run-
ning generative processes from them individually, we set
one generative process as an original and inject the bottle-
neck features of the other generative process. As the bottle-
neck features convey the semantics of the resulting image, it
is equivalent to injecting the content. The injection happens
recursively along the timesteps.
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However, unlike GAN, DMs are usually designed with
U-Net which has skip connections. If one directly changes
the bottleneck only, it distorts the relation between the skip
connection and the bottleneck. Our method, named Inject-
Fusion, treats this problem with two methods. 1) InjectFu-
sion blends the content bottleneck to the original bottleneck
gradually along the generative process. The blended fea-
ture is properly normalized to keep the correlation with the
skip connections. 2) InjectFusion calibrates the latent xt di-
rectly to preserve the correlation between h-space and skip
connections. This calibration is not only able to be used
for InjectFusion but also for any other feature manipulation
methods.

InjectFusion enables content injection using pretrained
unconditional diffusion models without any training. To the
best of our knowledge, our method is the first to tackle these
applications without additional training or extra networks.
It provides convenience for users to experiment with exist-
ing pretrained DMs. In the experiments, we analyze the
effect of individual components and demonstrate diverse
use cases. Although there is no comparable method with a
perfect fit, we compare InjectFusion against closely related
methods, including DiffuseIT [42].

2. Background
In this section, we review various approaches for con-

trolling the results of DMs and cover preliminaries.

2.1. Diffusion models and controllability

After DDPMs [29] provide a universal approach for
DMs, Song et al. [69] unify DMs with score-based mod-
els in SDEs. Subsequent works have focused on improving
generative performance of DMs [9, 34, 54, 68, 74]. Other
works attempt to manipulate the resulting images by replac-
ing latent variables in DMs and generating random images
with the color or strokes of the desired images [8, 49] but
they fall short of content injection.

Recently, some works have proposed to control DMs by
manipulating latent features in DMs. Asyrp [43] consid-
ers the bottleneck of U-Net as a semantic latent space (h-
space) through the asymmetric reverse process. However,
it focuses only on semantic editing, e.g., making a person
smile. Plug-and-Play [71] injects an intermediate feature in
DMs to provide structural guidance. However, it does not
consider the correlation between the skip connection and
the feature. Similarly, injecting self-attention features en-
ables semantic image editing by retaining structure or ob-
jects/characters [6, 71]. However, they should rely on text
prompts to determine the destinations, which is often vague
and insufficient in describing abstract and fine-grained vi-
sual concepts.

ADM [18] introduces gradient-guidance to control gen-
erative process [1, 46, 53, 66], but it does not allow detailed

manipulation. The guidance controls the reverse process of
DMs and can be extended to image-guided image transla-
tion without extra training but it depends on the external
model (e.g. DINO ViT [7]) and struggles to overcome a
huge disparity in color distribution. [42]

2.2. Injecting contents from exemplar images

For given exemplar images with an object, Dreambooth
variants [41, 61] fine-tune pretrained DMs to generate dif-
ferent images containing the object. Instead of fine-tuning
the whole model, LoRA variants [44,64,80] introduce aux-
iliary networks or fine-tune a tiny subset of the model.
As opposed to modifying models, textual inversion vari-
ants [21, 26] embed visual concepts into text embeddings
for the same task. However, these methods require extra
training or optimization steps to reflect the exemplars. On
the other hand, our method does not require training or op-
timization but works on frozen pretrained models. In addi-
tion, while these methods rely on the form of text to reflect
the exemplars, our method directly works on the intermedi-
ate features in the model.

ControlNet variants [44,52,80] can inject structural con-
tents as a condition in the form of an edge map, segmen-
tation mask, pose, and depth map. However, the control is
limited to structure and shape. Our method preserves most
of the content in the exemplar.

Some works utilize the inversion capability of DMs
[5, 6, 27, 51, 71], which enables injecting contents during
the reconstruction process. However, most of them rely on
language to insert the contents.

2.3. Style transfer

Recently, neural style transfer [22] has evolved with the
advancement of DMs and neural network architecture [19].
Some style transfer methods leverage a style encoder [62]
to enable pretrained DMs to be conditioned on the visual
embedding from style reference images [63,70]. StyleDrop
[67] achieves outstanding performance in extracting style
features from visual examples but how to control content
and shape has not been provided. Since it is vision trans-
former [19], universal spatial control approach of DMs [80]
cannot be adapted

Exploiting external segmentation mask models and ex-
plicit appearance encoder enables decomposing the struc-
ture and appearance in [24] for style transfer, but it requires
training DMs and the encoder from scratch.

2.4. Denoising Diffusion Implicit Model (DDIM)

Diffusion models learn the distribution of data by esti-
mating denoising score matching with ϵθt . In the denois-
ing diffusion probabilistic model (DDPM) [29], the forward
process is defined as a Markov process that diffuses the data
through parameterized Gaussian transitions. DDIM [68]



redefines DDPM as qσ(xt−1|xt,x0) = N (
√
αt−1x0 +√

1− αt−1 − σ2
t · xt−

√
αtx0√

1−αt
, σ2

t I), where {βt}Tt=1 is the

variance schedule and αt =
∏t

s=1(1 − βs). Accordingly,
the reverse process becomes:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

θ
t (xt)√

αt

)
︸ ︷︷ ︸

”predicted x0 ”

+
√
1− αt−1 − σ2

t · ϵθt (xt)︸ ︷︷ ︸
”direction pointing to xt ”

+ σtzt︸︷︷︸
random noise

,

(1)

where σt = η
√
(1− αt−1) / (1− αt)

√
1− αt/αt−1.

When η = 0, the process becomes deterministic.

2.5. Asymmetric reverse process (Asyrp)

Asyrp [43] introduces the asymmetric reverse process
for using h-space as a semantic latent space. h-space
is the bottleneck of U-Net, which is distinguished from
the latent variable xt. For real image editing, they invert
x0 ∼ preal(x) into xT through the DDIM forward process,
and generate x̃0 using the new h̃t in the modified DDIM
reverse process. They use an abbreviated version of Eq. (1).
We follow the notation of Asyrp throughout this paper:

xt−1 =
√
αt−1 Pt(ϵ

θ
t (xt)) +Dt(ϵ

θ
t (xt)) + σtzt, (2)

where Pt(ϵ
θ
t (xt)) denotes the predicted x0 and Dt(ϵ

θ
t (xt))

denotes the direction pointing to xt. We abbreviate
Pt(ϵ

θ
t (xt)) as Pt and Dt(ϵ

θ
t (xt)) as Dt when the context

clearly specifies the arguments. Following Asyrp, we omit
σtzt when η = 0. Then, Asyrp becomes:

x̃t−1 =
√
αt−1 Pt(ϵ

θ
t (x̃t|h̃t)) +Dt(ϵ

θ
t (x̃t|ht)) + σtzt,

(3)
where x̃T = x̃T and then ϵθt (x̃t|h̃t) replaces the original
U-Net feature maps ht with h̃t. They show that the mod-
ification of h-space in both Pt and Dt brings a negligible
change in the results. Therefore, the key idea of Asyrp is to
modify only h-space of Pt while preserving Dt.

Quality boosting, introduced by Asyrp, is a stochastic
noise injection when the image is almost determined. It en-
hances fine details and reduces the noise of images while
preserving the identity of the image. The whole process of
Asyrp is as follows.

x̃t−1 =
√
αt−1 Pt(ϵ

θ
t (x̃t|h̃t)) +Dt if T ≥ t ≥ tedit√

αt−1 Pt(ϵ
θ
t (x̃t|ht)) +Dt if tedit > t ≥ tboost√

αt−1 Pt(ϵ
θ
t (x̃t|ht)) +Dt + σ2

t z if tboost > t
(4)

which consists of editing, denoising, and quality boost-
ing intervals where the hyperparameter tedit determines the

(a) Replacement

⊕

(b) ht + hContent
t

xt

(c) Slerp

γ

Figure 2. Illustration of content injection methods. (a) and
(b) provide content injection but suffer quality degradation. Com-
pared to them, (c) allows successful content injection by preserv-
ing statistics in DMs and gradually increasing the ratio of the target
content.

editing interval and tboost determines the quality boosting
interval. Following Asyrp, we apply quality boosting to all
figures except for ablation studies.

3. Method

In this section, we explore the interesting properties of h-
space with Asyrp [43] and design a method for content in-
jection. We start by simply replacing ht of one sample with
that of another sample and observe its drawbacks in § 3.1.
Then we introduce an important requirement for mixing two
ht’s in § 3.2. Furthermore, we propose latent calibration to
retain the crucial elements in § 3.3.

3.1. Role of h-space

h-space, the deepest bottleneck of the U-Net in the dif-
fusion models (DMs), contains the semantics of the re-
sulting images to some extent. In other words, a change
in h-space with Asyrp [43] leads to editing the result-
ing image. Formally, setting h̃t = ht + ∆ht for t ∈
[T, tedit] modifies the semantics, where ∆ht is the direc-
tion of desired attribute. The reverse process becomes
x̃t−1 =

√
αt−1 Pt(ϵ

θ
t (x̃t|h̃t)) + Dt(ϵ

θ
t (x̃t|ht)), where

h̃t = ht +∆hattr
t .

We start with a question: Does h solely specify the se-
mantics of the resulting image as in the latent codes in
GANs? I.e., would replacing h totally change the output?

To answer the question, we invert two images I(1) and
I(2) to noises x

(1)
T and x

(2)
T via forward process, respec-

tively. Then we replace {ht}† from x
(1)
T with {h(2)

t } from
x
(2)
T during the reconstruction (i.e., reverse process). For-

mally, x̃t−1 =
√
αt−1 Pt(ϵ

θ
t (x̃t|h(2)

t )) + Dt(ϵ
θ
t (x̃t|ht)),

x̃T = x
(1)
T ; which is illustrated in Figure 2a.

†Note that the reverse process is recursive. The reason we denote {ht}
instead of ht

(1) is that it differs from ht
(1) after the first replacement.



ContentOriginal ContentContent Content ContentOriginal Original Original Original

Figure 3. Preliminary experiment. Naı̈ve replacement of h
somehow combines the content and the original image. However,
it severely degrades image quality.

(b) Slerp

(a) ht + hcontent
t

Content Original ContentContent OriginalOriginal

Figure 4. Improvement in quality with Slerp. (a) shows the
result of ht + hcontent

t . It has some artifacts. (b) shows the result
of Slerp with γ = 0.5 brings better quality. Techniques described
later are not applied here for fair comparison.

Interestingly, the resulting images with the replacement
contain the people in I(2) with some elements of I(1) such
as color distributions and backgrounds as shown in Figure 3.
This phenomenon suggests that the main content is speci-
fied by h and the other aspects come from the other com-
ponents, e.g., features in the skip connections. Henceforth,
we name h

(2)
t as hcontent

t .
However, the replacement causes severe distortion in the

images. We raise another question: how do we prevent the
distortion? Note that Asyrp slightly adjusts ht with a small
change ∆ht. On the other hand, replacing ht as hcontent

t

completely removes ht. Assuming that the maintenance of
ht might be the key factor, we try an alternative in-between:
adding hcontent

t to ht; which is illustrated in Figure 2b. We
observe far less distortion in Figure 4a.

With these preliminary experiments, we hypothesize that
the replacement and the addition drive the disruption of the
inherent correlations in the feature map. The subsequent
sections provide grounding analyses and methods to address
the problem.

3.2. Preserving statistics with Slerp

In DMs, h-space is concatenated with skip connections
and fed into the next layer. However, Asyrp [43] does not
take into account the relationship between them. We ob-
serve an interesting relationship between ht and its match-
ing skip connections gt (illustrated in Figure 5a) within a
generative process and introduce requirements for replacing
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(a) Matching skip connection (b) Correlation

r

timesteps

homogeneous

h
(1)
t + h

(2)
t

heterogeneous

Figure 5. Correlation between ht and skip connection. ht is
highly correlated with the matching skip connection. (a) illus-
trates examples of matching and non-matching skip connections.
(b) shows correlation between each h̃t and skip connection. r is
Pearson correlation coefficient and p-values of r are less than 1e-
15. Non-matching skip connections seriously distort the correla-
tion.

ht. We compute two versions of the correlation between the
norms, |ht| and |gt|:

rhomo =

∑
i

(
|h(i)| − ¯|h|

) (
|g(i)| − ¯|g|

)
(n− 1)s|h|s|g|

(5)

rhetero =

∑
j ̸=i

(
|h(j)| − ¯|h|

) (
|g(i)| − ¯|g|

)
(n− 1)s|h|s|g|

(6)

where n is the number of samples and s∗ denotes standard
deviation of ∗. We omit t for brevity.

Figure 5b shows that rhomo, the correlation between ht

and its matching skip connections, is roughly larger than 0.3
and is strongly positive when the timestep is close to T . On
the other hand, rhetero, the correlations between ht and the
skip connections in different samples, lie around zero. We
try an alternative h̃ = h(i) + h(j) and find its correlation is
closer to rhomo than rhetero and it produces less distortion.

Hence, we hypothesize that the correlation between |h|
and |g| should remain consistent after the modification to
preserve the quality of the generated images. To ensure the
correlation of h̃t equals to rhomo, we introduce normalized
spherical interpolation (Slerp) between ht and hcontent

t :

h̃t = f(ht,h
content
t , γ) = Slerp(ht,

hcontent
t

∥hcontent
t ∥ ·∥ht∥ , γ),

(7)
where γ ∈ [0, 1] is a coefficient of hcontent

t . (See Fig-
ure 2c.) We note that Slerp requires the inputs to have the
same norm. Normalizing hcontent

t to match the norm of
ht ensures a consistent correlation between |Slerp(·)| and
|g(1)

t | to be the same with the correlation between |ht| and
|g(1)

t |. Replacing ht with h̃t using Slerp exhibits fewer arti-
facts and better content preservation, as shown in Figure 4b.
Besides the improvement, we can control how much con-
tent will be injected by adjusting the ht-to-hcontent

t ratio
through parameter γt of Slerp. We provide an approxima-
tion of the total amount of injected content in § E.2.



3.3. Latent calibration

So far, we have revealed that mixing features in h-space
injects the content. Although Slerp preserves the correlation
between h-space and skip connection, altering only ht with
fixed skip connection may arrive at x̃t−1 that could not be
reached from x̃t. Hence, we propose latent calibration that
achieves the similar change due to h̃t by modifying x̃t.

Specifically, after we compute x̃t−1, we define a slack
variable v = x̃t + dv and find dv such that Pt(ϵ

θ
t (v)) ≈

Pt(ϵ
θ
t (x̃t|h̃t)). It ensures x̃′

0 predicted from v is as similar
as possible to x̃0 predicted from injecting h̃t to x̃t. We
model the implicit change from x̃t to x̃′

t that brings similar
change by the injection and introduce a hyperparameter ω
that controls the strength of the change. To this end, we
define a slack variable v = x̃t + dv and find dv such that
Pt(ϵ

θ
t (v)) ≈ Pt(ϵ

θ
t (x̃t|h̃t)). With the DDIM equation,√

αtPt = x̃t −
√
1− αtϵ

θ
t (x̃t), (8)

we define infinitesimal as√
αt dPt = dx̃t−

√
1− αtJ(ϵ

θ
t ) dx̃t . (9)

Further letting dx̃t = ω dv and J(ϵθt ) dv = dϵθt induces

dx̃t =
√
αt dPt +ω

√
1− αt dϵ

θ
t . (10)

Then, we define x̃′
t = x̃t + dx̃t and obtain x̃′

t−1 by a
typical denoising step.

In addition, Pt(ϵ
θ
t (x̃

′
t)) in Eq. (10) has larger standard

deviation than Pt(ϵ
θ
t (x̃t)). We regularize it to have the

same standard deviation of Pt(ϵ
θ
t (x̃t)) by

dPt =
P′

t − P̄′
t

|P′
t|
|Pt|+ P̄′

t − Pt(ϵ
θ
t (x̃t)), (11)

where P′
t = Pt(ϵ

θ
t (x̃

′
t)). Then we control x′

t with an ω.
When we further expand Eq. (10) by the definition of Pt,

dx̃t ≈ (ω − 1)
√
1− αt(ϵ

θ
t (x̃t|h̃t)− ϵθt (x̃t)). (12)

Interestingly, setting ω = 1 reduces dx̃t to 0, i.e., injection
does not occur. And setting ω ≈ 0† drives x̃′

t−1 close to
x̃t−1, i.e., latent calibration does not occur. Intuitively, by
Eq. (12), x̃′

t may share the predicted x̃0 with Pt(ϵ
θ
t (x̃t|h̃t))

and contains original elements. In other words, we main-
tain the original elements by adding dx̃t directly in x-space
while the content injection is conducted in h-space.

Latent calibration consists of four steps. First, we inject
the contents as x̃t → x̃t−1 with Slerp. Second, we regular-
ize Pt to preserve the original signal distribution after in-
jection. Third, we solve the DDIM equation x̃′

t = x̃t+dx̃t

by using Eq. (10). Finally, we step through a reverse pro-
cess x̃′

t → x̃′
t−1. In summary, we obtain target x̃t−1 by

Slerp and generate x̃′
t−1 without feature injection with cal-

culated the corresponding x̃′
t. Please refer to Algorithm 2

for details.
†ω can not be 0 because of its definition.

DDIM

Figure 6. Latent calibration. The result of DDIM reverse pro-
cess with given approximated x̃′

t can be similar to the result of a
corresponding injected result x̃t−1. As ω gets close to 1, more
original elements are added through dxt. Note that the effect of
latent calibration is different from modifying γ because it remains
predicted x̃0 by solving the DDIM equation.

3.4. Full generative process

We observe that h-space contains content and skip con-
nection from xT conveys the original elements. We utilize
this phenomenon for in-domain samples and out-of-domain
artistic samples. Note that it is possible to obtain inverted
xT from any arbitrary real image. Therefore, even if we use
out-of-domain images such as artistic images, InjectFusion
successfully retain the original elements in the images. Fur-
thermore, local mixing of h-space enables injecting content
into the corresponding target area as shown in Figure 12.

For the local mixing, each ht is masked before Slerp and
the mixed ht is inserted into the original feature map. We
provide Algorithm 1 for them and an illustration of spatial
ht mixing in Figure S1. Note that we omit latent calibra-
tion in the algorithm for simplicity. The full algorithm is
provided in Appendix Algorithm 2.

Algorithm 1: InjectFusion
Input: xT (inverted latent variable from from

image Ioriginal),{hcontent
t }Tt=tedit

(obtained
from content image Icontent), ϵθ (pretrained
model), m (feature map mask), f (Slerp)

Output: x̃0 (transferred image)

1 x̃t ←− xT for t = T, ..., 1 do
2 if t ≥ tedit then
3 Extract feature map ht from ϵθ(x̃t);

h̃t ←− f((m⊗ ht), (m⊗ hcontent
t ), γ)

4 ⊕(1−m)⊗ ht

ϵ̃←− ϵθ(x̃t|h̃t), ϵ←− ϵθ(x̃t)
5 Adapt Latent calibration (Algorithm 2)

6 else
7 ϵ̃ = ϵ←− ϵθ(x̃t),

8 x̃t−1 ←− √αt−1(
x̃t−

√
1−αtϵ̃√
αt

) +
√
1− αt−1ϵ



γ γ γ

ID ↑ Gram loss ↓FID ↓

Figure 7. Choice of γ. (b) shows that γ should be less than 0.6
since the ID change via content injection converges at the point. If
γ > 0.6, the resulting image only departs from the original image
and suffers quality degradation without any advantage.

[%] Nose Eyes Jaw line Expression Hair color Glasses Skin color Make up
Original 28.06 43.57 24.67 36.73 95.74 5.63 94.15 90.60
Content 71.94 56.43 75.33 63.27 4.26 94.37 5.85 9.30

Table 1. User study to define content We conduct the user study
with 50 participants. Users choose where the attributes of the re-
sulting images come from.

4. Experiments
In this section, we present analyses on InjectFusion and

showcase our applications.

Setting We use the official pretrained checkpoints of
DDPM++ [49,69] for CelebA-HQ [33] and LSUN-church/-
bedroom [79], iDDPM [54] for AFHQv2-Dog [11], and
ADM with P2-weighting [9, 18] for METFACES [35] and
ImageNet [15]. The images have a resolution of 256× 256
pixels. We freeze the model weights. We use tedit=400,
ω=0.3, γ=0.6, and tboost=200 to produce high-quality im-
ages. For more implementation details, please refer to Ap-
pendix A.

Metrics GRAM loss (style loss) [23] indicates the style
difference between the original image and the resulting im-
age. ID computes the cosine similarity between face iden-
tity [16] of the content image and the resulting image to
measure content consistency. Fréchet Inception Distance
(FID) [28] provides the overall image quality. To com-
pute FID, we compare generated 5K images from fixed 5K
original-content image pairs using 50 steps of the reverse
process and 25k images from the training set of CelebA-
HQ without the overlap of the pairs.

4.1. Analyses

In this section, we define what elements come from the
original and the content image. We provide a guideline
for choosing the content injection ratio γ considering both
quality and content consistency. We also show the versa-
tility of latent calibration and propose the best interval for
editing. Furthermore, we provide quantitative results that
support assumptions suggested in § 3: h-space has content
elements.

ContentOriginal Content Content Content
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Original Original Original

Figure 8. Effectiveness of Latent calibration. Latent calibration
recovers elements of original images while preserving content el-
ements. We do not use other techniques such as quality boosting
for comparison.

Definition of content We measured the CLIP score on
CelebA attributes to reveal what information comes from
the content and original images. We classify the attribute
of the mixed image as closer to the original or content im-
age with the CLIP score. In short, content includes glasses,
square jaw, young, bald, big nose, and facial expressions
and the remaining elements include hairstyle, hair color,
bang hair, accessories, beard, and makeup. Please see the
details in Appendix J. Furthermore, we conduct a user study
in Table 1 to support the result of the CLIP score. It aligns
with the results using CLIP score for classifying.

We define the retained elements of the original image as
the color-dependent attributes and the content as the seman-
tics and shape. Figure S22 and Figure S23 show that DMs
trained on the scenes with complex layouts have different
notions of content and retained elements: rough shapes of
churches are considered as content and room layouts includ-
ing the location of beds are considered as contents.

Content injection ratio γ We suggest that the original ht

should be partially kept in § 3.1. Figure 7 supports that the
content injection ratio γ should be less than 0.6 for image
quality (FID) and preservation of the original image, and
γ > 0.6 does not increase ID similarity. We provide more
observations on γ in Appendix B.

The effect of latent calibration Figure 8 shows that la-
tent calibration leads to a better reflection of the original
elements such as makeup and hair color. Note that, depend-
ing on the latent calibration strength ω, there is a trade-off
relationship between Gram loss and ID similarity as well
as FID. We report them at various ω in Figure S4. We dis-
cover that increasing ω favors preserving the original im-
ages. More details including the efficiency of adapting la-
tent calibration to other methods, Plug-and-Play [71] and
MasaCtrl [6], can be found in Appendix C.

Quantitative comparison Table 2 shows the quantitative
result of each configuration investigated in § 3. Reconstruc-
tion reports FID of the official checkpoint of DDPM++ [49]



FID ↓ ID ↑ Gram loss ↓
ht + hcontent

t 49.94 0.3581 0.0415
Lerp 36.89 0.4040 0.0318
Slerp 32.09 0.4390 0.0310

Table 2. Performance of various configurations Slerp improves
FID, ID similarity between target content images and synthesized
images over other methods.

tedit tedit tedit

Timesteps

ID ↑ Gram loss ↓FID ↓

Timesteps Timesteps

Figure 9. Choice of tedit We observe that tedit = 400 shows the
best quality.
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Figure 10. Comparison with DiffuseIT InjectFusion is effective
even in situations where there is a large discrepancy between the
color distributions of the original image and the content image.

through its forward and reverse process without any modi-
fication on h-space. We observe that ht + hcontent

t harms
FID with severe distortion. Slerp outperforms ht+hcontent

t

in all aspects.
Table 2 further shows the superiority of Slerp over linear

interpolation (Lerp). It implies that the normalization for
preserving the correlation between ht and skips gt is im-
portant. Furthermore, Figure S6 shows that Slerp resolves
the remaining artifacts that reside in the resulting images by
Lerp. Comparison between Slerp and Lerp will be further
discussed in § E.1.

Editing interval [T, tedit] We observe that there is a
trade-off between ID similarity and Gram loss when using
a suboptimal tedit and specific value of tedit leads to bet-
ter FID, as shown in Figure 9. We choose tedit = 400 for
its balance among the three factors. This choice also aligns
with that of Asyrp [43] for editing toward unseen domains,
which requires a large change, such as injecting content.
Notably, we find that tedit = 400 is also suitable for achiev-
ing content injection into artistic images.

Choice of the content injection layer Except for h-
space, the other intermediate layers in the U-Net can be
candidate feature spaces for content injection. However,
Figure S13a shows that content injection works well only

on h-space, while it produces artifacts and loses injected
content on the other feature spaces. Injecting skip connec-
tion while content injection does not alleviate the problems
as shown in Figure S13b.

4.2. Qualitative results

In-domain original images Figure 11a,b shows Inject-
Fusion on AFHQv2-Dog [11] METFACES [35]. See Ap-
pendix D.1 for more results on various architectures and
datasets.

Artistic original images In addition, we can use arbitrary
original images, even if they are out-of-domain. Figure 11c
shows results with artistic images as style. For the artistic
references, we do not use quality boosting [43] since they
aim to improve the quality and realism of x0 which may
not be desirable when transferring the elements of an out-
of-domain image onto the target image. We provide more
results in Appendix D.1.

4.3. Comparison with existing methods

We first note that there is no competitor with perfect
compatibility: frozen pretrained diffusion models, and no
extra guidance from external off-the-shelf models. Still, we
compare our content injection with DiffuseIT [42] which
guides pretrained DMs using DINO ViT [7]. Figure 10
shows that DiffuseIT struggles when there is a large gap
between the content image and the original image regard-
ing color distributions. More qualitative comparisons with
existing methods [11, 12, 17, 40, 56, 75] and user study are
deferred to Appendix D.2.

5. Conclusion and discussion
In this paper, we have proposed a training-free content

injection using pretrained DMs. The components in our
method are designed to preserve the statistical properties of
the original reverse process so that the resulting images are
free from artifacts even when the original images are out-of-
domain. We hope that our method and its analyses help the
research community to harness the nice properties of DMs
for various image synthesis tasks.

Although InjectFusion achieves high-quality content in-
jection, the small resolution of the h-space hinders fine con-
trol of the injecting region. We provide content injection
with various masks in Figure 12.

While out-of-domain images can be used as the origi-
nal image (i.e., style), injecting content-less out-of-domain
images leads to meaningless results. We provide them in
Figure S9. We suggest that ht is not the universal represen-
tation for arbitrary content.

In addition, we provide pilot results of InjectFusion on
Stable diffusion in Figure 13. It works somewhat similarly
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(c) Content injection into artistic references
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Figure 11. Qualitative results of InjectFusion. (a), (b) InjectFusion allows image mixing by content injection within the trained domain,
and (c) out-of-domain artistic references to be original images. All results are produced by frozen pretrained DMs.
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Figure 12. Local style mixing with various feature map mask
sizes. Adjusting the size and position of the feature map mask
enables to handle the area of content injection, facilitating control
of local style mixing.
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Figure 13. InjectFusion on Stable diffusion Although we ob-
serve similar phenomenons, the content elements of latent-level
DMs is different from pixel-level DMs; More semantic elements
is injected to the original image.

but the phenomenon is not as clear as in non-latent diffu-
sion models. The bottleneck of Stable diffusion appears
to be more semantically rich, possibly due to its diffusion
in VAE’s latent space. Unveiling the mechanisms in latent
diffusion models remains our future work. Please refer to
Appendix I for the details.

Lastly, we briefly discuss the effect of the scheduling
strategy of the injecting ratio γ in Appendix G. Further in-
vestigation would be an interesting research direction.
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Training-free Content Injection using h-space in Diffusion models

Supplementary Material

Algorithm 2: InjectFusion
Input: xT (inverted latent variable from original

image Ioriginal),{hcontent
t }Tt=tedit

(obtained
from content image Icontent), ϵθ (pretrained
model), m (feature map mask), f (Slerp), ω
(calibration parameter)

Output: x̃0 (transferred image)

1 x̃t ←− xT for t = T, ..., 1 do
2 if t ≥ tedit then

// step1: Content injection
3 Extract feature map ht from ϵθ(x̃t);

h̃t ←− f((m⊗ ht), (m⊗ hcontent
t ), γ), ω

4 ⊕(1−m)⊗ ht

// step2: Latent calibration

5 ϵ̃←− ϵθ(x̃t|h̃t), ϵ←− ϵθ(x̃t)
6 µPt(ϵ̃), σPt(ϵ̃) ←− Pt(ϵ̃)
7 µPt(ϵ), σPt(ϵ) ←− Pt(ϵ)
8 P′

t = µPt(ϵ̃) + (Pt(ϵ̃)− µPt(ϵ̃)) ∗ σPt(ϵ)

9 dPt = P′
t −Pt(ϵ)

10 dϵ = ϵ̃− ϵ

11 dx =
√
αt ∗ dPt + ω ∗

√
(1− αt) ∗ dϵ

12 x̃t
′ = x̃t + dx

13 ϵ̃ = ϵ←− ϵθ(x̃t
′)

14 else
15 ϵ̃ = ϵ←− ϵθ(x̃t),

16 x̃t−1 ←− √αt−1(
x̃t−

√
1−αt ϵ̃√
αt

) +
√
1− αt−1ϵ

A. Implementation details

To perform the reverse process for figures, we use 1000
steps, while for tables and plots, we use 50 steps. During in-
ference, we injecte ht sparsely only at the timesteps where
the content injection applied within the 50 inference steps.
For the remaining timesteps, we use the original DDIM
sampling. This approach enables us to achieve the same
amount of content injection across different inference steps.

For local mixing, we spatially apply Slerp on ht, which
has a dimension of 8 × 8 × 256, as demonstrated in Fig-
ure S1. In face swapping, we use a portion of ht that corre-
sponds to the face area for Slerp. In § 3, we use the editing
interval [T=1000, tedit=400], and do not use quality boost-
ing to eliminate stochasticity for comparison purposes, i.e.,
tboost = 0.

⊕Slerp

xt−1
8 × 8 × 256

Figure S1. Illustration of local mixing Mask m determines the
area of feature map. Slerp of masked ht enables content injection
into designated space.

B. Varying the strength of content injection

Figure S2 illustrates the results of content injection with
different values of Slerp ratio γ. As observed in Figure 7b,
there is a positive correlation between γ and the amount of
content change. However, increasing γ > 0.6 barely leads
to any content change but degrades the quality of images
with distortions and artifacts. As the recursive injection of
content by γ exponentially decreases the original ht com-
ponent along the reverse process, according to Eq. (13), we
expect linear change of content in the image by linearly con-
trolling α that specifies γ = α1/T .

C. Effect of latent calibration

In this section, we present an analysis of the parameter
ω which specifies the strength of the original element. Fig-
ure S3 displays the resulting images with sweeping ω. As ω
increases, the style elements become more prominent. We
note that latent calibration with ω = 0 is not rigorously
defined and we report the results without latent calibration
when ω = 0. In Figure S4, we observe a trade-off between
Gram loss and ID similarity, as well as FID, depending on
the value of ω. However, despite this trade-off, increasing ω
results in more effective conservation of the original image.

Because latent calibration also can control the strength of
feature-injected results, we can utilize latent calibration for
other feature-injecting methods, e.g., Plug-and-Play [71]
and MasaCtrl [6]. Figure S5 shows that increasing ω in-
creases the strength of editing.

D. More results and comparison

D.1. More qualitative results

We provide more qualitative results of CelebA-HQ,
AFHQ, METFACES, LSUN-church, and LSUN-bedroom in
Figure S18-S24 (located at the end for compact arrange-
ment). We also provide a result of ImageNet in Figure S12a.
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Figure S2. γ controls how much content will be injected. We do not use other techniques such as quality boosting for comparison.
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Figure S3. Effect of increasing ω. Increasing ω reflects style
elements stronger and ω = 0 shows the result without latent cali-
bration.

ω ω ω

ID ↑Gram loss ↓ FID ↓

Figure S4. Quantitative results of latent calibration with vary-
ing ω. Latent calibration ensures that the resulting image remains
close to the original image, minimizing content injection loss and
preserving image quality.

Method Preference (%)

Content injection Swapping Autoencoder [56] 40.11
Ours 59.89

Local content injection StyleMapGAN [40] 33.56
Ours 66.44

Artistic style transfer
StyTr2 [17] 20.89
CCPL [75] 21.44
Ours 57.67

Table S1. User study with 90 participants.
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Figure S5. Utilizing latent calibration to other methods.. In-
creasing ω reflects injected results stronger when using other
methods. For Stable Diffusion, we only use ω > 0.6.

D.2. Comparison with the other methods.

Table S1 presents the results of a user study conducted
with 90 participants to compare our method with existing
methods. The participants were asked a question: “Which
image is more natural while faithfully reflecting the orig-
inal image and the content image?”. We randomly se-
lected ten images for content injections and thirty images
for style transfer without any curation. The example images
are shown in Figure S14-S16 (located at the end for clear
spacing). Even though InjectFusion works on pretrained
diffusion models without further training for the task, our
method outperforms the others. We selects the recent meth-
ods from the respective tasks for comparison.

Although content injection does not define domains of
images, it resembles image-to-image translation in that both
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Figure S6. Comparison between Slerp and Lerp. Slerp reduces artifacts and distortions in Lerp. Note that We do not use other techniques
such as quality boosting to evaluate the effect of Slerp only.

of their results preserve content of input images while
adding different elements. Therefore, we show the differ-
ences between InjectFusion and those works in Figure S11.
The resulting image of InjectFusion well reflects overall
color distribution, color-related attributes (e.g. makeup),
and non-facial elements (e.g. long hair, bang hair, deco-
rations on a head) of the original images. Ours also reflect
facial expression, jawline, and overall pose of the content
image. On the other hand, the other works do not accu-
rately reflect color-related attributes from the original im-
ages and also ignore fine-grained detail or spatial structure
of the original image. They focus on preserving the struc-
ture of the content image.

D.3. Comparison with DiffuseIT

We provide more qualitative comparison with DiffuseIT
[42] which uses DINO ViT [7]. As shown in Figure S17,
InjectFusion shows comparable results without extra super-
vision. InjectFusion is highly proficient at accurately and
authentically reflecting the color of the original image while
avoiding artificial contrast, especially when there is a signif-
icant difference in color between the content and the orig-
inal image (e.g., black and white). In contrast, DiffuseIT
may not be able to fully capture the color of the original
image in these scenarios. This discrepancy is due to the
starting point of the reverse process. DiffuseIT utilizes the
inverted xT of the content image to sample and manipu-

Timesteps

‖h
‖ 2

Figure S7. We choose ht from the top 20 and bottom 20 samples
in their norms among 500 samples. Each line represents a trajec-
tory of ∥h∥2 during the reconstruction of a sample.

late noise to match the target original image. The large gap
in color distribution between the content and original im-
ages makes it challenging for DiffuseIT to overcome this
difference entirely. Conversely, InjectFusion initially sam-
ples from the inverted xT of the original image, making it
easier to maintain the color of the original image. The orig-
inal image is preserved through the skip connection.

E. More analyses of Slerp
E.1. Comparison with Lerp

The intuition behind using Slerp is that we should pre-
serve the correlation between ht and its matching skip con-
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Figure S8. Visual comparison of Slerp and Lerp. The larger dif-
ference in norms of ht and hcontent

t leads to a larger gap between
the results. Lerp followed by normalization is closer to Slerp than
Lerp.

nection (§ 3.2). Here, we explore an alternative: Lerp.
When ht and hcontent

t have different norms, using Lerp
results in more artifacts in the final image as shown in
Figure S6. This difference in norms of ht is reported in
Figure S7. Figure S8 illustrates the difference between
Slerp, Lerp, and Lerp followed by normalization. Lerp may
change the norm of f(ht,h

content
t , γ) when the norm of ht

and hcontent
t are different, leading to a decrease in image

quality. However, Lerp followed by normalization produces
results similar to Slerp. Still, we choose Slerp because it is
easier to implement and less prone to errors.

E.2. Cumulative content injection

In addition to improving the quality of images, our ap-
proach allows us to control the amount of content injection
by adjusting the ht-to-hcontent

t ratio through Slerp param-
eter γt. A small γt results in a smaller amount of content
injection. As mentioned in § 3.1, preserving the ht com-
ponent improves quality. However, there is a trade-off be-
tween the content injection rate and quality, and therefore,
the value of ht needs to be constrained. Further experiments
to determine the proper range of γ are discussed in § 4.1.

Note that the effects of Slerp are cumulative along the
reverse process as the content injection at t affects the fol-
lowing reverse process in [t − 1, tedit]. We provide an ap-
proximation of the total amount of injected content as fol-
lows. Assuming that the angle between ht and hcontent

t is
close to 0 and the results of content injection at t are directly
passed to the next h-space at t− 1 without any loss, then

h̃t = (1− γ)ht + γhcontent
t ≈ f(ht,h

content
t , γ)

and
ht−1 ≈ h̃t.

Along the reverse process, h̃t is recursively fed into the next
stage. After n content injections, we get

h̃t−n ≈ (1− γ)nht + γ

n∑
i=1

(1− γ)i−1hcontent
t−i . (13)
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Figure S9. Content image from unseen domain Other than origi-
nal images, hcontent

t obtained from unseen domain results in poor
images.
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Figure S10. Various interpolation ratio schedule. γ is content
injection rate.

As 0 ≤ γ ≤ 1, the proportion of ht decreases exponentially
and the proportion of hcontent

t accumulates during the con-
tent injection stage. It indicates that a large proportion of
content is injected compared to γ of Slerp. For further de-
tails regarding the ablation study on γ, please refer to § 4.1.

F. Discussion details
As mentioned in § 5, Figure S9 shows that using out-

of-domain images as content leads to completely distorted
results. It implies that ht cannot be considered a universal
representation for all types of content.

Figure 12 shows the local mixing with various feature
map mask sizes. Using the feature map mask, we can des-
ignate the specific area where the content injection is ap-
plied. Unfortunately, the h-space has small spatial dimen-
sions, limiting the resolution of the mask for local mixing.

G. γ scheduling
Figure S10 provides the results from alternative sched-

ules. Gradually decreasing the injection along the gener-
ative process enhances realism, however, it may not accu-
rately represent the content. Conversely, gradually increas-
ing the injection better preserves the content but results in
more artifacts. We keep the total amount of injection fixed
in this experiment.

H. More related work
After [29,69] proposed a universal approach for Diffuson

models (DMs), subsequent works have focused on control-
ling the generative process of DMs [1, 8, 14, 21, 39, 41, 44,
49, 50, 58, 72, 76, 77, 80]. Especially, [4, 43, 57, 71, 81] have
uncovered the role of intermediate feature maps of diffusion
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Figure S11. More comparisons InjectFusion shows different mix-
ing strategy compared to the other methods.
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Figure S12. (a) InjectFusion works on ImageNet. (b) Skip con-
nection injection does not provide meaningful results.

models and utilized it for image editing, segmentation, and
translation. However, we are the first to analyze the role of
the latent variables xt in DMs and apply it to content injec-
tion.

The research on controlling the generative process has
been done in other generative models such as GANs [25].
[22, 31] introduce style transfer and image-to-image trans-
lation with GANs and there have been a number of works
that focused on the style of images [2,10,11,30,55,73,78].
After StyleGAN [33, 36, 37], more diverse methodologies
have been proposed [10, 12, 37, 40, 40]. However, most of
them require training.

I. Stable diffusion experiment details
We provide more details of experiments with Stable dif-

fusion. In Figure 13, we use conditional random sampling
with Stable diffusion v2. In order to apply InjectFusion on
Stable diffusion, there are 3 options with conditional guid-
ance. 1) content injection only with unconditional output,
2) content injection only with conditional output, 3) con-
tent injection with both conditional/unconditional outputs.
We find that using only the unconditional output for content
injection resulted in poor outcomes, while the other two op-
tions produced similar results. Thus, we use only the con-
ditional output for content injection in Figure 13.

Moving on to the implementation details for Stable dif-
fusion, we set the scale to 9.0, use 50 steps for DDIM sam-
pling, and employ the following prompts: for an original
image, “a highly detailed epic cinematic concept art CG
render digital painting artwork: dieselpunk steaming robot”

and for a content image: “digital painting artwork: a cube-
shaped robot with big wheels”, for an original image: “8k,
wallpaper car” and for a content image: “concept, 8k, wall-
paper sports car, ferrari bg”, for an original image: “a realis-
tic photo of a woman.” and for a content image, “a realistic
photo of a muscle man.”, original image: “A digital illus-
tration of a small town, 4k, detailed, animation, fantasy”
and for an original image: “A digital illustration of a dense
forest, trending in artstation, 4k, fantasy.”

J. Definition of content
We provide more details of content definition used in

§ 4.1. We classify each of the attributes to determine
whether they are from the content image or the original im-
age by CLIP score (CS);

CLIPScore(x, a) = 100 ∗ sim(EI(x),ET(a)), (14)

where x is a single image, a is a given text of attribute,
sim(∗, ∗) is cosine similarity, and EI and ET are CLIP im-
age encoder and text encoder respectively.

First, we calculate the CS between the desired texts
and images, original image xo, content image xc, and re-
sult image xr. Then, if the |CS(xo, a) − CS(xr, a)| >
|CS(xc, a)−CS(xr, a)| then we regard the attribute is from
the content image and vice versa.

In order to ignore the case that xo and xc have similar
attributes, the classified result was ignored when the differ-
ence between the two values was very small. Formally, if
∥|CS(xo, a)−CS(xr, a)|−|CS(xc, a)−CS(xr, a)|∥ < λth,
we pass that sample for that attribute. We use 5k images and
set λth = 0.2.

The result shows that content includes glasses, square
jaw, young, bald, big nose, and facial expressions and the
remaining elements include hairstyle, hair color, bang hair,
accessories, beard, and makeup.

For the user study, we show the resulting image and ask
people to choose the content or original image for each at-
tribute. We use randomly chosen 100 images and aggregate
the responses from 50 participants.
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(a) Content injection on the other intermediate features
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(b) Content injection on the other intermediate features
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Figure S13. The importance of h-space. When we inject features into additional layers, the results are disrupted. It supports h-space has
semantic information and is the reason why we inject features into only h-space.
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Figure S14. Qualitative comparison of content injection on FFHQ. InjectFusion is shown to be effective in reflecting content elements
while preserving the overall color distribution of the original image.
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Figure S15. Qualitative comparison of local mixing on CelebA-HQ. Despite providing StyleMapGan with detailed segmentation guid-
ance, there are noticeable artifacts in the resulting images, especially at the border lines of the mask. Furthermore, due to the differences
in pose between the content and the original images, StyleMapGan struggles to seamlessly integrate the two images, resulting in less-than-
optimal outcomes.
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Figure S16. Qualitative comparison between InjectFusionand style transfer methods with artistic references on CelebA-HQ. In-
jectFusion allows using images from unseen domains as the original images, enabling the target content can be reflected on the artistic
references. InjectFusion produces a harmonization-like effect without severe content distortion. Some high-level semantic color patterns
of the original images are better reflected by InjectFusion than the others.
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(a) Comparison with DiffuseIT on AFHQ dataset

(b) Comparison with DiffuseIT on CelebA-HQ dataset
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Figure S17. More qualitative comparison with DiffuseIT. InjectFusion excels in fully and naturally reflecting the original color without
creating artificial contrast, particularly when there is a significant gap between the content color and the style color (e.g., black and white).
In contrast, DiffuseIT may not fully capture the original color in such cases.
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Figure S18. Qualitative results of content injection on CelebA-HQ.
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Figure S19. Qualitative results of local editing on CelebA-HQ.
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Figure S20. Qualitative results of content injection on AFHQ.
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Figure S21. Qualitative results of content injection on METFACES.
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Figure S22. Qualitative results of content injection on LSUN-church.
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Figure S23. Qualitative results of content injection on LSUN-bedroom.
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Figure S24. Qualitative results of content injection into artistic references with CelebA-HQ .
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