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Abstract

Using diffusion models to solve inverse problems is a
growing field of research. Current methods assume the
degradation to be known and provide impressive results in
terms of restoration quality and diversity. In this work, we
leverage the efficiency of those models to jointly estimate
the restored image and unknown parameters of the degra-
dation model such as blur kernel. In particular, we de-
signed an algorithm based on the well-known Expectation-
Minimization (EM) estimation method and diffusion mod-
els. Our method alternates between approximating the ex-
pected log-likelihood of the inverse problem using samples
drawn from a diffusion model and a maximization step to
estimate unknown model parameters. For the maximiza-
tion step, we also introduce a novel blur kernel regulariza-
tion based on a Plug & Play denoiser. Diffusion models
are long to run, thus we provide a fast version of our al-
gorithm. Extensive experiments on blind image deblurring
demonstrate the effectiveness of our method when compared
to other state-of-the-art approaches. Our code is available
at https://github.com/claroche-r/FastDiffusionEM.

1. Introduction
Image restoration aims to recover information that

has been obscured by various degradations such as blur,
noise, or compression artifacts. Deep-learning-based
methods have revolutionized the field of image restoration
by achieving impressive results in various tasks. They
leverage the power of deep neural network architectures
to learn a mapping between training data [11, 55, 57].
This data-driven approach allows deep-learning models
to capture intricate patterns and relationships within the
image data, enabling them to restore images with superior
quality and perceptual fidelity [28, 51]. On the other hand,
model-based approaches express the image restoration
problem as an inverse problem and exploit the degradation
process structure to design regularizations and optimization
algorithms to find the optimal reconstruction [37]. They
usually offer more control, flexibility, and interpretability.

However, model-based approaches highly rely on the
knowledge of the degradation forward process limiting
their usefulness in practical applications. Some strategies
try to bring the best of both worlds such as Plug-and-Play
methods or deep unfolding networks [22, 23, 26, 41, 53].
One of the challenges behind inverse problems comes
from their ill-posedness. In fact, for a single degraded
image, there generally exist multiple plausible solutions. A
common approach is to generate a single restored image
that minimizes the mean squared error, but it does not
allow the models to generate or hallucinate high-quality
details [42, 50]. There is a growing interest in the field of
image restoration to design models that can generate all
the space of plausible solutions. Those models include
Generative Adversarial Networks [16, 33] , conditional or
PnP Diffusion Models [25, 42, 43] or Langevin dynam-
ics [27]. This growing interest in diverse restoration is
motivated by the impressive perceptual quality obtained by
such methods. In particular, diffusion models that were first
introduced for image synthesis tasks [20, 21, 44] are now
used for a large diversity of tasks such as inverse problem
solving [7, 25, 45]. In the field of blind deconvolution, it

Figure 1. Performance comparison of the different models using
the PSNR metric depending on the runtime, “Ours” corresponds
to Fast EM ΠGDM method.
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Figure 2. Overview of the method and evolution of the current estimates. We start with random noise and apply the diffusion process. The
blurry image intervenes both for the guidance and for the M-step which estimates the blur kernel.

is common to use Bayesian methods to jointly estimate
the blur kernel and the restored image [3, 31, 37, 38]. The
kernel estimation highly relies on the restoration method
that is used and it generally requires the restoration method
to produce a sharp image. To do so, image regularizations
such as TV, ℓ0 on the gradient can be used but they tend
to over-sharpen the restored image leading to unpleasant
results. Even with the sharp and blurry pairs, it is not
easy to estimate any type of blur kernels without efficient
regularization. Common regularization on the kernels are
the ℓ1 norm [6], positivity, the sum to one constraint, and
in some cases Gaussian constraints [4]. Some recent works
also use deep neural networks such as normalizing flows to
parameterize the kernels [29]. Motivated by the impressive
quality of diffusion models for both estimated conditional
distribution and returning high-quality images, it is natural
to believe that they could be used in the context of kernel
estimation. Also, a pioneer work [6] that combines parallel
diffusion models for the kernel and image exhibits impres-
sive results. Estimating the kernel and image is jointly
done in the diffusion process using gradient descent on the
forward model. Similarly, methods based on Monte Carlo
sampling proposed parameters estimation derived from the
Expectation-Maximization (EM) algorithm [14, 18], or the
SAPG algorithm [13, 47]. Those methods are very efficient
but Monte Carlo sampling is time-consuming. Also, the
problem of kernel estimation is a complex problem so those
methods highly depend on the regularization imposed in
the M-step of the EM algorithm.

Motivated by the efficiency of diffusion models, we
propose a diffusion model that solves the maximum
a-posteriori estimator for blind deconvolution. Derived
from the classical Expectation-Maximization algorithm,
our model alternately estimates the expected value of the
log-likelihood using samples drawn from a diffusion model
and maximizes this quantity using half-quadratic splitting.
In addition, we also propose a novel kernel regularization
in a Plug & Play fashion. Finally, we proposed a fast
version of our algorithm to facilitate the use of our method
in real-world scenarios. Our experiments show that our

proposed solution improves both in terms of fidelity and
computational efficiency pushing the Pareto optimal curve
further to the origin (Figure 1).

2. Background
Let us suppose that our deblurring problem fits the clas-

sical inverse problem formulation:

y = Hx+ n with n ∼ N (0, σ2) (1)

where x is the clean image we want to estimate, y is the
blurry and noisy image and H is the degradation operator, a
convolution operator in the case of deconvolution. We sup-
pose that we are in the real-world case where we only have
access to the blurry image y and the noise level σ to recon-
struct both the clean image and the blur kernel H . In such
a setting, a common approach to estimate the blur kernel is
to compute the marginalized maximum a-posteriori (MAP)
estimator of the inverse problem described in Equation (1):

HMAP = argmax
H

p(H|y) = argmax
H

p(y|H)p(H) (2)

= argmax
H

[
log

(∫
p(y|H,x)p(x)dx

)
+ log(p(H))

]
,

with p(x) a natural image prior, p(y|H,x) the likelihood
of the blurry image and p(H) the kernel’s prior distribu-
tion. This MAP estimator cannot be solved easily since
the marginalization in the clean image x is not tractable.
Expectation-Maximization (EM) [10, 32] is an iterative al-
gorithm that computes the MAP estimator for the parame-
ters of a statistical model (H in our case). It is very conve-
nient when the model contains unobserved or missing data.
The EM algorithm consists of two main steps. An E-step
that computes the expected log-likelihood given the current
model parameter estimates and an M-step, that maximizes
this expected log-likelihood to update the estimated param-
eters. The whole algorithm alternates between the E-step
and M-step until convergence. In the case of deblurring, the
parameter we want to estimate is the blur kernel H and our
unobserved data are the clean images associated with the
blurry image y and the estimated blur kernel H . The EM



algorithm can be summarized as follows in such setting:
E-Step:

Q(H,Hl) = Ex∼p(x|y,Hl)[log(p(y|x,H)) + log(p(x))]
(3)

M-Step:

Hl+1 = argmax
H

[Q(H,Hl) + log(p(H))] (4)

This formulation is very convenient but in many ap-
plications (including blind deblurring), the expected
log-likelihood in Equation (3) cannot be computed explic-
itly, and even taking posterior samples x ∼ p(x|y,Hl)
is challenging. Our method proposes to approximate
the expectation in the E-step by an empirical mean in
Monte-Carlo EM fashion [49] and to use a diffusion model
to obtain posterior samples.

Diffusion models for posterior sampling: To learn p(x0)
the distribution of the data, diffusion models define a family
of distributions p(xt) by gradually adding Gaussian noise
of variance β(t) to samples of p(x0) until the distribution
p(xT ) reduces to a standard Gaussian with zero mean. For
discrete timesteps t ∈ J0, T K, we can define a Markov tran-
sition kernel p(xt|xt−1) = N (xt;

√
1− β(t)xt−1, β(t)I)

between two consecutive discrete timestamps. In the
general continuous case, [46] described the forward nois-
ing process with the following stochastic differentiable
equation (SDE) :

dxt = −β(t)

2
xtdt+

√
β(t)dw (5)

where w(t) is the d-dimensional Wiener process. The re-
verse SDE of this process [2] can be written as:

dxt = [−β(t)

2
xt − β(t)∇xt log π(xt)]dt+

√
β(t)dw̄ (6)

with dt corresponding to time running backwards and dw̄
to the standard Wiener process running backwards. In the
case of inverse problems, we want to use diffusion models
to generate the posterior distribution π(xt) = p(xt|y,H).
Using Bayes’ rule Equation (6) becomes:

(7)
dxt =

[
−β(t)

2
xt − β(t) (∇xt

log p(xt)

+∇xt
log p(y|xt, H))

]
dt+

√
β(t)dw̄

The main problem behind this equation is that in inverse
problems, we have a relation between y and x0 but not be-
tween xt and y. Marginalizing in x0, we obtain:

p(y|xt) =

∫
p(y|x0)p(x0|xt)dx0 (8)

that is intractable. The main challenge of non-blind diffu-
sion for posterior sampling is to compute or approximate
this integral. In our work, we conduct experiments with
DPS [7] and ΠGDM [45] that use different approximations
for this integral. Both approximations are based on the
mean of p(x0|xt), namely:

x̂0(t) := E[x0|xt].

DPS approximates p(x0|xt) by a delta function

p(x0|xt) ≈ δx̂0(t)(x0) (9)

whereas ΠGDM approximates p(x0|xt) by a Gaussian dis-
tribution

p(x0|xt) ≈ N (x0|x̂0(t), r
2
t ) (10)

with rt a hyper-parameter. Both approximations allow us to
solve the marginal in Equation (8) analytically and obtain
explicit expressions for ∇xt log p(y|xt) as detailed below.

As a recall, one property of diffusion models is that
we can express the noisy measurement xt in the forward
model using the original sample x0:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (11)

with αt = 1− βt and ᾱt =
t∏

i=1

αi.

Using a noise predictor ϵ(xt, t), we can thus estimate
x̂0(t) = E[x0|xt] at each step t using:

x̂0(t) =
1√
ᾱt

(xt −
√
1− ᾱtϵ(xt, t)). (12)

Equivalently, we can use a score network s(xt, t) using
Tweedie’s identity:

s(xt, t) = ∇xt log p(xt) = − 1√
1− ᾱt

ϵ(xt, t). (13)

Using DDPM [20] to discretize the unconditional reverse
diffusion process (6) we obtain the update rule

xt−1 =
1

√
αt

(xt + βts(xt, t)) + σ̃tN (0, I) (14)

where σ̃t =
√
βt or

√
(1−ᾱt−1)

1−ᾱt
βt. To simulate the condi-

tional reverse diffusion process (7), we just have to add the
likelihood term to the score

(15)xt−1 =
1

√
αt

(xt + βt [s(xt, t) +∇xt log p(y|xt)])

+ σ̃tN (0, I)



Using Equation (12), the DPS [7] approximation for
p(x0|xt) leads to the following formula for the gradient of
the log-likelihood:

∇xt
log p(y|xt) = − 1

σ2
∇xt

∥y −Hx̂0(t)∥22 (16)

Similarly, the ΠGDM [45] approximation leads to the fol-
lowing gradient for the log-likelihood:

∇xt log p(y|xt) = (17)(
(y −Hx̂0(t))

T (r2tHHT + σ2I)−1H

(
∂x̂0(t)

∂xt

))T

DPS and ΠGDM derive different guidance terms for the in-
verse problem. While the DPS approximation leads to a
gradient that is easily implemented for any degradation op-
erator H using automatic differentiation, the ΠGDM ap-
proximated gradient of Equation (17) is much more com-
plex to estimate for a general operator H because it re-
quires the computation of its pseudo-inverse. On the other
hand, the ΠGDM approximation is more precise and thus
leads to stronger guidance which is very important for ker-
nel estimation. We summarize in Algorithm 1 the diffusion
process for inverse problems when the degradation operator
H is known. This case covers both DPS and ΠGDM. The
pseudo-code is written using DDPM but is not limited to
this particular diffusion scheme. To compensate for the fact
that the first estimations of xt are uncertain, it is common
to set ζt =

√
ᾱt, instead of the theoretical ζt = 1.

3. Method
Our method proposes to solve the MAP of the blur kernel

from a blurry and potentially noisy image. We estimate the
MAP estimator in an EM fashion. Iteratively, we first draw
samples from the posterior distribution knowing the current
kernel estimate using a diffusion model. It corresponds to
the E-step of the EM algorithm. Then, we update our esti-
mated kernel with the M-step by maximizing the expected
log-likelihood on the previously computed samples. To ef-
ficiently model the kernels’ distribution, we use a Plug &
Play kernel denoiser to regularize our MAP estimator.

3.1. E-step: Non-blind diffusion

The E-step of the EM algorithm consists in evaluating
the expectation from Equation (3). Instead of computing
its exact value, we propose to approximate it using random
samples in a Monte-Carlo EM fashion. To draw the random
samples, we use a non-blind diffusion model. Since the dif-
fusion model targets p(x|y,Hl), sampling several images
leads to a good approximation of the expectation. The num-
ber n of samples used to approximate the expectation is a
hyperparameter of the method. Having many samples leads
to a slow but accurate estimation while having only one

sample is equivalent to the Stochastic EM algorithm [36].
In practice, the E-step reduces to:
Drawing samples

x = (x1, ..., xn) ∼ p(x0|y,Hl) (18)

and updating

Q̂(H,Hl) =
1

n

n∑
i=1

log(p(y|xi, H)). (19)

The samples can be drawn by n parallel runs of Algo-
rithm 1, and the empirical mean Q̂(H,Hl) ≈ Q(H,Hl)
approaches the expected value in Equation (3) as n → ∞.
Unlike in Equation (3), we remove the term in p(x) from
Q̂(H,Hl) here since it does not affect the maximization in
the blur kernel H .

3.2. M-step: Kernel estimation

The M-step computes the MAP estimator of the blur ker-
nel using the estimated samples from the E-step as mea-
surements. From equations (1), (4) and (19) this step can be
summarized as:

Hl+1 = argmax
H

Q̂(H,Hl) + log(p(H)) (20)

Hl+1 = argmin
H

1

2nσ2

n∑
i=1

∥y −Hxi∥22 + λΦ(H) (21)

where (21) is obtained using Equation (1) and (19). Com-
mon choices for Φ(.) are ℓ2 or ℓ1 regularizations on top of
the simplex constraints on the blur kernel (non-negative val-
ues that add up to one). Despite being quite efficient when
the blurry image does not have noise, they generally fail
to provide good quality results when the noise increases.
On the other side, Plug & Play regularizations have become
more and more popular for many image restoration tasks.
By training a deep denoiser on Gaussian denoising, one can
obtain a powerful regularization in the domain on which the
denoiser was trained. Generally, we train the denoiser on
a dataset of natural images leading to a regularization on
natural images. Here, we propose to train a denoiser on a
dataset of blur kernels to build a Plug & Play regularization
for the blur kernels. We observed that this approach leads to
a kernel estimation algorithm that is more efficient and ro-
bust to noise, see Figure 4. To solve Equation (21), we use
the Half-Quadratic Splitting (HQS) optimization scheme:

Zj+1 = argmin
Z

1

2σ2n

n∑
i=1

∥Zxi − y∥22

+
β

2
∥Z −Kj∥22 (22)

Kj+1 = argmin
K

λΦ(K) +
β

2
∥K − Zj+1∥22 (23)



Algorithm 1 Diffusion model for deblurring

Require: y, σ,H, T, (ζt)t
Ensure: A posterior sample x0 ∼ p(x0|y,H)

xT ← N (0, I)
for t = T to 1 do

ϵ̂← ϵ(xt, t)
x̂0 = 1√

ᾱt
(xt −

√
1− ᾱtϵ̂)

// DPS or ΠGDM approx. using x̂0

g ← ∇xt log p(y|xt, H) ▷ Equation (16) or (17)
// Compute conditional score s = ∇xt log p(xt|y,H)
s← ζtg − 1√

1−ᾱt
ϵ̂ ▷ Bayes rule and Tweedie

// DDPM update rule
z ← N (0, I)
xt−1 ← 1√

αt
(xt + βts) + σ̃tz

end for
return x0

For the deconvolution problem, Equation (22) can easily be
solved in the Fourier domain (more details on the compu-
tations can be found in Appendix B). Equation (23) corre-
sponds to the regularization step. It corresponds to the MAP
estimator of a Gaussian denoising problem on the variable
Zj+1. The main idea behind Plug & Play regularization is to
replace this regularization step with a pre-trained denoiser
D Mean Squared Error (MSE) loss. This substitution can
be done thanks to the close relationship that exists between
the MAP and the MMSE estimator of a Gaussian denoising
problem [17]. Eventually, the M-step consists of the follow-
ing iterations:

Zj+1 = F−1

(
F(y)

∑n
i=1 F(xi) + nβσ2F(Kj)∑n

i=1 F(xi)F(xi) + nβσ2

)
(24)

Kj+1 = D√
λ/β

(Zj+1). (25)

While complex decreasing schemes for β are often used to
help HQS converge [54], we observed that using a constant
β was sufficient in our case. For the denoiser architecture,
we use a simple DnCNN [55] with 5 blocks and 32 chan-
nels. In addition to the noisy kernel, we also give the noise
level as an extra channel to the network to control the de-
noising intensity. Eventually, the complete Diffusion EM
algorithm alternates between sampling from the non-blind
diffusion model and the HQS algorithm for the kernel esti-
mation. In all our experiments, we use L = 10 EM itera-
tions. See Algorithm A.1 in the supplementary.

3.3. Fast EM diffusion

The diffusion EM algorithm requires running a diffusion
model at each step of the EM algorithm to produce a set of
n particles. Executing diffusion models is time-consuming,
particularly in cases where inverse problems are addressed
using score guidance, as the guidance must be applied to the
full-size image, precluding the utilization of acceleration

Algorithm 2 Fast EM DPS / ΠGDM
Require: y, σ,HT , T
Ensure: H ≈ argminH p(y|H) and xi

0 ∼ p(x0|y,H)
xT ← (N (0, I), ...,N (0, I)) ∈ (Rh∗w∗3)n

for t = T to 1 do
ϵ̂← ϵ(xt, t)
x̂0 = 1√

ᾱt
(xt −

√
1− ᾱtϵ̂)

Ht−1 = M-step(y, x̂0, σ) ▷ Iterate (24) and (25)
// DPS or ΠGDM approx. using x̂0

g ← ∇xt log p(y|xt, Ht−1) ▷ Equation (16) or (17)
// Compute conditional score s = ∇xt log p(xt|y,H)
s← ζtg − 1√

1−ᾱt
ϵ̂ ▷ Bayes rule and Tweedie

// DDPM update rule
z ← (N (0, I), ...,N (0, I)) ∈ (Rh∗w∗3)n

xt−1 ← 1√
αt

(xt + βts) + σ̃tz

end for
return x0, H0

techniques like latent diffusion [39]. Consequently, the dif-
fusion EM algorithm’s execution time becomes excessively
long, significantly restricting its practical applicability.

To bypass this problem, we propose a fast version of
diffusion EM that incorporates the M-step directly into the
diffusion process, thereby reducing the number of required
diffusion model runs to just one. To do so, we use the n
current samples xi

t ∼ p(xt|y,H) to build an approximation
of Q(H,Ht) at each timestep t, as follows. First, we
use the current distribution estimates p(x0|xt) (Equa-
tions (9) and (10) for DPS, resp. ΠGDM approximations)
for each timestep t to approximate the posterior p(x0|y,H)
by (discretized) marginalization on xt:

p(x0|H, y) =

∫
p(x0|xt)p(xt|y,H)dxt (26)

≈
n∑

i=1

p(x0|xi
t)p(x

i
t|y,H) (27)

=
1

n

n∑
i=1

p(x0|xi
t) =: qt(x0|y,H). (28)

Then, using this approximation, the E-step at timestep t of
the diffusion process is reformulated as follows:

Q(H,Ht) = Ex∼p(x|y,Ht)[log(p(y|x,H)] (29)
≈ Ex∼qt(x0|y,Ht)[log(p(y|x,H)] (30)

Since the distribution qt(x0|y,H) progressively converges
to the distribution p(x0|y,H) as t → 0, we have a finer and
finer estimation of the expected log-likelihood and thus, the
blur kernel, through the iterations.
Finally, the E-step reduces in the case of the DPS approxi-



Metric type Reference metrics No-reference metrics Kernel error
↓ Method \ Metric → Time (sec/img) PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ NIQE ↓ BRISQUE ↓ MSE kernel ↓ Lreblur ↓

DPS* 58sec 25.81 0.76 0.34 3.46 6.28 23.52 ✗ ✗
ΠGDM* 5sec 27.65 0.81 0.34 4.50 7.49 30.32 ✗ ✗

Anger ℓ0 0.73sec 12.46 0.13 0.8 233.08 12.55 50.51 5.1e-5 1.1e-2
Self-Deblur 1min53sec 14.53 0.15 0.69 44.83 14.16 49.28 3.6e-4 3.5e-2

MPRNet 3.7sec 19.52 0.42 0.54 21.26 7.9 25.44 ✗ ✗
Blind DPS 1min23 24.05 0.73 0.34 2.66 6.17 20.72 3.9e-5 5.6e-3

EM ΠGDM (n=1) 1min30sec 23.4 0.71 0.43 6.05 8.81 41.19 6.1e-5 5.3e-3
EM ΠGDM (n=4) 2min30sec 23.21 0.71 0.4 5.43 8.23 38.02 5e-5 5.3e-3
EM ΠGDM (n=16) 9min10sec 23.09 0.71 0.39 5.11 7.91 35.42 4.1e-5 5.3e-3
Fast EM DPS (n=1) 1min41 24.68 0.75 0.34 3.23 6.34 23.03 9e-6 5.1e-3

Fast EM ΠGDM (n=1) 9sec 25.66 0.79 0.34 4.26 7.48 30.33 1.1e-5 5.1e-3
Fast EM ΠGDM (n=4) 15sec 25.74 0.8 0.34 4.31 7.42 30.15 6e-6 5e-3

Fast EM ΠGDM (n=16) 55sec 25.75 0.8 0.34 4.28 7.46 29.61 1.1e-5 5e-3

Table 1. Model comparison on FFHQ synthetic dataset. Models with a “*” correspond to non-blind models used as baselines. Best blind
models are in bold while second best are underlined. Note that baselines do not count for best model rankings.

mation (9) to:

Q̂(H,Ht) = Ex∼qt(x0|y,Ht)[log(p(y|x,H)] (31)

=
−1

2σ2n

n∑
i=1

∥Hx̂i
0(t)− y∥22. (32)

In this case, the M-step is equivalent to the classical diffu-
sion EM M-step of Equation (21) but applied in the current
estimate x̂i

0(t) instead of the real sample xi. In the case of
the ΠGDM approximation (10), we have:

Q̂(H,Ht) =
−1

2σ2n

n∑
i=1

Ex∼N (x̂i
0(t),r

2
t )
[∥Hx− y∥22].

(33)

The computations for the M-step in that case are left in Ap-
pendix D. Eventually, the only difference between the fast
EM diffusion algorithm and a classical non-blind diffusion
model is that we first estimate the blur kernel before ap-
plying the guidance. Our algorithm demonstrates compa-
rable computational efficiency to non-blind diffusion algo-
rithms, as the computation of the M-step negligibly impacts
the overall diffusion process. The algorithm’s pseudo-code
can be found in Algorithm 2. Note that in the pseudo-code,
the n particles are treated as a batch directly in the xt. To
point out this difference, all the variables that are seen as a
batch are written in bold.

4. Experiments
4.1. Experimental settings

We test our algorithm on the first 1000 validation im-
ages of the widely used FFHQ [24] 256x256 dataset that
we degrade with random motion blur kernels computed us-
ing [15] and random Gaussian noise with noise level σ ∈
{5, 10, 20}. We also provide some results on DIV2K [1]
dataset. To achieve a fair comparison, we use the code and

pre-trained weights provided by the authors of Blind DPS.
For ΠGDM, there is no public code so we re-implemented
the model using the Blind DPS code backbone. In our ex-
periments, we observed that DPS needs more iterations to
properly converge in comparison to ΠGDM. Indeed, the
DPS run needs 1000 iterations while we only use 100 it-
erations for ΠGDM. For the kernel estimation, we use a
bias-free FFDNet [56] denoiser trained on a dataset of mo-
tion blur kernels for the Plug & Play regularization. At test
time, the M-step consists of 10 HQS iterations with hyper-
parameters λ = 1 and β = 1e5. We provide experiments
with different numbers of particles for both the Diffusion
EM algorithm and the Fast diffusion EM algorithm. We use
n ∈ {1, 4, 16}. All the models are evaluated on a single
A100 GPU.

4.2. Compared methods

To test the efficiency of our method, we compare it
to state-of-the-art models for deconvolution. We chose to
compare against both optimization-based methods, deep
learning approaches, and diffusion models to cover all the
existing approaches. More specifically, we compare our
method to [3] which is a MAP-based method for kernel es-
timation that uses ℓ0 norm on the gradient of the image as
an image prior and ℓ2 norm to regularize the kernel. We
also compare to self-deblur [38] which is a blind deconvo-
lution method that provides both image reconstruction and
kernel estimation based on Deep Image Prior. We provide
comparisons with MPRNet [52] which is a multi-scale deep
learning architecture design for image restoration problems
that has proven its efficiency in deblurring. Finally, we com-
pare our kernel estimation methods to Blind DPS [6] which
consists of two parallel diffusion models that jointly model
the restored image and its corresponding blur kernel. We
also computed the results of the non-blind model DPS and
ΠGDM to highlight the loss of quality between the blind
and non-blind models. For all the methods, we used the
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Figure 3. Visual comparison of the different models on a degraded version of the FFHQ 256x256 dataset. Ours correspond to Fast EM.

source code and pre-trained weights provided by the author.

4.3. Quantitative results

Table 1 shows the results of the different models on
FFHQ synthetic dataset. We compute both classical metrics
with full or reduced reference such as PSNR, SSIM [48],
LPIPS [58] and FID [19], no-reference metrics to measure
perceptual quality such as NIQE [35] and BRISQUE [34]
and kernel metrics such as the Mean-Squared Error (MSE)
on the reconstructed kernel. We also measure the consis-
tency of the estimated image x̂ and kernel Ĥ with the for-
ward model by means of:

Lreblur(y, x̂, Ĥ) = ∥Ĥx̂− y∥22−σ2M (34)

where M = 3hw is the number of elements in vector x. We
observe that classical optimization-based approaches such
as Anger ℓ0 [3] and Self-Deblur [38] fail to estimate the blur
and reconstruct the image efficiently. The main problem
with those approaches is that they fail to produce pleasant
results in the presence of noise. While Anger ℓ0 [3] pro-
duces results with over-sharpened noise, Self-Deblur [38]
completely fails to both estimate the kernel and deblur the
image. MPRNet produces better results but with artifacts
due to the noise, it also fails to recover high-frequency de-
tails which is a common problem when using deep-learning
models trained on mean-squared error. Diffusion-based
models seem to be the most efficient. Blind DPS ranks
best among the no-reference perceptual metrics and FID
while ranking below our model both for reference metrics
and kernel estimation. Figure 3, shows some example im-
ages where we can notice the sharpness and high quality of
Blind DPS results. In our experiments, we observed that
Blind DPS sometimes fails to efficiently estimate the blur
kernel, especially in the presence of noise. We also noticed

that on some images Blind DPS was producing sharper re-
sults than our model, even with a worst kernel prediction
which is surprising since we use the same diffusion model.
Yet, the fact that our model has better full-reference metrics
and better measurement consistency points out the fact that
Blind DPS hallucinates more details. We also conducted ex-
periments on deblurring images from DIV2K dataset while
keeping the same FFHQ-trained score model for testing. In
that particular case, the prior of the score model does not
match the distribution of the test images so the model won’t
be able to hallucinate accurate details. Some visual results
of those experiments can be found in Figure 5. Those exper-
iments showed that our model and especially the one based
on ΠGDM diffusion produces sharper results. It highlights
the fact that Blind DPS and DPS, in general, have weaker
guidance than ΠGDM, so it requires a more accurate score
model which can be a limitation in practice since training a
score model on the space of natural images is not an easy
task. During our experiments, we realized that Fast Diffu-
sion EM was both faster and better in terms of quality than

Figure 4. Comparison of the efficiency of the different kernel reg-
ularizations depending on the noise level σ ∈ [0, 20]. The vertical
axis shows the mean MSE over the whole FFHQ dataset for ker-
nel estimation from a noisy and blurred observation of a known
image.
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Figure 5. Visual comparison on out-of-distribution images. The
score network is trained on FFHQ dataset while we test on DIV2K.

n-samples Runtime PSNR PSNR SA

Diffusion EM
n=1 1min30sec 23.4 23.4
n=4 2min30sec 23.21 23.43
n=16 9min10sec 23.09 23.37

Fast Diffusion EM
n=1 9sec 25.66 25.66
n=4 15sec 25.74 26.14
n=16 55sec 25.75 26.16

Table 2. Influence of the number of samples used to estimate the
E-step in Fast EM ΠGDM. The image PSNR is computed on the
first image of the batch.

Diffusion EM. Indeed, Diffusion EM is sometimes stuck
in the no blur solution while we never observed this prob-
lem for Fast Diffusion EM. In terms of metrics, both Fast
EM DPS and Fast EM ΠGDM have better reference met-
rics than all the other methods, and for any number of par-
ticles. We observed better performance and faster runtime
with the ΠGDM model, probably because it has stronger
guidance, thus, it is easier for the M-step to estimate the blur
kernel. Fast EM ΠGDM performance in no-reference met-
rics NIQE and BRISQUE is worse than the other diffusion-
based methods: BlindDPS and Fast EM DPS have indeed
slightly sharper results, but they are less accurate and less
consistent (see the hallucinations of BlindDPS in the sec-
ond line in Figure 3). In terms of runtime, our ΠGDM-
based model ranks best among diffusion models but it is
significantly slower than MPRNet and Anger ℓ0.

4.4. Ablation studies

In this section, we discuss the efficiency of the different
blocks of our algorithm. We first provide some additional
results that show the efficiency of the proposed Plug & Play-
based kernel regularization. Next, we study the influence of
the number of samples used to estimate the E-step on the
quality of the final results. To compare the efficiency of our
regularization, we compared it against the ℓ1 and ℓ2 regu-
larizations. To do so, we use our FFHQ synthetic dataset
and estimate the blur kernel in the non-blind setting where
the sharp and blurry images are both known. We compute

the MSE of the reconstructed kernel for several noise levels.
For all the regularizations, we used the same optimization
scheme, HQS, and fine-tuned the hyper-parameters of the
regularizations separately. Figure 4 shows the obtained re-
sults. We observed that our regularization is significantly
better in the presence of noise and the loss of quality be-
tween σ = 5 and σ = 20 is very small. Finally, we also
investigated the influence of the number of samples in our
algorithms. We observed in Table 1 and Table 2 that in-
creasing the number of samples increases the image recon-
struction and kernel estimation accuracy. Using all the sam-
ples, we can also compute the PSNR on the average of the
samples produced by the model. We refer to this metric as
the “PSNR SA” in Table 2. Usually, the PSNR SA gives a
higher PSNR than the PSNR on a single image, even if the
average image is less sharp. We also observed that in the
case of Diffusion EM, increasing the number of samples
lowers the PSNR but improves all the other metrics. Aver-
aging several samples is also possible with methods such as
Blind-DPS, the main difference is that in our approach, all
the samples have the same guidance at each diffusion step
since we estimate a single kernel for all the samples. In
Blind-DPS, all the samples have their respective kernels.

5. Conclusion

In this article, we present a novel approach for blind
deconvolution based on diffusion models. In particular,
we designed Diffusion EM, an algorithm based on the
Expectation-Maximization algorithm. This algorithm con-
sists of an E-step, which approximates the expected value of
the log-likelihood using a diffusion model, and an M-step,
which maximizes this expected log-likelihood with respect
to the unknown parameters (the blur kernel). For the M-
step, we introduced a novel kernel regularization based on a
Plug & Play denoiser. The diffusion EM algorithm is slow
since it requires running a diffusion model several times.
We propose an acceleration of the algorithm that directly
injects the EM iterations into the diffusion process (lever-
aging the intermediate diffusion steps as approximate pos-
terior samples). We observed that this Fast EM diffusion
model reaches better performance than the original diffu-
sion EM algorithm while being significantly faster. Finally,
we demonstrate the efficiency of our approach both quanti-
tatively and visually. We compare our approach to state-of-
the-art methods for blind deconvolution and provide several
ablation studies that highlight the performance of our reg-
ularization and model and give insights into the behavior
of the model. In its current form, our algorithm is limited
to deconvolution. Future research will address more gen-
eral blind deblurring problems [5, 9]. Faster diffusion mod-
els such as latent diffusion [8, 40] or diffusion bridges [30]
could also benefit our method.
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[17] Rémi Gribonval. Should penalized least squares regression
be interpreted as maximum a posteriori estimation? IEEE
Transactions on Signal Processing, 2011. 5

[18] Bichuan Guo, Yuxing Han, and Jiangtao Wen. AGEM:
Solving Linear Inverse Problems via Deep Priors and Sam-
pling. In Advances in Neural Information Processing Sys-
tems, 2019. 2

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017. 7

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffu-
sion Probabilistic Models. In Advances in Neural Informa-
tion Processing Systems (NIPS), 2020. 1, 3

[21] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion
Guidance. In NeurIPS Workshop on Deep Generative Mod-
els and Downstream Applications, 2022. arXiv:2207.12598
[cs]. 1

[22] Samuel Hurault, Arthur Leclaire, and Nicolas Papadakis.
Gradient Step Denoiser for convergent Plug-and-Play.
In International Conference on Learning Representations
(ICLR’22), International Conference on Learning Represen-
tations, Online, United States, Apr. 2022. 1

[23] Ulugbek S. Kamilov, Charles A. Bouman, Gregery T. Buz-
zard, and Brendt Wohlberg. Plug-and-play methods for inte-
grating physical and learned models in computational imag-
ing: Theory, algorithms, and applications. IEEE Signal Pro-
cessing Magazine, 40(1):85–97, 2023. 1

[24] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition (CVPR), 2019. 6

[25] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming
Song. Denoising Diffusion Restoration Models. In Advances
in Neural Information Processing Systems (NIPS), 2022. 1

[26] Charles Laroche, Andrés Almansa, and Matias Tassano.
Deep Model-Based Super-Resolution With Non-Uniform
Blur. In IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), 2023. 1
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A. Iterative Diffusion EM algorithm
Algorithm A.1 summarizes the Diffusion EM algorithm described in sections 3.1 and 3.2.

Algorithm A.1 Diffusion EM algorithm

Require: y, σ,H0, L,
Ensure: H ≈ argminH p(y|H) and xi

0 ∼ p(x0|y,H)
for l = 1 to L do

x = E-step(y,Hl−1, σ) ▷ n samples from Alg. 1
Hl = M-step(y,x, σ) ▷ Iterate (24) and (25)

end for
return x, HL

B. M-step computations
In this section, we derive the computation of the M-step. In particular, we solve Equation (22) from the main paper:

Z∗ = argmin
Z∈C

1

2σ2n

n∑
i=1

∥Zxi − y∥22 +
β

2
∥Z −H∥22. (B.1)

with C the space of convolution operators.
In order to account for the fact that H ∈ C and Zt ∈ C are convolution operators, we rewrite the same equation in the Fourier
domain, where the operators H and Z become diagonal:

F(H) = diag(h(1), . . . , h(d)), (B.2)

F(Z) = diag(z(1), . . . , z(d)). (B.3)

Re-writing the minimization in the Fourier domain leads to:

F(Z∗) = argmin
Z∈C

1

2σ2n

n∑
i=1

∥F(Z)F(xi)−F(y)∥22 +
β

2
∥F(Z)−F(H)∥22 (B.4)

= argmin
z

1

2σ2n

n∑
i=1

d∑
j=1

|z(j)F(xi)(j)−F(y)(j)|2 + β

2

d∑
j=1

|z(j)− h(j)|2. (B.5)

It is straightforward that the solution to the problem is also diagonal, thus we have:

F(Z∗) = diag(z∗(1), . . . , z∗(d)). (B.6)

Using the first-order condition and the diagonal structure of the problem, we get the following:

1

σ2n

n∑
i=1

[
z∗(j)F(xi)(j)−F(y)(j)

]
F(xi)(j) + β(z∗(j)− k(j)) = 0 (B.7)

⇔z∗(j)

(
1

n

n∑
i=1

|F(xi)(j)|2 + σ2β

)
= F(y)(j)

1

n

n∑
i=1

F(xi)(j) + σ2βk(j) (B.8)

⇔z∗(j) =
F(y)(j) 1n

∑n
i=1 F(xi)(j) + σ2βk(j)

1
n

∑n
i=1 |F(xi)(j)|2 + σ2β

. (B.9)

C. M-step computations with DPS approximation
In this section, we develop the computation of the M-step in Fast EM for DPS. We start from Equation (32) of the main

paper:

Q̂(Z,Zt) =
−1

2σ2n

n∑
i=1

∥Zx̂i
0(t)− y∥22]. (C.1)



Our goal is to compute:

Z∗ = argmin
Z∈C

−Q̂(Z,Zt) + (β/2)∥Z −H∥22. (C.2)

We can notice that it is similar to Equation (B.4) with x̂i
0(t) instead of xi. Thus we have that:

z∗(j) =
F(y)(j) 1n

∑n
i=1 F(x̂i

0(t))(j) + σ2βh(j)
1
n

∑n
i=1 |F(x̂i

0(t))(j)|2 + σ2β
. (C.3)

D. M-step computations with ΠGDM approximations
In this section, we develop the computation of the M-step in Fast EM for ΠGDM. We start from Equation (33) of the main

paper:

Q̂(H,Ht) =
−1

2σ2n

n∑
i=1

Ex∼N (x̂i
0(t),r

2
t )
[∥Hx− y∥22]. (D.1)

Our goal is to compute:

Z∗ = argmin
Z∈C

−Q̂(Z,Zt) + (β/2)∥Z −H∥22. (D.2)

Similarly to Section B, we work with diagonal operators so we have:

F(H) = diag(h(1), . . . , h(d)) (D.3)

F(Z) = diag(z(1), . . . , z(d)). (D.4)

and thus:
F(Z∗) = diag(z∗(1), . . . , z∗(d)). (D.5)

We start by rewriting Equation D.1 in the Fourier domain using the fact that the Fourier transform preserves norms:

F(Z∗) = argmin
z

1

2σ2n

n∑
i=1

d∑
j=1

Ex∼N (x̂i
0(t),r

2
t )
[|z(j)F(x)(j)−F(y)(j)|2] + (β/2)

d∑
j=1

|z(j)− h(j)|2. (D.6)

We solve this problem using the first-order condition element by element since the problem is diagonal, the derivation inside
the expectancy can be done using Fisher identity [12, Proposition D.4]:

1

σ2n

n∑
i=1

Ex∼N (x̂i
0(t),r

2
t )
[|z(j)F(x)(j)−F(y)(j)|F(x)(j)] + β(z(j)− h(j)) = 0 (D.7)

⇔z(j)

[
1

n

n∑
i=1

Ex∼N (x̂i
0(t),r

2
t )
[|F(x)(j)|2] + σ2β

]
= F(y)(j)

1

n

n∑
i=1

Ex∼N (x̂i
0(t),r

2
t )
[F(x)(j)] + σ2βh(j) (D.8)

Using the fact that the Fourier transform of a white Gaussian noise of variance σ2 is a white Gaussian noise of variance σ2,
the expected values yield:

Ex∼N (x̂0,r2t )
[|F(x)(j)|2] = r2t + |F(x̂0)(j)|2

Ex∼N (x̂0,r2t )
[F(x)(j)] = F(x̂0)(j)

So we can conclude that:

z∗(j) =
F(y)(j) 1n

∑n
i=1 F(x̂i

0(t))(j) + σ2βh(j)
1
n

∑n
i=1 |F(x̂i

0(t))(j)|2 + r2t + σ2β
(D.9)

The main difference with DPS approximation is that we have an extra term in the denominator r2t .

E. Additional results
See Figure E.1.
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Figure E.1. Visual comparison of the different models on a degraded version of FFHQ 256x256 dataset. Ours correspond to Fast EM.
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