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Bitdefender

dtantaru@bitdefender.com

Elisabeta Oneat, ă
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Abstract

The remarkable generative capabilities of denoising dif-
fusion models have raised new concerns regarding the au-
thenticity of the images we see every day on the Internet.
However, the vast majority of existing deepfake detection
models are tested against previous generative approaches
(e.g. GAN) and usually provide only a “fake” or “real” la-
bel per image. We believe a more informative output would
be to augment the per-image label with a localization map
indicating which regions of the input have been manipu-
lated. To this end, we frame this task as a weakly-supervised
localization problem and identify three main categories of
methods (based on either explanations, local scores or at-
tention), which we compare on an equal footing by using
the Xception network as the common backbone architecture.
We provide a careful analysis of all the main factors that
parameterize the design space: choice of method, type of
supervision, dataset and generator used in the creation of
manipulated images; our study is enabled by constructing
datasets in which only one of the components is varied. Our
results show that weakly-supervised localization is attain-
able, with the best performing detection method (based on
local scores) being less sensitive to the looser supervision
than to the mismatch in terms of dataset or generator.

1. Introduction
Image generation is improving by the day and it is ar-

guably past the point where it is possible to perceptually
distinguish between generated (fake) and real content. Gener-
ative adversarial models (GAN) [19], normalizing flows [46],
denoising diffusion probabilistic models (DDPM) [54]—all
provide excellent means for the creation of digital art or
entertainment content. However, the advances in image
generation come at the cost of also easing malicious use,
e.g., by altering reality or spreading misinformation. To
counter these harmful effects, deepfake detection methods
are developed to discriminate between fake and real sam-
ples [43, 44, 56].

Among the classes of generative models, diffusion models

are emerging as the dominant paradigm [14], showcasing
impressive results on a wide array of tasks including text-
controlled image generation [45, 48, 51, 61] or image-to-
image translation [38, 48, 50, 61]. Prior work on deepfake
detection has naturally mostly considered detecting content
generated by GANs [5,20,41,57,60], but the computer vision
community is now starting to consider DDPMs [9, 47]. Here
we continue this direction, going one step further to address
the task of weakly-supervised deepfake localization.

First, we extend prior approaches to localise the manipu-
lated area and not only label the entire image as fake or real.
The binary output of the typical deepfake detection methods
provides only coarse and opaque information, especially in
the frequent case of local manipulations and forgeries. In
this scenario, we would be much better served by a richer
representation that could pinpoint which part of the image is
likely to have been generated. Another benefit of localization
is that it allows the end-user to take more informed decisions.
For example, changing the color of one’s eyes may just be
an innocuous enhancement of the user’s appearance, but the
alteration of the movement of the lips in a video may hint
towards a malicious use. Instead of deciding upfront what is
deemed to be fake or real, a localization method can defer
this decision to the end user, who is more informed and can
tailor the method to their use case.

Second, in contrast to prior work, which addresses lo-
calization in a fully-supervised setting [26, 33, 58, 64], we
consider a weakly-supervised scenario, where we assume
that we only have access to image-level labels and the mod-
els are not explicitly trained for localization. This setup
is motivated by the fact that generative methods are usu-
ally first developed in the context of full-image synthesis,
and only then extended to the more specific cases of local
editing, such as inpainting or attribute manipulation. More-
over, ground truth manipulation masks might not always be
available, especially for newly developed local manipula-
tion methods. Training a deepfake localization method in a
weakly-supervised fashion (based on a global label) would
allow us to be one step ahead of the potentially harmful uses
involving local changes.

Our work brings the following contributions:
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1. We propose a weakly-supervised framework for deep-
fake localization in images that allows to systematically
uncover the importance of various factors (model, su-
pervision type, dataset, generator) in the context of
weakly-supervised localization of face manipulations.

2. We generate a detailed dataset (more than 125k images)
with locally- and fully-manipulated images that allows
the disentanglement of different factors in deepfake
manipulation localization. The images are obtained us-
ing either newly introduced state-of-the-art generative
models or a novel inpainting approach that incorpo-
rates a pretrained LDM [48] model in a diffusion-based
inpainting method [38].

3. We provide extensive quantitative and qualitative
results to understand the fundamental factors underly-
ing the performance of weakly-supervised localization
models. Our analysis reveals the severity of out-of-
domain degradation, provides insights into the model’s
sensitivity to looser supervision or dataset mismatch,
and quantifies the performance across multiple classes
of generative models. Our code and dataset are avail-
able at https://github.com/bit-ml/dolos.

2. Related Work

Deepfake detection of GAN content. There is a vast and
continuously-growing body of work dedicated to the de-
tection of GAN-generated images, see [39, 43, 44, 56] for
reviews. Prior research has revealed many particularities of
GAN content [10, 20, 60], an important observation being
the appearance of a fingerprint—an imperceptible pattern,
which allows the identification of the GAN method and train-
ing dataset [41, 60]. Wang et al. [57] also observe that all
CNN-generated images share common systematic artifacts,
that can be easily picked up by a classifier, while in [20]
the authors indicate that downsampling might destroy these
high-frequency artifacts, which are the key to detection.

Deepfake detection of DDPM content. Preliminary works
on detecting diffusion-generated images made use of high-
level cues such as inconsistencies in lighting [17] or perspec-
tive distortion [18]. However, more common end-to-end de-
tection networks were also tested on diffusion images [9,47],
focusing on the transferability across classes of generative
models (from GAN to DDPM, and vice versa). The prevail-
ing observation is that detectors trained on one type of data
do not generalize well to the other, but finetuning helps.

Local manipulations. A common setup in deepfake cre-
ation is altering a person’s face by reenactment, replacement,
editing or synthesis using techniques known as face swap,
face transfer, facial attribute manipulations or inpainting [43].
These approaches result in local manipulations and are tradi-

GradCAM · GC

image backbone

0.9

fakeness
score

explanation localization
mask

Patches · PT

image backbone localization
mask

Σ

aggregation

0.9

fakeness
score

Attention · AT

image backbone localization
mask

·

head

0.9

fakeness
score

Figure 1. Overview of the three types of approaches proposed
for the detection and localization of deepfakes. Each method is
able to produce a fakeness score (for detection) and a mask (for
localization); the mask is obtained either explicitly (for the first
model) or implicitly (for the second and third models).

tionally GAN-based. Increasingly larger and more complex
datasets and challenges have emerged [15, 25, 28, 31, 34, 49]
and, with these, a considerable effort has been made to ex-
pose those types of fakes [1, 3, 16, 23, 39, 63]. However,
actually localizing manipulations has arguably received less
attention than detecting whether an image is fake or not.
Works that tackle localization rely on local noise fingerprint
patterns [21, 33, 40, 64], attention mechanisms [12, 13, 42]
or self-consistency checks [2, 27]. Very recent, concurrent
works proposed a forensic framework for general manipula-
tion localization [21] and a hierarchical fine-grained formu-
lation for image forgery detection [22]. Similar to us they
consider diffusion-generated data with local forgeries, but
differently they assume full supervision.

3. Methodology
We first describe the methods used for deepfake detection

and weakly-supervised localization (§3.1). Then we detail
the generative techniques that we are interested in detecting
(§3.2) and the datasets generated with these methods (§3.3).

3.1. Methods for detection and localization

The task of deepfake detection consists of predicting
whether an image is either real or fake. This task is usually
framed as a binary classification problem and it is addressed
using standard classification networks. In this paper we are
interested in evaluating the capabilities of such methods in a



weakly-supervised setting: if we assume only image-level
labels, can these classifiers be successfully used for localiza-
tion of partially manipulated images?

We identify and investigate three categories of architec-
tures suitable for weakly-supervised localization. These
methods are based on either explanations (GradCAM), local
scores (Patches) or attention (Attention) (for visual
depictions see Figure 1). The first category is a general
technique that given a trained classification network it uses
explainability techniques to highlight the most predictive
regions for the “fake” label. The other categories implic-
itly construct the localization maps: Patches produces
local patch scores that are then used for classification, while
Attention predicts an activation map that is used to pool
relevant classification features. To allow for a fair com-
parison we fix the backbone and, in particular, we select
the Xception network [8], which has been shown to yield
excellent results for deepfake detection of faces [49].

The proposed methods are inspired by and build upon
state-of-the art deepfake detection methods [5, 12, 49], but
we further modify them as described below.

GradCAM. While GradCAM explanations were previously
used in the deepfake detection literature [4, 53, 59, 63], they
were mostly shown as qualitative results and rarely (if ever)
evaluated quantitatively, in terms of how well they local-
ize the input alterations. In this paper we aim to quantify
their performance and contrast them with other weakly-
supervised localization methods. Concretely, we endow the
Xception [8] network with localization capabilities by apply-
ing GradCAM [52] on the activations produced by block 11,
the one before the last downsampling operation.

Patches. We use Patch–Forensics [5], which is a truncated
image classification network: it takes the feature activations
after a few layers and projects them to a patch-level score
using 1× 1 convolutions. At train time, the loss is computed
for each patch, while at test time, it produces a detection
score by averaging the per-patch softmax scores. The au-
thors experiment with two backbones (Xception [8] and
ResNet [24]) and vary the number of layers that are kept.
We chose the Xception backbone truncated after the second
block of layers, as this combination was shown to yield good
performance [5]. One advantage of Patches is that its
output naturally corresponds to a localization map. While
visualizations of the activation maps were shown in the orig-
inal work, the localization performance was not quantified.

Attention. We start from [12] which augments an Xcep-
tion [8] backbone with a learned attention mask that is used
to modulate the feature maps produced by the network. The
network is trained in a multi-task setting, with a loss on
the full-image fakeness score and another one on the lo-
calization mask. In the weakly-supervised scenario, when
no groundtruth mask is provided, the second term ensures

that the maximum value of the predicted mask agrees with
the image-level label. We modify the original implemen-
tation in [12] to improve the performance and stabilize the
training. First, we replace the L1 loss on the mask with the
binary cross-entropy loss (CE). Second, we cross-validate
the weight λ that balances the two losses. Our final loss is:

L = CE(y, ŷ) + λCE(y,max m̂), (1)

where y is the true image label, ŷ is the fakeness score and
m̂ is the estimated localization mask.

Fully-supervised localization. Along with the weakly-
supervised setup we also consider the fully-supervised case
to show an upper bound on the performance. Since not
all considered detection methods are able to be trained in
a fully-supervised setting out of the box, we modify them
to accommodate this setup: for GradCAM we truncate af-
ter block 11 and add a fully convolutional layer as in [37];
for Attention we keep only the loss on the mask, other-
wise the architecture remains the same; for Patches we
maintain the same architecture, but instead of using the im-
age label to supervise each feature prediction, we use the
downsized mask as groundtruth.

3.2. Dataset generation methods

We use diffusion models to generate both full images and
locally-inpainted ones.

Diffusion denoising probabilistic models (DDPM) [54] are
a class of generative models trained to reverse a diffusion
process. The forward diffusion process iteratively adds Gaus-
sian noise to a sample until its distribution reaches a standard
normal. The reverse denoising process gradually removes
noise, producing novel samples when starting from a ran-
dom image. The reverse process is implemented as a neural
network (with parameters θ) that predicts the mean µθ(xt, t)
and covariance Σθ(xt, t) of a Gaussian distribution:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) , (2)

where xt are images that are sequentially generated, from
t = T to t = 1.

Repaint: Inpainting with diffusion. The task of inpainting
is to fill in the missing regions of an image x0 such that the
resulting composition looks natural; the missing regions are
usually specified by a binary mask m. For inpainting with
diffusion we use the approach of Lugmayr et al. [38], whose
method performs mask-guided decoding on any pretrained
DDPM. More precisely, at generation time they first sample
a new image x̂t from the previously-generated image, x̂t+1,
according to Equation (2), but then they replace the values of
x̂t outside the given mask m with the values of the original
image encoded after t steps xt:

x̂t ←m⊙ x̂t + (1−m)xt (3)
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Figure 2. Examples from our generated dataset. The first two
rows represent fully-generated images using P2 on CelebAHQ and
FFHQ, respectively. The last two rows represent locally-inpainted
images using Repaint–P2, Repaint–LDM, LaMa, Pluralistic, re-
spectively; notice the high realism of images obtained with both
large and small masks.

This procedure ensures that the values outside the mask are
preserved from the original image x0.

Repaint–LDM: Inpainting with diffusion in the latent
space. Latent diffusion models (LDM) [48] have been shown
to offer a scalable approach to generating high-fidelity im-
ages. Their main idea consists of performing diffusion in the
(low-dimensional) latent space of a variational autoencoder
(VAE). We translate this idea to inpainting by running the Re-
paint scheduler (Equation 3) in the latent space, x← enc(x),
of the variational autoencoder and using an appropriately
downsized mask, m ← resize(m). This procedure gener-
ates an (inpainted) latent code, x̂, which is then inverted
to the original pixel space using the decoder of the VAE,
dec(x̂). Notably, this method allows us to inpaint an image
using any existing pretrained LDM model. To the best of
our knowledge, this approach to inpainting is novel.

3.3. Datasets

To train and evaluate our models, we use real images
and two types of fake images: fully-synthesized and locally-
manipulated images. The datasets are summarized in Table 1
and examples are shown in Figure 2.

Real data. We use the CelebA-HQ and FFHQ face datasets
as sources of real data. CelebA-HQ [29] consists of 30k
images that were selected and processed from the CelebA
dataset [36]; we keep the original splits for training, valida-
tion and testing. FFHQ [30] consists of 70k PNG images that
have been crawled from Flickr and automatically aligned

Generator Num. samples

Type Family Model Dataset Train Val. Test

Real – – CelebA 9k 900 900
Real – – FFHQ 9k 900 –

Fake full Diffusion P2 CelebA 9k 1k –
Fake full Diffusion P2 FFHQ 9k 1k –

Fake local Diffusion Repaint–P2 CelebA 30k 3k 8.5k
Fake local Diffusion Repaint–P2 FFHQ 30k 3k –
Fake local Latent diff Repaint–LDM CelebA 9k 900 900
Fake local Fourier conv LaMa CelebA 9k 900 900
Fake local GAN Pluralistic CelebA 9k 900 900

Table 1. Details of our proposed dataset, which contains locally-
and fully-generated images from multiple types of generators. The
dataset is designed to allow for a principled analysis of multiple
factors: manipulation type, generator, source dataset. We provide:
(i) fully-generated images on CelebA-HQ and FFHQ using P2 [7];
(ii) locally-inpainted images on FFHQ using Repaint–P2 and on
CelebA-HQ using Repaint–P2, Repaint–LDM, Pluralistic [62],
LaMa [55] (using the same masks).

and cropped. Both datasets are popular choices for training
generative models and, consequently, are suitable choices for
training deepfake detection models. We select a subset of 9k
train and 900 validation images from each of the two datasets
to match the number of fake images that are generated.

Fake data: Full-image synthesis. We use the perception-
prioritized (P2) diffusion method of Choi et al. [7] to sample
fully-synthetic images. We chose this approach because
(i) the authors provide pretrained models on the two real
datasets mentioned above (CelebA-HQ and FFHQ), which
enable a systematic experimentation, and (ii) the models are
lightweight and hence the inference is reasonably fast. For
both datasets we sample 10k images: 9k for training and 1k
for validation. We do not evaluate on these fully-synthesized
sets, hence no test set is provided. We refer to these datasets
as P2/CelebA-HQ and P2/FFHQ, respectively.

Fake data: Local manipulations. We generate two locally-
manipulated datasets using the Repaint method [38] to in-
paint images from the CelebA-HQ and FFHQ datasets. We
use the Repaint method on top of pretrained P2 models,
namely its variants trained on CelebA-HQ and FFHQ, re-
spectively. The inpainted regions correspond to various
face attributes (skin, hair, eyes, mouth, nose, glasses). For
CelebA-HQ, these annotations were manually labeled and
are available in the CelebAMask-HQ [29] extension of the
dataset, while for FFHQ these are obtained using a pretrained
face segmentation method [32]. Given an image (correspond-
ing to the identity of a person) we generate multiple inpaint-
ings by randomly sampling masks corresponding to these
face attributes and, for the smaller parts (eyes, mouth, nose),
by also dilating them with a kernel of randomly-chosed size,



but up to 15 pixels. We refer to the resulting datasets as
Repaint–P2/CelebA-HQ and Repaint–P2/FFHQ; the former
will represent our main test bed, while the latter is used only
at training.

To be able to systematically study the importance of the
generator we inpainted a subset of 9k images used in Repaint–
P2/CelebA-HQ with three other methods: Repaint-LDM
(ours), LaMa [55], Pluralistic [62]. Repaint-LDM adapts the
Repaint method to operate in the latent space by using the
LDM model [48]; LaMa is an inpainting method that uses
an autonecoder with Fourier convolutions [6]; Pluralistic
is a conditional variational autoencoder with adversarial
loss. We have chosen these methods since they all provide
pretrained models on the CelebA-HQ dataset. This allows
us to inpaint the same images using the same masks, and
isolate the differences attributed to the change of generator.

4. Experimental setup

Implementation details. Following the recommendation
of Chai et al. [5], we ensure that real and fake images both
follow exactly the same preprocessing steps prior to passing
them through the detection methods. These steps include
the input resolution and resize algorithm. Consequently, we
process both CelebA-HQ and FFHQ images as they were
processed for training the generator, that is, we resize them
to 256 × 256 using bicubic interpolation.

Tasks and metrics. Localization is the main task that we
tackle. We report intersection over union (IoU) and pixel-
wise binary classification accuracy (PBCA). These metrics
assume binary prediction and we use a fixed threshold of 0.5
for binarization. The detection methods generate masks of
different sizes: 19× 19 for GradCAM and Attention, 37
× 37 for Patches. For a fair evaluation we resize them to
the size of the input image: 256 × 256.

We also report results on detection, the task of telling
apart fake images from real images. We rank the images
by their per-image fakeness score, which is output by each
method as illustrated in Figure 1. The detection performance
is then measured in terms of average precision (AP), which
is a threshold-free metric.

5. Experiments
Our experiments evaluate the proposed methods with dif-

ferent levels of supervision, gradually changing the dataset
and the generators in order to quantify their importance for
localization. We investigate the performance using three
main levels of supervision:

• Setup A (label & full) is a weakly-supervised setup
in which we have access to fully-generated images as
fakes and, consequently, only image-level labels. We
use 9k fake images, fully synthesized by P2, and 9k

real inpainted mask real inpainted mask

GC PT AT GC PT AT

A

B

C

Figure 3. Soft localization maps produced by the three approaches
using different levels of supervision. Patches can accurately de-
tect the manipulations after having seen only fully-generated fake
images (scenario A) or locally-inpainted images with only image-
level supervision (scenario B). Both Attention and GradCAM
struggle in scenarios A and B. All methods recover the manip-
ulated region in the fully supervised scenario, C. This suggests
that operating at a patch level is better suited for recovering local
manipulations than either using GradCAM or attention.

real images from the corresponding dataset on which
P2 was trained.

• Setup B (label & partial) is a weakly-supervised setup
in which we have access to partially-manipulated im-
ages, but only with image-level labels (no localization
information). This means that while an image may be
labelled as “fake”, not all of its regions are fake. We
use 9k locally-modified images by Repaint–P2 and 9k
real images from the corresponding training dataset.

• Setup C (mask & partial) is a fully-supervised setting,
in which we have access to ground-truth localization
masks of partially-manipulated images. We uses 30k
locally-modified images by Repaint–P2; for this setup,
no real images are used.

To evaluate localization we use 8.5k locally-manipulated
images produced by Repaint–P2/CelebA-HQ and to evaluate
detection we use 900 real images from CelebA-HQ and 900
fakes from Repaint–P2/CelebA-HQ. Note that the evaluation
is carried on the same data regardless of the setup. Table 1
from the supplementary material summarizes the data used
in each of the three setups.

5.1. Evaluating localization abilities

We evaluate all three proposed approaches for localization
in the three setups described above. To exclude other factors
of variation we maintain the image generator and source



IoU (%) PBCA (%) AP (%)

setup sup. generator GC PT AT GC PT AT GC PT AT

A label full 16.8 64.9 9.7 83.1 96.7 83.4 67.3 95.3 79.3
B label partial 21.5 37.7 23.2 85.1 79.8 86.3 94.4 95.3 94.4
C mask partial 83.7 84.5 70.3 96.8 98.6 97.6 – – –

Table 2. Evaluation of the three selected localization techniques (GradCAMGC, Patches PT, AttentionAT) on the Repaint–P2/CelebA-
HQ dataset using different levels of supervision: image-level label on full images (A), image-level label on locally manipulated images (B),
and fully-supervised masks (C). We evaluate both localization (using IoU and PBCA) and detection (using AP). Patches systematically
outperforms the other two methods under most of the scenarios and metrics.

dataset fixed, that is, for scenario A we train on P2/CelebA-
HQ, while for scenarios B and C we use Repaint–P2/CelebA-
HQ. Real data from CelebA-HQ is used in setups A and B,
while for the fully supervised scenario, setup C, real data is
not needed. Results for both localization and detection are
shown in Table 2.

Among the selected methods, we see that Patches gen-
erally outperforms the other two approaches across mul-
tiple setups and metrics (bold values in Table 2). We
see that localization performance is strong for all methods
when training in the fully supervised scenario (setup C) and
performance drops as we move to the two weakly super-
vised setups (setups A and B). Interestingly, GradCAM and
Attention perform better in setup B than in setup A, while
for Patches we observe the reverse trend. We believe that
Patches is worse in setup B because the loss is set at patch-
level, and the patch labels are inherently noisy as we use
partially-manipulated images at input.

In terms of detection (the ‘AP’ columns in Table 2), we
observe strong performance of Patches in both weakly
supervised setups, A and B. Interestingly, the detection per-
formance is good for all models in setup B. In retrospect,
this is expected since for the detection task in setup B the
train data matches the test data.

Figure 3 shows examples of the localization maps pro-
duced by the detection methods in all three scenarios. We
notice that Patches is able to partially recover the manip-
ulated areas even in setups A and B. In setup B we observe
that due to the noisy labels the model fires also on the back-
ground regions. GradCAM and Attention struggle more
in the weakly-supervised scenarios and their outputs are
qualitatively different: the former seems to produce weaker
activations, which are spread through irrelevant areas of the
image (especially in scenario A), while the latter produces
less precise localizations.

5.2. Generalization across source datasets

Generalization is a key desirable property of deepfake
detectors. Here, we assess how localization is affected by
datasets shifts. To this end, we design an experiment in
which the training and testing data come from different

CelebA-HQ FFHQ

sup. generator IoU PBCA AP IoU PBCA AP

A label full 64.9 96.7 95.3 25.1 88.9 84.4
B label partial 37.7 79.8 95.3 23.3 64.4 75.2
C mask partial 84.5 98.6 – 32.3 89.2 –

Table 3. Evaluation of Patches on the Repaint–P2/CelebA-HQ
dataset using two training datasets: CelebA-HQ and FFHQ. When
the source dataset does not match the target one, we observe a
consistent drop in performance across all scenarios. This is more
evident in scenario B where only image-level supervision is avail-
able for locally-manipulated images.

source datasets, while fixing the generator and the detection
method. Training is either based on fake data derived from
CelebA-HQ (P2/CelebA-HQ for scenario A and Repaint–
P2/CelebA-HQ for scenarios B and C) or FFHQ (P2/FFHQ
for scenario A and Repaint–P2/FFHQ for scenarios B and C),
while the testing is carried on Repaint–P2/CelebA-HQ.

Quantitative results are shown in Table 3 for all scenarios
under both localization and detection metrics. We observe
a consistent drop in performance across all scenarios and
metrics when there is a dataset mismatch. A closer look at
the soft localization maps reveals a more complete picture.
The ‘different’ columns in Figure 4 show that training on
FFHQ still produces qualitatively reasonable predictions
even for small regions (nose and mouth). However, in this
mismatched setting the predictions are less certain at the
boundaries and the masks appears to be eroded or with holes.

To better assess the estimated localization maps we look
at the how their accuracy varies with the size of the manipu-
lated region. In Figure 5 we show the IoU score as a function
of the mask area for the three setups when (i) the training
dataset matches the one at test time (blue line), and (ii) is
different (orange line). We observe that larger manipulations
are generally easier to correctly locate (increasing IoU with
area) and that the dataset mismatch results in a sizable drop
in performance. However, for setup B the slopes are much
steeper and the gap between the two curves is reduced. We
believe that this happens because in this setup the model fires
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Figure 4. Soft localization maps produced by Patches when
using the same vs different source datasets for training and testing.
For training we use data derived form either CelebA-HQ or FFHQ,
while for testing we use data derived from CelebA-HQ. When there
is a dataset mismatch (the ‘different’ column), we observe maps
that are less sharp and eroded, especially in the weakly supervised
scenarios, A and B. The noisy training of scenario B dims the
separation between real and fake regions.
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Figure 5. IoU as a function of the manipulated area (as percentage)
for all three setups when changing the training dataset: CelebA-HQ
(same as test; blue) or FFHQ (different from test; orange).

also on the background and, as the background takes most of
the image, this region will impact most of the performance.

5.3. Generalization across generators

We evaluate to what extent localization methods trained
on a particular generation method (e.g., diffusion, GAN) gen-
eralize to samples produced by a different one. To this end
we inpaint the CelebA-HQ dataset (using the same masks
as before) with three other approaches: Latent Diffusion
Model (LDM) [48], LaMa [55] and Pluralistic [62]. For the
Repaint–P2 dataset we use a subset of 9k samples to match
the samples from the other approaches (see Table 3). We
train the Patches method in a fully supervised setting (sce-
nario C) on each of the four datasets as well as combinations
of those (using three out of the four datasets). The evaluation
is carried on all four inpainted test sets.

The results for the 32 train–test combinations are given
in Figure 6, while qualitative results are shown in Figure 7.
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Figure 6. Localization performance (IoU) across four inpainting
methods (Repaint, LDM, LaMa, Pluralistic) and their combinations.
All four methods inpainted the same images from CelebA-HQ using
the same masks. We used Patches in setup C.

We observe that localization works generally very well as
long we test on data generated from the same model (main
diagonal in the left plot). However, LDM is an exception:
localization in LDM-manipulated images is more difficult
since the inpainting is carried in the latent space and the
decoding step “hides” the traces of the latent manipulation,
akin to how image processing steps degrade detection per-
formance [57].

When we evaluate on data coming from a different gen-
erator, the performance drops sharply (off-diagonal entries
in the left plot). The transfer performance between LaMa
and Pluralistic is still decent, presumably due to the partic-
ularities of the encoder–decoder approach. The diffusion
model of Repaint is different from the two and makes the
cross-generator transfer more challenging. Still, it appears
that the transfer from diffusion to autoencoders and GANs
(38.0% and 41.4%, respectively) is easier than the other way
around (10.3% and 0.2%, respectively); a similar conclusion
has been observed for detection [47].

Training on combinations of multiple datasets yields gen-
erally good performance on all the datasets involved at train-
ing (off-diagonal entries in the right plot). However, we do
not observe a generalization benefit by using more types of
generators at training (diagonal entries in the right plot vs
off-diagonal entries in the left plot). For example, training
on all generators but LDM yields an IoU of 19.7%, which is
only marginally above 19.5%, what is achieved by training
only on Repaint. For the other three generators, the perfor-
mance is even slightly worse on combinations than the single
best generator.

5.4. Performance on unseen datasets

In this section, we consider generalization in its most
challenging form, by varying both the source dataset and
the generation algorithm. Consequently, we evaluate on a
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Figure 7. Qualitative results for the cross-generator evaluation
using Patches trained in setup C. We observe the difficulty in
generalization across generators (off-diagonal predictions) and the
fact that local manipulations induced by LDM are challenging to
identify (second image on the main diagonal).

different dataset, COCO Glide [21], which consists of 512
locally-edited images using a text-guided diffusion-based
model. Additionally, we present results of five other existing
localization methods [11, 21, 22, 35, 58], which were pre-
trained on different datasets, and compare their performance
on our own Repaint–P2/CelebA-HQ, as well as on COCO
Glide. For a comparison to Patches, we also fine-tune the
PSCC method [35] in setup C on the Repaint–P2/CelebA-
HQ data. The results are shown in Table 4.

We observe that the generalization performance is modest
on either of the two datasets: the best out-of-domain per-
formance on Repaint–P2/CelebA-HQ is 23.1%, obtained by
TruFor, while on COCO Glide is 33.3%, obtained by PSCC.
Even methods that have shown to generalize (TruFor [21])
or that have been trained specifically on diffusion images
(HiFi-Net [22]) have difficulties on out-of-domain datasets.

Patches shows competitive results (second best in
terms of IoU on COCO Glide), even if it was trained
solely on faces. Interestingly, this is not the case for PSCC.
While PSCC obtains top performance in-domain, on Repaint–
P2/CelebA-HQ, it struggles to generaralize to COCO Glide.
This behaviour suggests that overfitting is ocurring, which is
not surprising given that the model capacity of PSCC (3.6M
parameters) is an order of magnitude larger than the one of
Patches (200k parameters).

R-P2/CelebA COCO Glide

Method IoU PBCA IoU PBCA

MantraNet [58] 4.8 81.9 25.1 79.8
Noiseprint [11] 18.2 23.8 23.9 29.0
PSCC [35] 14.3 66.5 33.3 80.6
TruFor [21] 23.1 81.3 . 29.2 81.4
HiFi-Net [22] 0.0 81.0 2.6 3.2

Methods trained on Repaint–P2/CelebA-HQ in setup C
PSCC [35] 89.0 98.8 13.3 18.4
Patches 84.5 98.7 30.8 64.8

Table 4. Evaluation of pretrained localization models on our
Repaint–P2/CelebA-HQ and the COCO Glide dataset [21]. The
grayed out results (Patches and PSCC on Repaint–P2/CelebA-
HQ) are not directly comparable to those of other methods, since
both Patches and PSCC are trained on Repaint–P2/CelebA-HQ.
Qualitative results are available in the supplementary material.

6. Conclusions

In this paper, we investigate weakly-supervised localiza-
tion in the context of diffusion-generated images of faces.
We propose a framework and a dataset that allows to system-
atically explore the importance of different factors in model
performance, such as: choice of detection method, level of
supervision, dataset and type of generator used. We design a
series of experiments that progressively modify the training
assumptions and showed that, to a certain extent, detection
of local manipulations can be performed weakly supervised,
even in the most restrictive scenarios.

We summarize our findings: 1. The patch-based method
consistently outperforms the other two approaches (expla-
nations or attention) across multiple settings and metrics.
2. The detection performance in one of the weakly-super-
vised settings (image label & partial manipulations) is strong
across all detection methods, suggesting that partially-manip-
ulated images can be used for training deepfake classifiers.
3. Among the three types of factors (supervision, dataset,
generator method), supervision seems to have a lesser im-
pact (at least for the best performing method, Patches),
while the generator impacts the most. 4. Localization of
manipulations for latent diffusion models is very challenging
even in the most optimistic scenario.

We believe that these findings can fuel research into
weakly-supervised localization of deepfake manipulations
with possible extensions to general-content images and to
other types of local manipulations, such as face-swap, local
enhancements or facial pose transfer obtained with DDPMs.
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Weakly-supervised deepfake localization in diffusion-generated images
(Supplementary material)

1. Dataset details
Table 2 presents the dataset information for each of the

three setups (A, B, C) in terms of the number of samples and
their provenance for each split (train, validation, test). These
details are relevant for the experiments in §5.1 and §5.2 in
the main paper.

These data splits are built from real images (coming from
either CelebA-HQ or FFHQ) and fake images (generated
by either P2 or Repaint–P2, which were trained on either
CelebA-HQ or FFHQ). For the weakly-supervised scenarios
(A and B) we train on 9k real and 9k fake images, the fake
images being generated by P2. For the fully-supervised sce-
nario we use the same numbers of locally-inpainted samples
for both Repaint–P2/CelebaHQ and Repaint–P2/FFHQ: 30K
train and 3K validation samples.

Our evaluation is always carried on data derived from
CelebA-HQ and even for the detection task we use partially-
manipulated images (Repaint–P2/CelebA-HQ), since our
focus is weakly-supervised localization.

2. Additional qualitative results
We present additional visual results that paint a more

complete image of the performance of the proposed models
in different training setups. Firstly, in Figure 1 we show
visual results for all three methods Patches, Attention,
GradCam, on the three identified training scenarios: A, B,
C. We notice that Patches performs the best in all setups.
In Figure 2 we show additional results when using the same
and different datasets for training and for testing. The level
of performance degradation is larger for smaller masks.

3. Comparison to other pretrained models
We compare to five pretrained models for detection and

fully-supervised localization (see Figure 3). MantraNet and
PSCC are trained on data forged with copy-move, splicing,
removal and enhancement operations. Noiseprint relies on
noise-removal techniques and learns to distinguish whether
the input patches come from the same source (have similar
noise residual patterns). HiFi-Net and TruFor are recent
approaches (CVPR’23). The former is trained on diffusion
and GAN images (with local and full manipulations) to

produce hierarchical attributes. The latter is an improved
version of Noiseprint, which is also trained on images from
more recent manipulation techniques (GAN).

Visual results in Figure 3 indicate that Noiseprint and
Hi-Fi net struggle the most to recover the inpainted regions.
The activations obtained with MantraNet seem reasonable,
but the network lacks the confidence and hence the small
numerical results under a standard threshold of 0.5. PSCC
and TruFor generally seem to find the manipulated region but
they tend to under or over-segment it. Similarly, Patches
is mostly correct in localizing the fake area but lacks preci-
sion. Unlike other methods, Patches has only been trained
to localize forgeries of faces. The competitive results ob-
tained with Patches on COCO Glide dataset suggest that it
is a suitable method to perform analysis in more challenging
weakly-supervised scenarios.

4. Additional results with PSCC
Table 1 presents results for PSCC trained in all three

scenarios. To ensure a fair comparison, we have trained the
PSCC method similarly to Patches. In particular, (i) we
have initialized the model from scratch (random weights),
and (ii) for scenarios A and B, which provide only a label,
we have broadcasted the label to a image-sized matrix to
obtain the mask, which is needed as target. However, in the
inherent noisy training setup of configuration B, we have
observed that the model did not converge. Instead, we were
able to train in this scenario by starting from the checkpoint
provided by the authors. In the paper, we report results by
training from scratch.

IoU (%) PBCA (%)

sup. generator SC FT SC FT

A label full 10.7 6.0 71.5 79.8
B label partial – 18.4 – 21.3
C label partial 89.0 93.9 98.8 99.5

Table 1. Localization performance on Repaint–P2/CelebA-HQ by
initializing the training of PSCC either from scratch (SC) or by
finetuning the pretrained model (FT).
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train valid test loc. test det.
real fake real fake fake real fake

sup. generator src. num. src. num. src. num. src. num. src. num. src. num. src. num.

A label full d 9k P2/d 9k d 900 P2/d 900 R.P2/CA 8.5k CA 900 R.P2/CA 900
B label partial d 9k R.P2/d 9k d 900 R.P2/d 900 R.P2/CA 8.5k CA 900 R.P2/CA 900
C mask partial N/A N/A R.P2/d 30k N/A N/A R.P2/d 3k R.P2/CA 8.5k N/A N/A N/A N/A

Table 2. Datasets used for each of our setups in terms of number of samples (num.) and their provenance (src.) for each of the real and fake
parts as well as for each of the splits. We use d to denote one of the two datasets (CelebA-HQ or FFHQ), while R.P2 stands for Repaint–P2
and CA for CelebA-HQ. Note that the evaluation is always carried out on data derived from CelebA-HQ.

real inpainted mask real inpainted mask real inpainted mask

GC PT AT GC PT AT GC PT AT

A

B

C

real inpainted mask real inpainted mask real inpainted mask

GC PT AT GC PT AT GC PT AT

A

B

C

Figure 1. Soft localization maps produced by the three proposed approaches using different level of supervision. Patches can accurately
detect the manipulations after having seen only fully generated fake images (scenario A) or locally-inpainted images with only image-level
supervision (scenario B). Both Attention and GradCam struggle in scenarios A and B. All methods recover the manipulated region in
the fully supervised scenario, C. This suggests that operating at a patch level is better suited for recovering local manipulations than either
using a GradCam or Attention.
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Figure 2. Soft localization maps when using the same and different source datasets for training and testing. For training we use data derived
either form CelebA-HQ or FFHQ while for testing we use data derived from CelebA-HQ. With different training and testing source datasets
the produced maps become less sharp and eroded, especially in the harder weakly supervised scenarios, A and B. Due to the noisy nature of
the training in scenario B the separation between real and fake regions is dimmed.

inpainted mask MantraNet Noiseprint PSCC TruFor HiFi-Net Patches

Figure 3. Visual results obtained with five pre-trained methods: MantraNet, Noiseprint, PSCC, TruFor, HiFi-Net and Patches on COCO
Glide dataset. For these visualizations all methods are trained fully-supervised.


