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Abstract

We propose MFT – Multi-Flow dense Tracker – a novel
method for dense, pixel-level, long-term tracking. The ap-
proach exploits optical flows estimated not only between
consecutive frames, but also for pairs of frames at loga-
rithmically spaced intervals. It selects the most reliable se-
quence of flows on the basis of estimates of its geometric
accuracy and the probability of occlusion, both provided by
a pre-trained CNN. We show that MFT achieves competi-
tive performance on the TAP-Vid benchmark, outperform-
ing baselines by a significant margin, and tracking densely
orders of magnitude faster than the state-of-the-art point-
tracking methods. The method is insensitive to medium-
length occlusions and it is robustified by estimating flow
with respect to the reference frame, which reduces drift.

1. Introduction
Reliable dense optical flow has a significant enabling po-

tential for diverse computer vision applications, including
structure-from-motion, video editing, and augmented real-
ity. Despite the widespread use of optical flow between
consecutive frames for motion estimation in videos, gen-
erating consistent and dense long-range motion trajectories
has been under-explored and remains a challenging task.

A simple baseline method for obtaining point-to-point
correspondences in a video, e.g. for augmented reality, con-
catenates interpolated optical flow to form trajectories of a
pixel, i.e. the set of projections of the pre-image of the pixel,
for all frames in a sequence. However, such approach suf-
fers from several problems: error accumulation leading to
drift, sensitivity to occlusion and non-robustness, since a
single poorly estimated optical flow damages the long-term
correspondences for future frames. This results in trajec-
tories that quickly diverge and become inconsistent, partic-
ularly in complex scenes involving large motions, repeti-
tive patterns and illumination changes. Additionally, con-
catenated optical flow between consecutive frames cannot
recover trajectories after occlusions. Few optical flow ap-
proaches estimate occluded regions or uncertainty of esti-
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Figure 1. Overview of the MFT. MFT tracks a query point (black
square) by chaining optical flows. Each chain consists of a previ-
ously computed chain from frame 0 up to frame (t −∆) (dashed
arrow, white dot), and an optical flow vector computed between
frames (t−∆) and t (solid arrow). MFT forms multiple candidate
chains with varying ∆. The best candidate (black dot) is selected
according to uncertainty and occlusion scores. This is done in par-
allel, independently for each pixel in the reference frame.

mated optical flow.
Another baseline approach — matching every frame

with the reference — is neither prone to drift nor occlusions,
but has other weaknesses. As the pose and illumination con-
ditions change in the sequence, the matching problem be-
comes progressively more difficult. In the datasets used for
evaluation in this paper, match-to-reference performs worse
than consecutive frame optical flow concatenation.

Addressing both weaknesses, we propose a novel
method for dense long-term pixel-level tracking. It is based
on calculating flow not only for consecutive frames, but also
for pairs of frames with logarithmically spaced time differ-
ences (see Fig. 1). We show that when equipped with suit-
able estimates of accuracy and of being occluded, a simple
strategy for selecting the most reliable concatenation of the
set of flows leads to dense and accurate long-term flow tra-
jectories. It is insensitive to medium-length occlusions and,
helped by estimating the flow with respect to more distant
frames, its drift is reduced.

The idea to obtain long-term correspondences by calcu-
lating a set of optical flows, rather than just flow between

ar
X

iv
:2

30
5.

12
99

8v
2 

 [
cs

.C
V

] 
 1

0 
N

ov
 2

02
3



frame 0 frame 44 frame 89

frame 0 frame 48 frame 95

frame 0 frame 40 frame 80

Figure 2. MFT – Multi-Flow Tracker application: video editing. A WOW! logo, inserted in frame 0 of sequences from selected standard
datasets [43, 53], propagated by MFT. Frames at 0%, 50%, and 100% of the sequence shown. Full sequences in the supplementary.

consecutive images, appeared for the first time in [12]. This
led to a sequence of papers on the topic [9,10,13]. The per-
formance of these early, pre-conv-net methods is difficult to
assess. They were mainly qualitatively, i.e. visually, tested
on a few videos that are not available.

The paper introduces the following contributions: A
point-tracking method that is (i) capable of tracking all pix-
els in a video based on CNN optical flow estimation, (ii)
conceptually simple and can be trained and evaluated on a
single customer grade GPU. We show (iii) a simple yet ef-
fective strategy for selection of long-term optical flow chain
candidates, and (iv) how to select the most reliable candi-
date on the basis of spatial accuracy and occlusion prob-
ability obtained by small CNNs trained on synthetic data.
We publish the results and the method code 1.

Experimentally the method outperforms baselines by a
large margin and provide a good speed/performance bal-
ance, running orders of magnitude faster than the state-of-
the-art for video point tracking [16,32] when used for dense
point tracking. Fig. 2 shows an application of the proposed
method for video editing.

2. Related Work
Object Tracking. Historically, object tracking algo-
rithms [3, 14, 31] estimated the location of an object spec-

1https://github.com/serycjon/MFT

ified in the first frame by a bounding box output in every
frame of the video sequence. More recently [33, 42], the
focus of tracking methods shifted to segmentation of the
object or regions specified in the initial frame. Neverthe-
less, algorithms that are model-free, i.e. are able to track
any object specified in the first frame, do not provide point-
to-point, dense correspondences.

Structure-from-motion (SfM) and SLAM are two re-
lated techniques that can be used for tracking points. Al-
though some methods can estimate the position of points
densely [18], they are limited to static scenes. Non-
rigid SfM techniques exist but are limited to a closed
set of object categories since they require parametric
2D or 3D models [1, 35]. N-NRSfM [46] is template-
free, but prior to building a 3D model, it requires accu-
rate 2D long-term tracks of points (chicken-egg problem).
Some approaches [55, 56] utilize differentiable rendering
or NeRF [40] to create deformable 3D models for tracking
points on surfaces. However, their exhaustive computation
makes them impractical for real-world usage.

Optical flow estimation is a well-studied problem in com-
puter vision that aims to estimate dense pixel-level displace-
ments between consecutive frames [22]. Modern methods
employ deep learning techniques [17, 24, 28, 47, 49] trained
on synthetic data. State-of-the-art optical flow methods,
such as RAFT [49] and FlowFormer [24], estimate opti-
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cal flow from 4D correlation cost volume of features for
all pixel-pairs. While these methods achieve high accuracy
for dense estimation of flow between pairs of consecutive
frames, estimating accurate flow between distant frames re-
mains a problem, especially for large displacements or large
object deformation.

Li et al. [34] combines feature matching and optical flow
restricted with a deformable mesh. NeuralMarker [23] is
trained to find correspondences between the template image
and its distorted version inserted into random background
image. These approaches allow recovery from occluded re-
gions. However, they are inapplicable for dense tracking in
dynamic scenes with non-rigid objects.

To track points over multiple consecutive frames, some
methods [4, 37, 48, 50] have proposed to concatenate es-
timated optical flow. However, they cannot recover from
partial occlusions. Standard OF benchmarks [6, 39] do not
evaluate occlusion predictions and consequently most OF
methods do not detect occlusions at all. Moreover, con-
catenating optical flow results in error accumulation over
time and induce drift in the tracked points. Although some
optical flow methods have been proposed to estimate the
flow from more than two frames [41, 44], they still operate
in a frame-by-frame manner and do not handle partial oc-
clusions well. Therefore, achieving long-term, pixel-wise
tracking with optical flow remains a challenging problem in
computer vision.

Multi-step-flow (MSF) algorithms [11–13] address the
limitations of concatenation-based approaches for long-
term dense point tracking. These algorithms construct long-
term dense point tracks by merging optical flow estimates
computed over varying time steps. This enables handling
of temporarily occluded points by skipping them until they
reappear. However, they rely on the brightness constancy
assumption, which leads to failure over distant frames. The
MSF approach has been updated in subsequent works [9,10]
by introducing the multi-step integration and statistical se-
lection (MISS) approach. MISS generates a large num-
ber of motion path candidates by randomly selecting ref-
erence frames and weighting them based on estimated qual-
ity. The optimal candidate path is then determined through
global spatial-smoothness optimization. However, these
methods are computationally intensive and limited to track-
ing a small patch of a single object.

In comparison, our proposed MFT picks the best path
based on occlusion and uncertainty estimated from corre-
lation cost volume for individual optical flows. Although
some optical flow methods estimate occlusions [26, 29, 36,
41, 57, 58] or uncertainty of estimated optical flow [27, 52,
54], state-of-the-art optical flow methods [24, 49] do not
provide such estimates. We are the first to employ estima-
tion of occlusion and optical flow uncertainty for the dense
and robust long-term tracking of points.

Feature matching identifies corresponding points or re-
gions between images or frames in a sequence. Typically,
feature matching is carried out sparsely on estimated key-
points. While some dense estimation methods have been
developed in the past [4], they have not been able to match
the performance of their sparse counterparts until recent ad-
vancements, such as the COTR approach [30]. Note that
feature matching is still performed only between pairs of
frames and estimation of point positions may only be pro-
vided independently for target frames.

Point tracking aims to track a set of physical points in a
video as introduced in TAP-Vid [15]. A baseline method
TAP-Net [15] computes cost volume (similar to RAFT [49])
for a single query point independently for each frame of the
sequence. A two-branch network then estimates the posi-
tion and visibility of the query point in the targeted frame.
PIPs [20] focuses on tracking points through occlusions by
processing the video in fixed-sized temporal windows. It
does not re-detect the target after longer occlusions. PIPs
use test-time linking of estimated trajectories since it is lim-
ited to tracking in eight consecutive frames only. Particle
Video [45] prunes tracked points on occlusion and creates
new tracks on disocclusion, however these are not linked to-
gether. TAPIR [16] combines the per-frame point localiza-
tion from TAP-Net [15] with a temporal processing inspired
by PIPs [20], but uses a time-wise convolution instead of
fixed size frame batches. CoTracker [32] processes query
points with a sliding-window transformer that enables mul-
tiple tracks to influence each other. This works best when a
single query point is tracked at a time, supported by an aux-
iliary grid of queries. Compared to our proposed approach,
these methods do not track densely, but instead focus on
tracking individual query points. OmniMotion [51] tracks
densely. It pre-processes the video by computing optical
flow between all pairs of frames. It represents the whole
video with a quasi-3D volume, a NeRF [40]-like network
and a set of 2D↔quasi-3D bijections. The representation is
globally optimized to obtain consistent motion estimates.

3. Method

The proposed method for long-term tracking of every
pixel in a template is based on combining optical flow
fields computed over different time spans, hence we call it
Multi-Flow Tracker, or MFT in short. Given a sequence of
H×W -sized video frames I0, I1, . . . , IN and a list of posi-
tions on the reference (template) frame pi,0 = (xi, yi), i ∈
{1, . . . ,HW} the method predicts the corresponding posi-
tions pi,t in all the other frames t ∈ {1, . . . , N}, together
with an occlusion flag oi,t. At time t, the MFT outputs are
formed by combining the MFT result from a previous time
t−∆, with the flow from t−∆ to the current frame t (see
Fig. 1). Note that this is not combining only two flows, but



Figure 3. Optical flow and occlusions. OF methods are typ-
ically [24, 49] trained to ignore occlusions and to predict the
ground-truth flow (red) even when occluded in the second frame.
Continuing tracking after an occlusion would result in the target
drifting to the occluding object. Example from Sintel [6].

appending single flow to a previously computed, arbitrar-
ily long chain of flows. MFT constructs a set of candidate
results with varying ∆, then the best candidate is chosen in-
dependently for each template position. To rank the candi-
dates, MFT computes and propagates an occlusion map and
an uncertainty map in addition to the optical flow fields. De-
tecting occlusions is necessary to prevent drift to occluding
objects as shown in Fig. 3. The position uncertainty serves
to pick the most accurate of the candidates. We now de-
scribe how the occlusion and uncertainty maps are formed,
followed by a detailed description of the proposed MFT.

3.1. Occlusion and Uncertainty

Current optical flow methods typically compute the flow
from a cost-volume inner representation and image fea-
tures [24, 47, 49]. Given a pair of input images, Ia and Ib,
the cost-volume encodes similarity between each position
in Ia and (possibly a subset of) positions in Ib. We propose
to re-use the cost-volume as an input to two small CNNs
for occlusion and uncertainty estimation. In both cases we
use two convolutional layers with kernel size 3. The first
layer has 128 output channels and ReLU activation. Both
networks take the same input as the flow estimation head
and each outputs a H ×W map.
Occlusion: Similar to [26, 41, 57], we formulate the oc-
clusion prediction as a binary classification. The network
should output 1 for any point in Ia that is not visible in
Ib and 0 otherwise. We train it on datasets with occlu-
sion ground-truth labels (Sintel [6], FlyingThings [38], and
Kubric [19]) using standard cross-entropy loss. The trained
CNN achieves 0.96 accuracy on Sintel validation set.
Uncertainty: We train the uncertainty CNN with the uncer-
tainty loss function from [5, 21]

Lu =
1

2σ2
lH(||x⃗− x⃗∗||2) +

1

2
log(σ2) (1)

where x is the predicted flow, x∗ the ground truth flow, σ2

the predicted uncertainty and lH is the Huber loss func-

tion [25]. The uncertainty CNN predicts α = log(σ2) to
improve numerical stability during training. We output σ2

during inference.
We sum the occlusion loss and Lu weighted by 1

5 . Note
that we only train the occlusion and uncertainty networks,
keeping the pre-trained optical flow fixed.

3.2. MFT – Multi-Flow Tracker

The MFT tracker is initialized with the first frame
of a video. It then outputs a triplet FOU0→t =(
F̄0→t, Ō0→t, Ū0→t

)
at each consequent frame It. The

F̄0→t is a H ×W × 2 map of position differences between
frame number 0 and t, in the classical optical flow format.
The Ō0→t and Ū0→t are H × W maps with the current
occlusions and uncertainties respectively. On the initializa-
tion frame, all three maps contain zeros only (no motion,
no occlusion, no uncertainty), on the first frame after ini-
tialization, the triplet is directly the output of the optical
flow network and the proposed occlusion and uncertainty
CNNs. On all the following frames, the results are not the
direct outputs of the network, but instead they are formed
by chaining two (F,O,U) triplets together.

The MFT is parameterized by D, a set of time deltas. We
set D = {∞, 1, 2, 4, 8, 16, 32} (logarithmically spaced) by
default. For every ∆ ∈ D, we create a result candidate that
is formed by chaining two parts – a previously computed
result FOU0→(t−∆) and a network output FOU(t−∆)→t

as shown in Fig. 4. To keep the notation simple, we write
(t − ∆), but in fact we compute max(0, t − ∆) to avoid
invalid negative frame numbers.

To do the chaining, we first define a new map P̄(t−∆)

storing the point positions in time (t−∆). For each position
p = (x, y) in the initial frame, the position in time (t−∆)
is calculated as

P̄(t−∆)[p] = p+ F̄0→(t−∆)[p], (2)

where A[b] means the value in a map A at integer spatial
coordinates b. To form the candidate F∆

0→t, we add the
optical flow F(t−∆)→t, sampled at the appropriate position
to the motion between frames 0 and (t−∆).

F∆
0→t[p] = F̄0→(t−∆)[p] + F(t−∆)→t

[
P̄(t−∆)[p]

]
s

(3)

where A[b]s means the value in a map A sampled at possi-
bly non-integer spatial coordinates b with bilinear interpo-
lation. When chaining two occlusion scores, we take their
maximum.

O∆
0→t[p] = max

(
Ō0→(t−∆)[p];O(t−∆)→t

[
P̄(t−∆)[p]

]
s

)
(4)

Since we threshold the occlusion scores in the end to get a
binary decision, this corresponds to an “or” operation – the
chain is declared occluded whenever at least one of its parts
is occluded.



#0 #t−∆1 #t−∆2 #t

4 F̄0→(t−∆2)[•]

2 F(t−∆1)→t[•]s

5 F(t−∆2)→t[•]s
3 = 1 + 2

6 = 4 + 5
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Figure 4. Schematic explanation of the MFT tracking procedure. At the current frame, time t (right), the tracker creates a set of result
candidates, each formed by a different chain of optical flows. In this example, the first candidate 3 is formed by chaining the result 1

previously computed in time (t−∆1) with flow 2 estimated between frames (t−∆1) and t. We use bilinear interpolation (red) to sample
the flow field, since the positions in (t−∆1) usually do not align with the pixel grid. The flow 3 into the current frame t is constructed by
summing the two flow vectors. We repeat this procedure for ∆2, again summing the result 4 for frame (t−∆2) with 5 – the bilinearly
sampled flow field from (t − ∆2) to t. When chaining the flows, we also chain their occlusion and uncertainty maps. Finally, we select
the candidate ( 3 , or 6 ) with the lowest uncertainty score among the ones not occluded, or mark the result occluded when all candidates
predict occlusion. Current point position shown in blue, grid-aligned flow vectors in black, interpolated flow vectors in red.

The uncertainties are chained by addition, as they rep-
resent the variance of the sum of flows, assuming indepen-
dence of individual uncertainties.

U∆
0→t[p] = Ū0→(t−∆)[p] +U(t−∆)→t

[
P̄(t−∆)[p]

]
s

(5)

We repeat the chaining procedure for each ∆ ∈ D to
obtain up to |D| different result candidates. Finally, we
select the best ∆, ∆∗ according to candidate uncertainty
and occlusion maps. In particular, we pick the ∆ that has
the lowest uncertainty score among the unoccluded can-
didates. When all the candidates are occluded (occlusion
score larger than a threshold θo), all candidates are equally
good and the first one is selected.

∆∗[p] = argmin
∆∈D

U∆
0→t[p] +∞ · [[O∆

0→t[p] > θo]], (6)

where [[x]] is the Iverson bracket (equal to 1 when condition
x holds, 0 otherwise). Notice that we select the ∆∗ indepen-
dently for each position. For example with D = {∞, 1},
the flows are computed either directly between the template
and the current frame (∆ = ∞), or from the previous to
the current frame (∆ = 1) as in the traditional OF setup.
For some parts of the image, it is better to use ∆ = ∞, be-
cause having a direct link to the template does not introduce
drift. On the other hand, on some parts of the image the ap-
pearance might have significantly changed over the longer
time span, making the direct flow not reliable at the current
frame. In such case a long chain of ∆ = 1 flows might be
preferred. Note that MFT usually switches back and forth
between the used ∆s during the tracking. A single template
query point might be tracked using a chain of ∆ = 1 flows
for some time, then it might switch to the direct ∆ = ∞
flow for some frames (possibly undoing any accumulated
drift), then back to ∆ = 1 and so on.

The final result at frame t is formed by selecting the re-
sult from the candidate corresponding to ∆∗ in each pixel,
e.g., for the flow output F̄0→t we have

F̄0→t[p] = F
∆∗[p]
0→t [p] (7)

Finally, MFT memorizes and outputs the resulting triplet
FOU0→t and discard memorized results that will no longer
be needed (more than max(D \ {∞}) frames old). Given
query positions pi,0 on the template frame 0, we compute
their current positions and occlusion flags by bilinear inter-
polation of the FOU result.

pi,t = pi,0 + F̄0→t[pi,0]s (8)
oi,t = Ō0→t[pi,0]s (9)

3.3. Implementation Details

For the optical flow, we use the official RAFT [49] im-
plementation with author-provided weights. Both the oc-
clusion and the uncertainty CNNs operate on the same in-
puts as the RAFT flow regression CNN, i.e. samples from
the RAFT cost-volume, context features, and Conv-GRU
outputs. We train on Sintel [6], FlyingThings [38], and
Kubric [19]. We sample training images with equal prob-
ability from each dataset. Because the Kubric images are
smaller than the RAFT training pipeline expects, we ran-
domly upscale them with scale ranging between 3.2× and
4.6×. We train the occlusion and the uncertainty network
for 50k iterations with the original RAFT training hyperpa-
rameters, which takes around 10 hours on a single GPU.

The MFT tracker is implemented in PyTorch and all the
operations are performed on GPU. Note that the optical
flows and the occlusion and uncertainty maps can be pre-
computed offline. When the ∆ = ∞ is not included in
D, the number of pre-computed flow fields needed to be
stored in order to be able track forward or backward from
any frame in a video is less than N2|D|. Pre-computing
flows for ∆ = ∞ (direct from template) and all possible
template frames is not practical, as the number of stored
flow fields grows quadratically with the number of frames
N . With the flows for other ∆s pre-computed, MFT needs
to compute just one OF per frame during inference, so the
tracking speed stays reasonably fast.



On a GeForce RTX 2080 Ti GPU (i7-8700K CPU @
3.70GHz), the chaining of the flow, occlusion and uncer-
tainty maps takes approximately 1.3ms for each ∆ candi-
date with videos of 512 × 512 resolution. On average, the
preparation of all the result candidates takes 8ms. The per-
pixel selection of the best one adds additional 0.6ms. Com-
puting a single RAFT flow, including the extra occlusion
and uncertainty outputs, takes 60ms. Altogether, the full
MFT runs at 2.3FPS. With pre-computed flows MFT runs at
over 100FPS, making it suitable for interactive applications
in, e.g., film post-production. We set θo = 0.02 empirically.

4. Experiments
Since there is no benchmark for dense long-term point

tracking, we evaluate the MFT on the recently introduced
TAP-Vid DAVIS and TAP-Vid Kinetics datasets [15] for
sparse point tracking. The datasets consists of 30 videos
from DAVIS 2017 [43] and 1189 videos from Kinetics-
700 [7, 8] respectively, rescaled to 256 × 256 resolution,
semi-automatically annotated with positions and occlusion
flags of ≈ 20 selected points.
Evaluation protocol: The TAP-Vid benchmark uses two
evaluation modes: “first” and “strided”. In the “first” mode,
the tracker is initialized on the first frame where the cur-
rently evaluated ground-truth tracked point becomes vis-
ible, and is only evaluated on the following frames. In
the “strided” mode, the tracker is initialized on frames
0, 5, 10, . . . if the currently evaluated tracked point is vis-
ible in the given frame. The tracker is then evaluated on
both the following and the preceding frames, we thus run
our MFT method two times, forward and backward in time,
starting on the initialization frame.
Evaluation metrics: The TAP-Vid benchmark uses three
metrics. The occlusion prediction quality is measured by
occlusion classification accuracy (OA). The accuracy of the
predicted positions, <δxavg, is measured by fraction of vis-
ible points with position error under a threshold, averaged
over thresholds 1, 2, 4, 8, 16. Both occlusion and position
accuracy are captured by Average Jaccard (AJ), see [15] for
more details.

4.1. Flow Delta Ablation

In Table 1, we show the impact of using different sets
D of ∆s. We evaluate two baselines – (1) basic chaining
of consecutive optical flows (∆ = 1), and (2), computing
the optical flow directly between the template and the cur-
rent frame (∆ = ∞). The first one performs better in all
metrics, as the OF is computed on pairs of consecutive im-
ages, which it was trained to do, and the test sequences are
not long enough to induce significant drift by error accumu-
lation. Note that the performance in the strided evaluation
mode is better, because the sequences are on average two
times shorter and contain less occlusions.

DAVIS - first DAVIS - strided
flow delta set D AJ <δxavg OA AJ <δxavg OA

(1) {1} 38.3 54.5 69.3 48.9 61.8 80.8
(2) {∞} 38.3 50.8 65.5 47.9 58.0 76.3
(3) {∞, 1} 46.4 63.7 76.7 55.0 68.1 85.8
(4) {∞, 1, 2, 4, 8, 16, 32} 47.3 66.8 77.8 56.1 70.8 86.9
(5) {1, 2, 4, 8, 16, 32} 47.4 66.2 77.3 55.7 70.2 86.5

Table 1. TAP-Vid Davis benchmark – evaluation of MFT on
variants based on different sets D of time differences ∆ used in
optical flow; ∞ indicates OF between the template and the current
frame. Performance measured by occlusion accuracy (OA), posi-
tion accuracy (<δxavg), and combined measure AJ. For definition
of <δxavgand AJ, see text. Bold best, underline second.

Resolution H×W DAVIS - first DAVIS - strided
AJ <δxavg OA AJ <δxavg OA

(1) 256×256 33.0 47.7 70.2 41.4 54.6 83.6
(2) 256×256→512×512 47.3 66.8 77.8 56.1 70.8 86.9
(3) 256×256→256×ratio 40.5 58.5 76.9 49.2 63.8 86.4
(4) 256×256→480×ratio 49.2 69.2 77.9 58.8 73.9 87.7
(5) orig res.→480×ratio 52.3 71.9 79.5 61.9 76.1 88.8
(6) orig res.→720×ratio 54.0 74.0 79.1 64.3 78.7 88.1

Table 2. TAP-Vid Davis benchmark – evaluation of MFT for
different image resolutions. Performance measured as in Table 1.

Combining the basic chaining with the direct OF, line (3)
in Table 1, the performance increases in all metrics, show-
ing the effectivity of the proposed candidate selection mech-
anism. Row (4) is the full MFT method which achieves the
overall best results. The final experiment (5) works with-
out the direct flow. This means that we can pre-compute
all the optical flows needed to track from any frame in any
time direction, and store them in storage space proportional
to the number of frames 2N |D|. Note that attempting to
do that with ∞ ∈ D would result in storage requirements
proportional to N2. The last version achieves second best
overall performance. Visual performance of the baselines
and full MFT is shown in Fig. 5. All results in Table 1 were
obtained on 2× upscaled images as discussed in the next
section which is equivalent to adding one upsampling layer
to the RAFT feature pyramid.

4.2. Input Resolution Ablation

The official TAP-Vid benchmark is evaluated on videos
rescaled to 256 × 256 resolution, which is small compared
with the RAFT training set. Because of this, we upscale
the 256 × 256 videos to 512 × 512 resolution. In all the
experiments, the output positions are scaled back to the
256×256 resolution for evaluation. Rows (1) and (2) in Ta-
ble 2 show that this upscaling improves the performance by
a large margin on all three metrics. This shows that RAFT is
sensitive to input sizes, note that no information was added
to the images when upscaling.
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Figure 5. Result visualizations sampled at 25%, 50%, 75% and 100% of the input video (top) length. We take the first frame of a video
and set its transparency with a checkerboard pattern. We then warp the resulting image using the outputs of each method and overlay the
result on the current frame. The checkerboard pattern is visible when the tracking results are incorrect, or when the illumination changed
between the template and the current frame. Pixels without a correspondence on the template frame are darkened. Row 2: simple flow
chaining ∆ = 1. A short occlusion by the tail makes the tracker lose track in the back half of the cow. Row 3: direct flow ∆ = ∞. The
tracker survives the occlusion but loses track when the cow rotates away from the camera. Bottom: the proposed MFT handles both the
short occlusion and the appearance change, tracking well on background and most of the cow’s body. All trackers fail on the legs which
are too thin for the RAFT optical flow. Best viewed zoomed-in on a screen.

The aspect ratio of the original videos is changed during
the scaling from full DAVIS resolution to the 256 × 256.
This makes the video contents appear distorted and changes
the motion statistics. Consequently we perform several ex-
periments with varying video resolutions but keeping the
original aspect ratio. In the first two, (rows (3), (4) in Ta-
ble 2), we upsample the 256 × 256 videos. This way we
stick as close to the TAP-Vid protocol as possible, only re-
quiring the original video aspect ratio as an extra input. In
(3), we keep the image height unchanged and only upscale
the width such that the aspect ratio is not changed wrt the
full resolution videos. All the metrics improve compared

to the no scaling variant (1). Also, when we upscale the
images to larger size (4), the performance increases.

In the last two rows (5), (6), we skip the TAP-Vid down-
scaling to 256 × 256 and instead downscale to the target
resolution directly from the full-resolution DAVIS videos.
This preserves high-frequency details more than doing the
downscale-upscale cycle. Thanks to this, row (5) is better
than (4), although the input resolution is the same in both.
Even larger resolution (6) again improves the <δxavgand the
AJ metric for the cost of small (below one percent point)
decrease in occlusion accuracy.

Because we downscale directly from the full resolution,



without the 256 × 256 intermediate step, the results of (5)
and (6) are not directly comparable with the original TAP-
Vid benchmark table, but are closer to a real-world scenario.

4.3. Comparison With the State-of-the-Art

On the TAP-Vid benchmark, the proposed MFT tracker
performs third best, after the state-of-the-art sparse point-
tracking methods [16, 32], out-performing the other dense
point-tracker OmniMotion [51]. MFT runs at over 2FPS,
which is orders of magnitude faster than the alternative
methods evaluated densely, tracking every pixel and not just
selected few. The speed/performance balance makes MFT
favorable for dense point-tracking. Additionally, the optical
flows can be pre-computed (only 2N logN flows needed
for a video of length N with logarithmically spaced flow
delta set D) resulting in tracking at over 100FPS from any
frame in the video, both forward and backward. This makes
MFT a good candidate for interactive applications such as
video editing. The complete results, including the inference
speeds, are shown in Table 3. Both MFT and OmniMo-
tion [51] can be seen as post-processing of a set of RAFT
optical flows. The MFT strategy performs better than the
complex model and global optimization in OmniMotion.

One MFT weakness we have observed are spurious re-
detections. MFT sometimes matches out-of-view parts of
the template to visually similar parts of the current frame.
Single such incorrect re-detection can “restart” a flow chain,
affecting the performance for the rest of the video. A typi-
cal example is tracking of a point on a road surface. When
the camera moves such that the original point moves far out
of view, the tracklet sometimes suddenly jumps to a newly
uncovered patch of the road. Both the appearance of the in-
correctly matched point and its image context is often very
similar to the template frame, e.g., a relatively texture-less
black road some distance below a car wheel.

BADJA evaluation. In addition to TAP-Vid DAVIS, we
evaluate the MFT on BADJA [2] benchmark with videos
of animals annotated with 2D positions of selected joints.
The benchmark measures the percentage of points with po-
sition error under a permissive threshold 0.2

√
A, where A

is the area of the animal segmentation mask. Thanks to this,
the MFT performs well even though the ground truth points
(joints) are located under the surface, and thus, MFT can-
not track them directly. In Table 4, we evaluate against the
BADJA results of PIPs [20] and their RAFT baseline. In
terms of median of the per-sequence results, MFT performs
the best. The mean score is affected by a single failure se-
quence, dog-a, on which the dog turns shortly after the first
frame, making most of the tracklets occluded. The assump-
tion that a joint can be approximately tracked by tracking a
nearby point on the surface becomes invalid in such case.

Method FPS DAVIS - first DAVIS - strided Kinetics - first
AJ <δxavg OA AJ <δxavg OA AJ <δxavg OA

TAP-Net [15] 0.11† 33.0 48.6 78.8 38.4 53.1 82.3 38.4 54.4 80.6
PIPs [20] 2e-4† - - - 42.0 59.4 82.1 31.7 53.7 72.9
OmniMotion [51] 2e-3† - - - 51.7 67.5 85.3 - - -
MFT (ours) 2.32 47.3 66.8 77.8 56.1 70.8 86.9 39.6 60.4 72.7
TAPIR [16] 0.04† 56.2 70.0 86.5 61.3 72.3 87.6 49.6 64.2 85.0
CoTracker [32] 0.04 60.6 75.4 89.3 64.8 79.1 88.7 48.7 64.3 86.5

Table 3. Evaluation on TAP-Vid benchmark. MFT per-
forms well while being orders of magnitude faster than other
methods when evaluated densely. Performance measured as
in Table 1. Results for other methods are from [15, 16, 32, 51].
FPS: speed of dense (every pixel) tracking on 512× 512 video in
Frames Per Second. Speeds marked with † were extrapolated from
timing info in [16, 51], details in supplementary.

a b c d e f g Avg. Med.
RAFT 64.6 65.6 69.5 13.8 39.1 37.1 29.3 45.6 39.1
PIPs 76.3 81.6 83.2 34.2 44.0 57.4 59.5 62.3 59.5
MFT 81.8 82.0 75.7 6.9 47.9 55.8 62.7 59.0 62.7

Table 4. BADJA [2] benchmark – evaluation of MFT against
PIPs [20]. Performance measured by the PCK-T measure, i.e.,
the percentage of points with error under a threshold. Bold best.
Results for PIPs and RAFT from [20]. The labeled individual se-
quences include (a) bear, (b) camel, (c) cows, (d) dogs-a, (e) dog,
(f) horse-h, and (g) horse-l.

5. Conclusions

We proposed MFT – a novel method for long-term
tracking of every pixel on the template frame. Its novel-
ties include an introduction of two small CNNs estimat-
ing occlusion and flow uncertainty maps that are highly ef-
fective in selecting accurate flow chains that exploit flow
computed both between consecutive and non-consecutive
frames. MFT performs well on the point-tracking bench-
mark TAP-Vid [15], and enables tracking all template pixels
densely much faster (2.4 FPS vs 0.04 FPS) than the state-
of-the-art point-trackers. With pre-computed flows, MFT
tracks densely at over 100FPS, enabling real-time interac-
tivity for applications such as video editing. Flow fields
needed for MFT can be pre-computed offline, with stor-
age requirements growing log-linearly with the video se-
quence length. We also evaluated MFT on BADJA dataset,
showing competitive performance on animal joint track-
ing. We also show that accuracy of the popular RAFT
optical flow increases significantly with input image reso-
lution, even when upscaling low-resolution images which
does not provide additional details. We will publish the
MFT code and weights. Acknowledgements. This work
was supported by Toyota Motor Europe, by the Grant
Agency of the Czech Technical University in Prague, grant
No.SGS23/173/OHK3/3T/13, and by the Research Center
for Informatics project CZ.02.1.01/0.0/0.0/16 019/0000765
funded by OP VVV.
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integration. IEEE Transactions on Image Processing,
24(1):484–498, 2014. 2, 3

[14] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. Atom: Accurate tracking by overlap max-
imization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4660–4669,
2019. 2

[15] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Re-
casens Continente, Lucas Smaira, Yusuf Aytar, Joao Car-
reira, Andrew Zisserman, and Yi Yang. TAP-Vid: A bench-
mark for tracking any point in a video. Advances in Neural
Information Processing Systems, 2022. 3, 6, 8

[16] Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush
Gupta, Yusuf Aytar, Joao Carreira, and Andrew Zisserman.
TAPIR: Tracking any point with per-frame initialization and
temporal refinement. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
10061–10072, October 2023. 2, 3, 8

[17] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
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