
JOADAA: joint online action detection and action
anticipation

Mohammed Guermal, Rui Dai, Abid Ali, and François Brémond
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Abstract—Action anticipation involves forecasting future ac-
tions by connecting past events to future ones. However, this
reasoning ignores the real-life hierarchy of events which is
considered to be composed of three main parts: past, present,
and future. We argue that considering these three main parts
and their dependencies could improve performance. On the other
hand, online action detection is the task of predicting actions in a
streaming manner. In this case, one has access only to the past and
present information. Therefore, in online action detection (OAD)
the existing approaches miss semantics or future information
which limits their performance. To sum up, for both of these
tasks, the complete set of knowledge (past-present-future) is
missing, which makes it challenging to infer action dependencies,
therefore having low performances. To address this limitation,
we propose to fuse both tasks into a single uniform architecture.
By combining action anticipation and online action detection,
our approach can cover the missing dependencies of future
information in online action detection. This method referred to
as JOADAA, presents a uniform model that jointly performs
action anticipation and online action detection. We validate our
proposed model on three challenging datasets: THUMOS’14,
which is a sparsely annotated dataset with one action per time
step, CHARADES, and Multi-THUMOS, two densely annotated
datasets with more complex scenarios. JOADAA achieves SOTA
results on these benchmarks for both tasks.

I. INTRODUCTION

Envisioning upcoming occurrences plays a vital role in
human intelligence as it aids in making choices while engaging
with the surroundings. Humans possess an inherent skill to
predict future happenings in diverse situations involving inter-
actions with the environment. Likewise, the capacity to antic-
ipate events is imperative for advanced AI systems operating
in intricate settings, including interactions with other agents
or individuals. The goal of online action detection (OAD) is
to accurately pinpoint ongoing actions in streaming media,
by predicting impending events. While action anticipation
advances OAD and imitates the capacity of human cognition
to anticipate events before they occur. Therefore, OAD and
action anticipation are two important areas of research in
computer vision, which have numerous applications in security
surveillance, home-care, sports analysis, self-driving cars, and
online danger detection. Human perception of actions can be
viewed as a continuous cycle in which prior knowledge is
used to forecast future behavior, and then present knowledge
is used to revise and update future predictions. To tackle
action detection, we propose a unified framework of action
anticipation and online action detection. Our predictions are
in two steps, first we anticipate up-coming actions based

on past information. Second, we update the anticipation by
introducing the present information. By doing so, we gain
in the online action detection by introducing the anticipated
actions as pseudo-future information. In addition, it improves
the action anticipation by comparing the prediction to the
present information, thus combining them to improve both
tasks.

Transformer networks such as [1], [2], [3] have had a sig-
nificant impact on computer vision and video understanding.
This is due to their ability to capture long-range dependencies.
LSTR [4], TesTra [5], or FUTR [6] have benefited from
the transformer backbones to address the tasks of OAD and
AA. However, OAD and AA (action anticipation) tasks suffer
from limited information as they don’t have access to future
information and global knowledge of the scene. This limited
information restricts the ability of transformers to capture
long-range dependencies and to learn significant relations
between events. This can be demonstrated by comparing
the effectiveness of models for offline action detection with
online action detection. Offline, one has access to all pieces
of information and a clear knowledge of the past, present,
and future. Furthermore, complex densely annotated datasets
(such as Multi-THUMOS [7]) have not been explored for
online action detection and anticipation. It is challenging to
recognize and foresee activities in such datasets. Most OAD
architectures are only validated on sparsely-annotated activity
datasets. Such simple annotated datasets are less challenging.
First, these datasets do not have co-occurring actions. Second,
they rarely have dependencies between actions in distant time
steps. Furthermore, actions in densely annotated datasets have
many possible outcomes. An example of these complex depen-
dencies is given in Figure 1. Due to these challenges, OAD
methods are only validated on simple datasets. Therefore, even
with the help of transformers, it is difficult to build knowledge
of these long-range dependencies without having access to
complete information.

In the past, OAD and action anticipation have been treated
as separate tasks. However, to tackle the above challenges, we
propose JOADAA (Joint Online Action Detection and Action
Anticipation) to tackle OAD and AA together. We create a
pseudo-future when performing online action detection. By
leveraging cross-attention between the real frame features and
the anticipated frames, we enhance the quality of the features,
thus improving the accuracy of the predictions by making the
present aware of a pseudo-future. Next, we propose to extract
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Fig. 1. An example of human non-sequential dependencies. For instance, the actions RUN and OneHanded Catch are highly correlated but distant. Also the
same start action RUN can lead to many different actions and scenarios. Therefore, it is very hard for online action detection or action anticipation to detect
such relations without access to the future. In JOADAA, we propose to tackle this limitation by introducing a pseudo-future information by combining action
anticipation and online action detection in the same task.

two types of information from these updated features: Local
dependencies using TCNs (temporal convolution networks)
and global dependencies using MHA (multi-head attention).
Finally, we fuse both pieces of information to make online
action detection predictions.

In this paper, following previous work, we extract features
from video clips using 3D convolution neural networks (3D
CNNs). We use I3D [8] as a pre-trained backbone on the
Kinetics dataset [9]. We store these extracted features in a
memory bank. JOADAA consists of three main parts i) Past
Processing Block, ii) Anticipation prediction Block, and
iii) Online action prediction Block. First, we capture past
information using a transformer encoder. The encoder output is
first passed through a classification layer, which helps improve
the quality of the embedding by making it class-dependent.
Next, in the anticipation prediction part, we assume that we
have not yet got the current frame. A transformer decoder is
employed to learn from the last layer of the past embeddings
to anticipate the upcoming actions in the next frame. This is
carried out by introducing a set of learnable queries, called
anticipation queries. Finally, the online action prediction part
uses anticipation embedding and current frame features to
enhance the quality of the current frame. The new enhanced
present frame features are fused with past features. Finally,
global and local information is extracted using MHA and TCN
layers, respectively, achieving a new enhanced feature map.
Based on the challenges discussed, we propose the following
main contributions:

• We propose a new architecture JOADDA, to jointly
perform online action detection and action anticipation.

• We tackle both tasks for two different types of datasets,
a densely annotated dataset and a simple activity dataset.

• We validate our proposed method on three benchmark
datasets and achieve new SOTA results for online action
detection and action anticipation.

II. RELATED WORK

Online Action Detection is the task of localizing action
instances in time steps. We distinguish two types of action
detection i.e., offline and online. In off-line action detection,
the model has access to the entire video [10], [11], [12], [13],
[14]. Online action detection, on the other hand, occurs in
real-time and has access to the past and the present only. RED
[15] uses reinforcement loss to encourage early recognition
of activities. IDN [16] learns discriminative features and
stores only knowledge that is relevant in the present. To
achieve optimal features, LAP-Net [17] presents an adaptive
sampling technique. PKD [18] uses curriculum learning to
transfer information from offline to online models. Shou et
al. [19], similar to early action detection, focus on online
detection of action start (ODAS). StartNet [20] divides ODAS
into two stages and learns using a policy gradient. WOAD
[21] employs video-level labeling and weakly-supervised
learning. LSTR [4] uses a set of encoder-decoder architectures
to capture the relations between long-term and short-term
actions. They achieve state-of-the-art results on sparsely-
annotated datasets but perform poorly on densely labeled
datasets such as Multi-Thumas [7].

Action Anticipation is the task of predicting future actions
given the limited observation of a video. In the past, many
strategies have been proposed to solve the next action antici-
pation, forecasting a single future action in a matter of seconds.
Recently, the idea of anticipating long-term activities from a
long-range video has been put out. Girdhar and Grauman [22]
introduced the anticipative video transformer (AVT), which
anticipates the following action using a self-attention decoder,
which was further improved by FUTR [6] for minutes-long
future actions. However, their architecture is suitable only for
simple activities and simple datasets, which is not applicable
to real-world scenarios that have multiple actions occurring at



the same time.
Finally, in the study of mixing action anticipation and

online action prediction, the authors in [5] use the same
architecture for both action anticipation and online action
detection tasks. However, they dissociate these tasks, while we
tackle both tasks jointly to improve both of them. Furthermore,
the architecture in [5] is very similar to [4], therefore, the same
limitations apply here as well.

In summary, to have adequate predictions, we need to build
a well-descriptive hierarchy of information consisting of past,
present, and future. Unfortunately, tasks such as online action
detection or action anticipation do not have access to this
global knowledge. In our work, we suggest combining OAD
and AA in order to create pseudo-full knowledge that can
improve action anticipation accuracy and produce comparable
results for online action detection.

III. PROPOSED METHOD

The whole architecture consists of three main parts, i) Past
Processing Block, ii) Anticipation prediction Block, and iii)
Online Action Prediction, as shown in Figure 2. First, a short-
term past transformer-encoder enhances features. Second, an
anticipation transformer-decoder anticipates the upcoming ac-
tions in the upcoming frames, using embedding output from
the previous block and a set of learnable queries, which we call
anticipation queries. Finally, a transformer-decoder uses the
anticipation results and past information to predict the actions
for the current frame (online action detection). Each module
is explained in the following.

A. Past Processing Block

To enhance the ongoing action prediction, the initial stage
in our model is to infer prior information. We employ a
transformer encoder that accepts the embedding of previous
frames as input. This enables us to highlight salient and
robust frames by leveraging attention mechanisms, making
our features more descriptive of previous activities (features).
It can be challenging to identify which activity a person is
performing solely based on the raw embedding or the current
frame. For instance, if the current frame shows the person
holding a bottle, we are not sure if the ongoing action will
be picking up the bottle, placing the bottle, drinking water,
or pouring water. However, if we know from the past that
one of the previous actions was opening the bottle, we can
be more confident that the person is more likely to drink
water. These features are later used to anticipate future actions.
Following [1], the equations below sum up the first block of
our architecture:

F ′ = ATTENTION(F ) (1)

ATTENTION(F ) = Softmax(QKT /
√
dk)V (2)

Q = Wq ×X,K = Wk ×X,V = Wv ×X (3)

X = F + PE(F ) (4)

PE stands for positional encoding, and F ∈ RT×D are the
extracted features using the pre-trained I3D model [8], and
Wq , Wk and Wv are learnable weights.

Furthermore, we propose different approaches for the use of
past information. Following [4] we use long-term and short-
term past information. Experimentally, the use of long-term
and short-term past information is highly dependent on the
type of dataset. The first intuition is that more information is
always good for a neural network as it provides a more detailed
description of events in a video. Especially with the use of
transformers, we can capture long-range dependencies to learn
all the steps that lead to the current actions. However, in our
study, we find that this is not always true. For instance, the
very long-past knowledge may sometimes harm performances,
especially for densely annotated datasets. In scenarios where
many actions co-occur, it is challenging to learn significant
long-term relations, and thus these long-term features may
act as noise to the model. Further experimental details are
provided in Section IV-D.

B. Anticipation prediction Block

Inspired by [6], the module takes a feature map F
′ ∈ RT×D

and a set of anticipation queries (learnable) LQ ∈ RNq×D, as
inputs. Here, Nq represents the number of queries and D is the
embedding dimension, which is the same as the feature map.
Action anticipation can be achieved in two different ways. The
first way is to proceed directly with a transformer encoder
and to learn to predict the future. An encoder sees only a
glimpse of the past and learns to predict the future. On the
contrary, another way is to utilize a transformer decoder. In
this approach, the strength of using learnable queries with a
transformer decoder is that each query learns a specific feature
for a specific frame in the future. The positional encoding
indicates to the transformer the order of these learnable queries
and helps the model relate each query to a corresponding point
in the future. Additionally, by having these learnable queries
in our model, it learns to adapt to each clip, since the queries
are based on the past information of each clip. Therefore,
these learnable queries learn to be aware of the past. JOADAA
uses these learnable queries as a link between past events and
possible future ones.

Nq = 1 +Nf (5)

Where in Eq. 5, 1 is for the upcoming frame that represents the
ongoing action (represented in red in the Figure 2). Since we
do not have access yet to this frame; thus, it is also anticipated.
Nf is the number of frames to anticipate in the future to which
we have no access. Information from the past, present, and
future are connected by these learnable queries to improve
both tasks efficiently. Later, these anticipation queries act as a
pseudo-future to do the prediction of the ongoing action, see
Section III-C.

C. Online action prediction Block

At this stage, we feed the features of the current frame
and the previously learned features of potential actions in the
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Fig. 2. Proposed JOADAA architecture with three units i) Past processing, ii) Anticipation prediction, and iii) Online Action prediction. Each stage is
highlighted by a color for better understanding. Each block will be explained in details in section III

current time step and subsequent time steps into a decoder. Our
model can classify the current frame more accurately because
it has pseudo-future knowledge. Modeling information this
way has two effects. The prediction of the current frame
is initially optimized by employing anticipation queries, and
since we can access the current frame, we can also enhance
the learned query on the current frame, which benefits our
anticipation module. In addition, our local-to-global layers
improve the performance of JOADAA. Adding a TCN layer
(1D temporal convolution) helps the model capture local
information. Transformers have proven to be a good tool
to capture global and long-range dependencies. However, as
explained earlier, this huge amount of information is not
always helpful and may act as noise. Therefore, by mixing
transformers with TCNs, our model learns complementary
information from an updated feature map that we pass through
an FC (fully connected) layer for classification. Notably, we
utilize a Softmax layer for basic datasets with only one action
at a time for validation and a Sigmoid layer for datasets with
co-occurring actions in all categorization layers (past, future,
and present).
Note that we use three different concatenation layers in our
architecture. The first concatenation is between past frames
features and anticipated frames features, the aim of this
concatenation is to provide the decoder with a pseudo full

information (past and pseudo future), which is the main
idea of our paper (use AA to enhance OAD). The second
concatenation is between past frames and the currently updated
feature (since it is now aware of past and possible future
actions). Here we only concatenate past and present because
online action action detection is our main objective, which
is why there is no more need for future information. The
last concatenation is to use both local information learned
through the TCNs and global information from the transformer
decoder, which allows us to have better predictions as shown
in the ablation studies Table VIII.
We also use the same decoder for future frame anticipation and
current frame prediction. Experiments have been conducted
that showed that using different decoders does not improve the
accuracy and sometimes leads to a slight decrease in accuracy.
Hence, to keep the model lighter and have better prediction
we keep the same weights. As for the encoders, the two of
them are different; the last encoder is part of our proposed
classification head, where we use a TCN to capture local
dependencies and a transformer encoder to capture long-range
dependencies. Therefore, our intuition was not to share the
weights between the encoders as they have a separate function
in our architecture.



IV. EXPERIMENTS

In this section, we discuss experiments carried out for online
action detection and action anticipation tasks on two different
types of datasets. First, we briefly describe the datasets used
and explain the implementation of the experiments carried out.
Second, we compare JOADAA with existing SOTA methods
for both online action detection and action anticipation. Fi-
nally, we explore the effectiveness of each module of our
approach by performing an ablation study. More qualitative
results are provided in the supplementary materials.

A. Datasets

In this section, we briefly explain the datasets used in
our experiments. We experiment on two types of datasets, i)
sparsely annotated dataset (THUMOS’14 [23]), and ii) densely
annotated datasets (Multi-THUMOS [7] and CHARADES
[24]). Each of them is described below.

.THUMOS’14: contains 413 untrimmed videos with 20
categories of actions. The dataset is divided into two subsets:
the validation set and the test set. The validation set contains
200 videos, and the test set contains 213 videos. Following
common practice, we use the validation set for training and
report the results in the test set. More details are available in
[23].

Multi-THUMOS: contains dense, multilabel frame-level
action annotations for 30 hours across 400 videos from the
THUMOS’14 [23] action detection dataset. It consists of
38,690 annotations of 65 action classes, with an average of
1.5 labels per frame and 10.5 action classes per video. More
details can be found in [7].

CHARADES: is composed of 9,848 videos of daily indoor
activities with an average length of 30 seconds, involving
interactions with 46 object classes in 15 types of indoor
scenes and containing a vocabulary of 30 verbs leading to
157 action classes. Readers can find more details in [24].

B. Implementation Details

We implement our proposed model in PyTorch [25]. All
experiments are performed on a system with 3 Nvidia V100
graphics cards. For all Transformer units, we set their number
of heads to 16 and hidden units to 1024 dimensions. To learn
the weights of the model, we use Adam Optimizer [26] with
weight decay 5 × 10−5. The learning rate increases linearly
from zero to 5× 10−5 in the first 40% training iterations and
then decreases to zero using a cosine warm-up. Our models are
optimized with a batch size of 16, and trained for 25 epochs.
Evaluation protocol: We follow previous work and use mean
average precision per frame (mAP) to evaluate performances.

C. Comparison with the SoTA

1) OAD Comparison on the simple dataset (THUMOS’14):
Table I presents the results of online action detection. For the
THUMOS’14 [23] dataset we achieve state-of-the-art results
by a margin of 1.4%. GateHUB[31] was SoTA results for

OAD on the THUMOS’14 dataset. However, they provide
two results on this dataset, one with TSN as the backbone
feature extractor and one with Timesformer[33]. Upon careful
examination, we noticed the following points: 1) Our accuracy
still surpasses theirs. 2) The GateHUB method was not com-
pared with TesTra, which demonstrated better accuracy with
the same settings. 3) GateHUB achieves SOTA results only
when TimeSformer[33] is used as an RGB feature extractor,
making it difficult to determine whether the results are due to
the extractor or to their proposed solution. In conclusion, while
the GateHUB paper argues for capturing relevant information
from the past to the present, our JOADAA method, which
employs a simple implementation of transformers, outperforms
it along with TesTra[5].

2) OAD comparison on densely annotated datasets: We
evaluate JOADAA on more complex datasets such as Multi-
THUMOS[7] and CHARADES [24]. We utilize LSTR [4],
TesTra[5], and TRN[29] to train on these datasets to build
baseline methods, as there are no validated online methods
to compare JOADAA to these datasets. JOADAA improves
the baselines by 1.5% on CHARADES[24] and 2.2% on
Multi-THUMOS [7] dataset. The main difference between our
approach and baseline methods [4] and [5], is the introduction
of pseudo-future knowledge to our online action prediction. It
helps make more precise predictions by having a knowledge
of different possible outcomes.

3) OAD comparison using off-line methods: For further
comparison, we adapt offline methods to online settings.
We use PDAN[14] and MSTCT[30] two SoTA methods on
CHARADES and Multi-THUMOS in off-line action detec-
tion. We outperform these two methods on all three datasets
THUMOS’14, Multi-THUMOS, and CHARADES.

4) AA SoTA comparison: Similarly, our model achieves
SOTA results on action anticipation as noted in Table II.
When Increasing the anticipated frames from 1 to 6, TesTra’s
[5] accuracy drops by 13.6% on the THUMOS’14 dataset,
whereas our model decreases by only 8.4%, which showcases
robustness of our proposed solution. Also, JOADAA performs
much better in more complex datasets (CHARADES and
Multi-THUMOS).

In Table III, we demonstrate how far we can foresee the
future. We notice that, in general, the further we anticipate,
the better the accuracy of the online action detection (blue)
until it reaches a level where the accuracy stops increasing.
Such a behavior makes sense because the model can learn
more action dependencies by inferring more information about
upcoming events. On the other hand, action anticipation results
(red) decrease when the anticipation period increases, because
the model has more space to explore.

D. Ablation study

In this section, we discuss how the different modules
contribute to JOADAA.

1) Ablation on the past processing block: First, we
analyze the use of long-range past features on different
datasets. As discussed in Section III, past information can



THUMOS’14 Multi-THUMOS CHARADES
FATS[27] 59.0 - -
IDN[16] 60.3 - -
PKD[18] 64.5 - -

WOAD[21] 67.1 - -
LFB[28] 64.8 - -
TRN[29] 62.1 39.5 18.3

PDAN[14] 62.2 32.6 16.0
MSTCT[30] 70.5 41.4 19.5

LSTR[4] 69.5 43.0 20.0
TesTra[5] 71.2 41.7 19.9

GateHUB[31] 70.7 - -
JOADAA 72.6 45.2 21.5

TABLE I
STATE OF THE ART COMPARISON FOR OAD ON THUMOS’14, MULTI-THUMOS, AND CHARADES. DUE TO THE LACK OF AVAILABLE OAD

METHODS FOR CHARADES AND MULTI-THUMOS DATASETS, WE COMPARE ALSO WITH TWO OFF-LINE METHODS PDAN AND MSTCT, ADAPTED TO
AN ONLINE SETTING.

THUMOS’14 Multi-THUMOS CHARADES
1 2 4 6 2 4 6 2 4 6

TTM[32] 46.8 45.5 43.6 41.1 - - - - - -
LSTR[4] 60.4 58.6 53.3 48.9 - - - - - -
TesTra[5] 66.2 63.5 57.4 52.6 28.0 22.4 19.8 18.1 13.7 13.5
JOADAA 67.7 63.9 62.9 59.3 42.5 37.7 35.2 20.2 19.5 19.0

TABLE II
COMPARISON WITH SOTA FOR THE ACTION ANTICIPATION TASK. 1, 2, 4, AND 6 REPRESENT THE NUMBER OF ANTICIPATED FRAMES. WE NOTICE THAT

OUR METHOD IS MORE ROBUST W.R.T. THE NUMBER OF ANTICIPATED FRAMES COMPARED TO OTHER METHODS WHERE ACCURACY DROPS
DRAMATICALLY.

Dataset 1 2 4 6
THUMOS’14 70.5 / 67.7 71.5 / 63.9 72.2 / 62.9 72.6 / 59.3
CHARADES 20.0 / 20.7 21.4 / 20.2 21.5 / 19.5 21.4 / 19.0
Multi-THUMOS 44.5 / 42.8 45.2 / 42.5 45.0 / 37.7 45.2 / 35.2

TABLE III
EFFECT OF ACTION ANTICIPATION PREDICTION AND ONLINE ACTION

DETECTION USING LONG-SHORT-TERM KNOWLEDGE. 1, 2, 4, AND 6 ARE
THE NUMBER OF ANTICIPATED FRAMES. BEST VIEWED IN COLOR.

Dataset 2 4 6
THUMOS’14 70.6 / 64.4 70.0 / 63.0 70.6 / 58.2
CHARADES 21.8 / 20.4 21.4 / 19.5 21.3 / 19.0
Multi-THUMOS 45.1 / 36.9 45.3 / 39.2 45.1 / 37.3

TABLE IV
RESULTS OF USING ONLY SHORT-TERM PAST INFORMATION ON MULTIPLE
DATASETS FOR ONLINE ACTION DETECTION AND ACTION ANTICIPATION.

2, 4, AND 6 ARE THE NUMBER OF ANTICIPATED FRAMES.

be used in two manners, either using only short-term past
(32 frames) or long-short-term past (512+32 frames). This
past information is used to infer the pseudo-future in our
approach. In Tables IV and V, we observe that our model
is more robust when it comes to using only short-term past
information (decreases by 2%) on the THUMOS’14[23],
unlike LSTR [4] where the accuracy decreases by 4.1%. One
important result of our study is that long-past knowledge is
more important for simple actions (single-action datasets)
than for complex actions (densely annotated datasets). This is
because numerous actions may occur simultaneously without
being connected in densely annotated datasets, making it
more challenging to infer relations from them. As a result,
including information from the distant past can skew model

Dataset long term past + short term past short term past
LSTR JOADAA LSTR JOADAA

THUMOS’14 69.5 72.6 65.4 70.6
Multi-THUMOS 42.0 45.2 40.0 45.1
CHARADES 20.0 21.4 19.8 21.3

TABLE V
COMPARISON OF JOADAA WITH LSTR METHOD USING LONG-PAST
INFORMATION. JOADAA IS MORE ROBUST TO UTILIZE LONG-PAST

INFORMATION.

Module THUMOS’14
Transformer encoder 71.5

LSTM+Conv 54.2
TABLE VI

COMPARING TWO TECHNIQUES FOR PAST INFORMATION PROCESSING. WE
USE A TRANSFORMER ENCODER AND A SET OF LSTM BLOCKS WITH A

CONVOLUTION LAYER.

predictions.

Recently, transformers have been widely used, since they
outperformed the existing approaches such as 3D-CNNs
and RNNs. In fact, 3D-CNNs are known to be good
general feature extractors as they can capture overall visual
appearances in a video. However, their CNN filters capture
pixel-level information in a local neighborhood but struggle
with long-term dependencies. Therefore, we limit the use of
3D-CNNs to extract video clip features for our architecture.
Furthermore, action detection tasks require a strong grasp of
long-range temporal dependencies, and transformers excel
at capturing long-term information compared to RNNs.
Therefore, the transformers are the best choice for OAD
and AA tasks. However, most papers lately use transformers



based on the previous intuition without any justification.

Table VI presents a comparison study between RNNs
(LSTMs[34]) and transformers. We replace our first encoder
for past information processing with 3 blocks of LSTM and
a convolution layer to reduce the feature map size. Results
show that transformers are better suited for capturing long-
range dependencies and produce far more better results which
justifies our design choice.

Dataset OAD+AA OAD
THUMOS’14 72.6 71.2

TABLE VII
ANALYZING THE JOADAA BEHAVIOR WITH AND WITHOUT ACTION

ANTICIPATION.

2) Ablation on the action anticipation module: Another
ablation study is done in Table VII. We conduct two main
experiments: one with the full JOADAA model and the other
one without the Action Anticipation (AA) module. We can see
that the AA module enhances online action detection, which
supports our claim that combining AA and OAD leads to better
results.

Dataset TCN+TR. Encoder FC
THUMOS’14 72.6 69.7

TABLE VIII
EFFECT OF FUSING LOCAL AND GLOBAL INFORMATION ON OAD. FC
STANDS FOR FULLY-CONNECTED LAYER. AS EXPECTED CAPTURING

DIFFERENT TYPE OF DEPENDENCIES PROVIDES BETTER RESULTS.

3) Ablation on the OAD prediction layer: Table VIII shows
the effect of fusing local and global knowledge, in contrast
to using directly the output of the decoder on the current
frame which carries only global information in it. By doing
so, our results increase by 2.9%. As argued earlier, this is
due to the fact that TCNs can extract local changes and
better detect relations in neighboring frames, whereas baseline
transformers capture long-range dependencies that sometimes
are not adapted to predicting the current frame events.

E. Qualitative Analysis

In this section, we analyze the effectiveness of our method
on densely annotated datasets. We study anticipation im-
provement on six different actions, from the Multi-THUMOS
dataset, according to their complexity as shown in Figure 3.
We observe that the gain in some of these actions can reach
37%, while in some other actions, it is almost zero.

In fact, our prediction block anticipates the upcoming frame
alongside future frames. By having access to the current frame
our model can correlate the anticipated action to the real
action, hence we can learn to better anticipate the current
frame, leading to a better-performing anticipation module.

Upon closer examination of these actions, we find that
the improvement is particularly important for activities where
there are multiple dependencies, or if the activity is intercon-
nected with many other actions. The action Run for instance,

Fig. 3. Action anticipation accuracy improvement on six actions w.r.t. TesTra
model. This is performed on the Multi-THUMOS dataset, using 4 frames as
anticipation length.

has correlations with up to seven other activities, as illustrated
in Figure 1.

The qualitative results in Figure 3 demonstrate the robust-
ness of JOADAA for complex correlated activities. This opens
doors for future studies to analyze OAD and action anticipation
on complex dense datasets.

V. CONCLUSION

Online action detection and anticipation are important fields
in computer vision that have many real-world applications.
These two tasks are highly correlated, and that is why we
design JOADAA to address both tasks jointly, improving one
using the other and vice versa. Furthermore, we discuss the
limitations of OAD and action anticipation for sparsely and
densely annotated datasets.

Our model is limited in terms of effectively using long-
range past features, especially for densely annotated datasets.
Past knowledge undoubtedly adds to current knowledge and
should lead to improvements. However, as demonstrated in this
study, just adding pre-extracted features to transformers can
also introduce noise. In the future, we are interested in tackling
this limitation by modeling past features more effectively. One
possible solution is to use an intermediate filter to learn only
important features [35] or to learn the dependencies using a
graph model to model only relevant features following [36].
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“Vivit: A video vision transformer,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 6836–6846.

[4] M. Xu, Y. Xiong, H. Chen, X. Li, W. Xia, Z. Tu, and S. Soatto, “Long
short-term transformer for online action detection,” Advances in Neural
Information Processing Systems, vol. 34, pp. 1086–1099, 2021.
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