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Abstract

Spatiotemporal predictive learning offers a self-
supervised learning paradigm that enables models to learn
both spatial and temporal patterns by predicting future
sequences based on historical sequences. Mainstream
methods are dominated by recurrent units, yet they are
limited by their lack of parallelization and often underper-
form in real-world scenarios. To improve prediction quality
while maintaining computational efficiency, we propose an
innovative triplet attention transformer designed to capture
both inter-frame dynamics and intra-frame static features.
Specifically, the model incorporates the Triplet Attention
Module (TAM), which replaces traditional recurrent
units by exploring self-attention mechanisms in temporal,
spatial, and channel dimensions. In this configuration:
(i) temporal tokens contain abstract representations of
inter-frame, facilitating the capture of inherent temporal
dependencies; (ii) spatial and channel attention combine
to refine the intra-frame representation by performing
fine-grained interactions across spatial and channel di-
mensions. Alternating temporal, spatial, and channel-level
attention allows our approach to learn more complex short-
and long-range spatiotemporal dependencies. Extensive
experiments demonstrate performance surpassing existing
recurrent-based and recurrent-free methods, achieving
state-of-the-art under multi-scenario examination in-
cluding moving object trajectory prediction, traffic flow
prediction, driving scene prediction, and human motion
capture.

1. Introduction

Predicting the future is an innate ability possessed by
humans, making it a challenging task for machines due to
the complex inner laws of the chaotic world. Spatiotem-
poral predictive learning as a data-driven approach gener-
ates future sequences based on historical sequences, with
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Figure 1. (a) Temporal attention allows cross-frame interaction to-
kens to enable long-term modeling. (b) Spatial attention partitions
the spatial tokens into global grids and performs the unshuffle op-
eration to implement global spatial interaction. (c) Channel atten-
tion is performed in each channel group with linear computational
effort. In this work, we alternately use three types of attention to
learn short- and long-range spatiotemporal information.

extensive applications including weather forecasting [34,
34], human motion forecasting [2, 42], traffic flow predic-
tion [12, 48], representation learning [24, 29], and vision-
based predictive control [13, 19]. In contrast to supervised
models that require annotated data, spatiotemporal predic-
tive models can uncover complex spatial and temporal cor-
relations in a self-supervised manner using massive unla-
beled data. Spatiotemporal data as the most accessible re-
source, these methodologies offer potential as unsupervised
pre-training paradigms for universal representation learn-
ing [4, 32, 38, 39].

Struggling with the inherent complexity and random-
ness of future events, spatiotemporal predictive learning has
progressively evolved into two approaches, recurrent-based
and recurrent-free frameworks shown in Figure 2. The
recurrent-based methods [5, 47, 48] dominate the task due
to their superior temporal modeling ability. Many main-
stream models [40, 47] with stacked recurrent units cap-
ture the temporal dependencies. Inspired by the success
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Figure 2. Two typical spatiotemporal predictive learning frameworks. The recurrent-based methods extract spatiotemporal dependencies
by cooperating with recurrent units MetaLSTM, and the information transmission between these units. The recurrent-free such as (a)
SimVP and (b) TAU extract spatiotemporal features through Inception and temporal attention unit. In contrast, Our approach implements
attention mechanisms in each dimension to learn more sophisticated spatiotemporal dependencies.

of long short-term memory (LSTM) networks [21] in se-
quential modeling, ConvLSTM [35], PredRNN [46], Pre-
dRNN++ [44], and MIM [48] propose various LSTM vari-
ants, called MetaLSTM, such as ConvLSTM, ST-LSTM,
Causal LSTM, and MIM-LSTM. Thus we abstract the gen-
eral framework of recurrent-based models on the left side
of Figure 2, which consists of two main parts: (i) various
LSTM variants MetaLSTM; (ii) mode of feature informa-
tion transmission across different time steps. While the
recurrent-based framework is superior in predictive perfor-
mance, non-parallelizable and computational inefficiency
limits its further application. Recently, recurrent-free meth-
ods [22, 37, 38] with the parallelizable advantage have been
proposed for spatiotemporal learning. As shown in Fig-
ure 2(a)(b), we demonstrated the recurrent-free framework
representing SimVP [14] and TAU [38], which also consists
of two main parts: (i) spatial encoder-decoder; (ii) latent
feature spatiotemporal translator. Despite greater computa-
tional efficiency, the above methods still have performance
gaps in some scenarios compared to the recurrent-based
model due to the irrobust modeling of intra- and inter-frame
variations.

In this work, we present an innovative triplet attention
mechanism that is able to learn short- and long-range so-
phisticated spatiotemporal dependencies while maintaining
computational efficiency. We implemented the Triplet At-
tention Module (TAM) with an elegant yet simple man-
ner, applying self-attention to the permutation of the to-

ken matrix, as shown in Figure 1. TAM is decomposed
into temporal, spatial, and channel-level attention to cap-
turing temporal and spatial evolution. Specifically, tempo-
ral attention modeling inter-frame dynamics, while spatial
and channel attention modeling intra-frame static features.
We improve spatiotemporal prediction learning by replac-
ing the dominant recurrent unit with a parallelizable pure
attention framework. Combining the advantages of a par-
allelizable framework with the power of Transformer, we
implement our proposed TAM blocks and surprisingly find
the derived model achieves state-of-the-art in an extensive
multi-scenario prediction, including synthetic moving ob-
ject trajectory prediction, traffic flow prediction, driving
scene prediction, and human motion capture. We outline
our key contributions as follows:

• We propose the novel Triplet Attention Transformer
for spatiotemporal predictive learning, which seam-
lessly integrates intra- and inter-frame feature interac-
tion to obtain powerful representation ability.

• We propose a parallelizable Triplet Attention Mod-
ule (TAM), which enables models to learn complex
short-term and long-term spatiotemporal dependen-
cies through alternating use of temporal, spatial, and
channel-level attention.

• We conduct extensive experiments that outperform
existing recurrent-based and recurrent-free networks,



achieving state-of-the-art results on Kitti&Caltech,
Human3.6M, TaxiBJ, and Moving MNIST datasets.

2. Related Work

Self-Supervised Learning. Despite the notable strides
made with supervised learning methods on large labeled
datasets, the limited labeled data constrains artificial intel-
ligence development. In contrast, self-supervised learning,
using plentiful unlabeled data, offers a promising route to-
ward achieving human-level intelligence. Self-supervised
learning creates guiding signals from the data itself via
pretext tasks, enabling models to learn data representa-
tion. Early visual self-supervised tasks involved coloriza-
tion [51], inpainting [33], rotation [16], and jigsaw [31].
Contrastive learning [17, 43, 49], while dominant, has lim-
itations on small datasets due to its pair-making process.
Masked reconstruction learning [7, 20, 25], which predicts
hidden parts from visible ones, is successful in natural lan-
guage processing but challenging in visual tasks. In contrast
to image-level methods, spatiotemporal predictive learning,
a burgeoning self-supervised approach, emphasizes video-
level information. It predicts upcoming frames by learn-
ing from previous ones, thus allowing the model to effi-
ciently segregate foreground and background based on in-
herent motion dynamics.

Spatiotemporal Predictive Learning. Recent strides in
recurrent-based models have provided valuable insights into
spatiotemporal predictive learning. ConvLSTM [35], a pio-
neering work, integrates convolutional networks into LSTM
architecture. PredRNN [46] proposes a spatio-temporal
LSTM (ST-LSTM) based on vanilla ConvLSTM modules
to model spatial and temporal variations. PredRNN++ [44]
proposes a Casual-LSTM to connect spatial and temporal
memories and a gradient highway unit to mitigate the gra-
dient vanishing. MIM [48] using differential information
between hidden states for better non-stationarity handling.
E3D-LSTM [45] incorporating 3D convolutions into LSTM
architecture. PredRNNv2 [47] proposes a curriculum learn-
ing strategy and memory decoupling loss for enhanced per-
formance. MAU [5] designs a motion-aware unit to cap-
ture motion information. SwinLSTM [40] integrates the
Swin Transformer [27] module into the LSTM architecture
for better spatiotemporal modeling. Recently, recurrent-free
models have achieved superior performance with the advan-
tage of parallelization. SimVP [14], a seminal work, ap-
plies blocks of Inception modules with a UNet architecture
to learn the temporal evolution. TAU [38] proposed the tem-
poral attention unit on this basis to capture time evolution.
DMVFN [22] proposes a dynamic multi-scale voxel flow
network to achieve better prediction performance. Although
these recurrent-free methods have achieved great success,

their performance is still inferior to recurrent-based in cer-
tain scenarios. To this end, we use pure parallelizable atten-
tion mechanisms to learn more sophisticated spatiotemporal
dependencies.

Vision Transformer. Vision Transformer [10] (ViT)
demonstrates exceptional performance across various vi-
sion tasks. To enhance its efficiency and effectiveness in
image classification tasks, a series of ViT-based approaches
have been proposed. Swin Transformer [27] employs lo-
cal attention windows and implements shift operations to
augment window-based interactions. DaViT [8] introduces
a dual self-attention mechanism aimed at capturing global
context with linear computational complexity. Due to the
remarkable performance of ViT, researchers are now using
them to understand video content. Uniformer [26] organ-
ically unifies convolution and self-attention to solve local
redundancy and global dependency. TimeSformer [3] and
ViViT [1] explore separate strategies for temporal and spa-
tial attention, achieving excellent outcomes. MViT [11] in-
troduces multiscale features for video sequences, and Video
Swin Transformer [28] adapts the model to 3D settings.
However, most existing models concentrate on video clas-
sification and works about video prediction using ViT are
still limited. Is there a solution that combines the strengths
of recurrent-based and recurrent-free architecture and takes
advantage of the high performance of ViT? Therefore, we
propose a triplet attention transformer for efficient spa-
tiotemporal predictive learning.

3. Preliminaries

3.1. Problem Definition

Given Xt:T
in = {Xt, . . . , XT }, the objective is to predict

the most reasonable sequences of length T ′ in the future,
denoted as XT+1:T+T ′

out = {X̂T+1, . . . , X̂T+T ′}. We rep-
resent the spatiotemporal sequences as a four-dimensional
tensor, i.e., Xt:T

in ∈ RT×C×H×W , where C, T , H , and W
denote channel, temporal or frames, height and width, re-
spectively. The model with learnable parameters θ learns
a mapping Fθ : X t:T

in 7→ X T+1:T+T ′

out by exploring spa-
tiotemporal dependencies. Concretely, we use the stochas-
tic gradient descent algorithm to learn the mapping Fθ and
find a set of parameters θ⋆, which minimize the difference
between the prediction and the ground-truth, the optimal pa-
rameters θ⋆ are:

θ⋆ = argmin
θ

L
(
Fθ

(
Xt:T

in

)
, XT+1:T+T ′

out

)
, (1)

where L denote a loss function. In this paper, we adopt the
vanilla Mean Squared Error (MSE) as our loss metric.
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Figure 3. The detailed architecture for triplet attention module. It contains three attention blocks: (a) Causal temporal attention, (b)
Group channel attention, and (c) Grid unshuffle attention. By alternately using the three types of attention, our model enjoys the benefit of
capturing both spatial dependency and temporal variation. (d) Gating feed-forward network reduces redundant information in channels.

3.2. Self-Attention Mechanism

Assume a visual feature with dimension RN×C , where
N is the number of total patches and C is the number of
total channels. Simply applying the standard global self-
attention leads to quadratic complexity about input tokens.
It is defined as:

A(Q,K,V) = Concat (head1, . . . , headNh
) ,

where headi = Attention (Qi,Ki,Vi) ,

= Softmax

[
Qi (Ki)

T

√
Ch

]
Vi,

(2)

where Qi = XiW
Q
i ,Ki = XiW

K
i , and Vi = XiW

V
i

are RN×Ch dimensional visual tokens with Nh heads, Xi

denotes the ith head of the input tokens and Wi denotes the
projection weights of the ith head for Q,K,V, and C =
Ch ∗ Nh. Please note that we omit the output projection
WO. It’s noteworthy that, due to potential large values of
N (e.g., 64 × 64), the computational implications can be
significant.

In this paper, we alternatively arrange causal temporal
attention, grid unshuffle attention, and group channel atten-
tion to learn more sophisticated spatiotemporal dependen-
cies with less complexity, as shown in Figure 3.

4. Proposed Method
We approach the concept of self-attention from an al-

ternative perspective, proposing a Triplet Attention Module

(TAM) that integrates temporal, spatial, and channel-level
attention for optimized spatiotemporal predictive learning.
Striving for simplicity, the model follows the general frame-
work in Figure 2(c), incorporates the patchify and un-
patchify module which comprises vanilla 2D convolutional
and transposed convolutional layers. TAM leverages the
self-attention mechanism across varying dimensions, as
outlined in Figure 1, we introduce three distinct attention
modules: Causal Temporal Attention, Grid Unshuffle Atten-
tion, and Group Channel Attention. In the middle layer, the
repeated stacking of TAM facilitates the learning of both
short-term and long-term complex spatiotemporal depen-
dencies. Therefore, a comprehensive discourse on these
modules is provided subsequently.

4.1. Causal Temporal Attention

Previous vision-based self-attention [27, 41, 52], tokens
have been defined using pixels or patches, emphasizing spa-
tial dimensions. Instead of spatial attention, we apply at-
tention mechanisms on the temporal-level tokens to capture
long-term dependencies. This allows temporal tokens to
interact with inter-frame information more efficiently. Al-
though our approach employs a non-autoregressive frame-
work, it can be easily extended to parallelizable autoregres-
sion compared to non-parallelizable recurrent-based mod-
els. Specifically, we achieve this by masking out (setting to
−∞) all values of the upper triangle of the attention matrix
to prevent previous frames from seeing subsequent frames,
as shown in Figure 3(a).



Simple permutation of feature dimensions can obtain
vanilla temporal-level attention. Formally, let T denote the
number of frames, N the number of patches, and C the
number of channels. Therefore, the token of each frame
is designed to interact across other frames. It is defined as:

Atemporal(Q,K,V) = {A (Qi,Ki,Vi)}Ni=0 ,

A (Qi,Ki,Vi) = Softmax

[
M(QT

i Ki)√
Ck

]
VT

i ,
(3)

where Qi,Ki,Vi ∈ RT×C are frame-wise image-level
queries, keys, and values, and M represents the mask op-
eration. The aforementioned equation can be adapted to
a multi-head version by dividing the channels into several
groups. More details are shown in Figure 3(a).

4.2. Grid Unshuffle Attention

To address the quadratic complexity with the number of
input tokens in ViT, we adopted the approach from prior
research [30, 41] involving gridded feature maps to aggre-
gate global tokens. A smaller grid size M will result in a
gridding effect, Figure 4 illustrates our use of the unshuf-
fle operation to permutate the spatial token to the channel
token for an expanded grid size M . Specifically, as de-
picted in Figure 3(c), for an input feature map X ∈ RN×C

and an unshuffle factor r, we partition X into M × M
non-overlapping windows. Subsequently, we gather tokens
at identical locations in each window, denoted as Xp ∈
RP 2×M2×C where P × P represents the total tokens per
window and N = P 2 ×M2. We then employ three linear
layers, WQ

i , WK
i , and WV

i , to obtain Qi, Ki, and Vi:

Qi,Ki,Vi = WQ
i (Xp),W

K
i (Xp),W

V
i (Xp), (4)

Here, Qi maintains its channel dimension, whereas WK
i

and WV
i reduce it to C/r2, resulting in Ki ∈ RP 2M2×C/r2

and Vi ∈ RP 2M2×C/r2 . Spatial tokens in these ma-
trices are permuted to channel tokens, producing Kp

i ∈
RC×M2/r2 and Vp

i ∈ RM2/r2×C . Using Qi with these
permuted tokens, we execute the self-attention operation,
enabling larger grid sizes (e.g., 24× 24) with fewer compu-
tations than 8× 8, yet achieving superior performance. It is
defined as:

Aspatial(Q,K,V) = {A (Qi,K
p
i ,V

p
i )}

P
i=0 ,

A (Qi,K
p
i ,V

p
i ) = Softmax

[
(Qi(K

p
i )

T

√
Ck

+B

]
Vp

i ,
(5)

where B is the relative position embedding.

4.3. Group Channel Attention

Channel Attention is similar to the above modules, as
illustrated in Figure 1(c), we employ self-attention in the

（a）M = 2, P = 2, N = 16 （b）M = 4, P = 1, N = 16

P = 2

M = 2

P = 1

M = 4

Figure 4. Compressing channels permutate spatial tokens into
channel tokens allowing larger grid size M with less computation.

channel dimension. Notably, in many scenarios, the num-
ber of channels will be higher (e.g., C = 256). To mitigate
the inherent quadratic complexity of self-attention concern-
ing the channel dimension, we group channels into multiple
groups and perform self-attention within each group. For-
mally, let Ng denote the number of groups and Cg the num-
ber of channels in each group, we have C = Ng ∗Cg . More
details are shown in Figure 3(b). It is defined as:

Achannel(Q,K,V) =
{
A (Qi,Ki,Vi)

T
}Ng

i=0
,

A (Qi,Ki,Vi) = Softmax

[
QT

i Ki√
Cg

]
VT

i .
(6)

where Qi,Ki,Vi ∈ RN×Cg as channel-grouped queries,
keys, and values. To accommodate frames with different
sizes, the projection layers W remain performed along the
channel dimension. We also use conditional positional en-
coding [6] (CPE) to provide location information.

5. Experiments
Multi-Scenario Examination. Our model is quantita-
tively evaluated across expansive real-world scenarios with
diverse scales, including traffic flow prediction, driving
scene prediction, and human motion capture. For synthetic
data scenarios such as Moving MNIST [36], we also offer
comprehensive experiments. Each dataset gathers from var-
ious domains, from micro to macro scales. The details of
dataset statistics are shown in Table 1. For more experi-
ments, please refer to the Supplementary Materials.

• Synthetic Moving Object Trajectory Prediction.
The Moving MNIST dataset [36] as a foundational
benchmark that has been widely employed in various
studies. This dataset is comprised of video sequences
in which two digits traverse across a frame of dimen-
sions 64 × 64 pixels. For each digit, its velocity is
determined by two factors: (i) a direction randomly
chosen from a unit circle; (ii) a magnitude arbitrarily
selected from a predefined range.

• Traffic Flow Prediction. Efficient traffic governance
and public safety depend on accurate crowd dynamics
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Figure 5. Qualitative visualizations on (a) Moving MNIST and (b) TaxiBJ, where prediction error = |ground truth - prediction|.

prediction. We employ the TaxiBJ dataset [50], involv-
ing taxi GPS trajectories from Beijing bifurcated into
two channels: inflow and outflow. This dataset has a
30-minute interval and a spatial granularity of 32×32.
Our approaches to data preprocessing, model training,
and performance assessment are congruent with proto-
cols by PredNet [18] and MIM [48].

• Driving Scene Prediction. In autonomous driving,
predicting future dynamics is critically important in
complex and non-stationary environments. We em-
ploy two datasets for evaluation purposes: KITTI [15]
extensively utilized in the fields of autonomous driv-
ing and robotics; Caltech Pedestrian [9] specializes
in pedestrian detection. We train our model on the
KITTI dataset and evaluate performance on the Cal-
tech Pedestrian benchmark.

• Human Motion Capture. Predicting human motion
remains a formidable challenge due to the considerable
variability across individual behaviors and actions. In
our study, we utilize the Human3.6M [23] dataset,
encompassing high-resolution motion capture videos.
Following previous work settings [18], we employ four
observed frames to predict the subsequent four frames.

Evaluation Metrics. We evaluate the performance of the
proposed model using various metrics. For pixel-wise error,
we consider mean squared error (MSE), mean absolute error
(MAE), and root mean squared error (RMSE). Structural
similarity index measure (SSIM) and peak signal-to-noise
ratio (PSNR) are used for similarity evaluation.

Dataset Train Test C H W T T ′

Kitti&Caltech 3,160 3,095 3 128 160 10 1
Human3.6M 73,404 8,582 3 256 256 4 4

TaxiBJ 20,461 500 2 32 32 4 4
Moving MNIST 10,000 10,000 1 64 64 10 10

Table 1. The details of dataset statistics. We detail the number of
samples, the input frames denoted as T , and the predicted frames
represented as T ′ for both the training and testing subsets.

Implementation Details. We use the PyTorch framework
on a single NVIDIA-V100 GPU for our proposed method.
The model trains with mini-batches of 16 video sequences
using the AdamW optimizer, the OneCycle learning rate
scheduler, and a weight decay of 5e−2. The learning rate,
selected from {1e−2, 5e−3, 1e−3}, ensures stable training.
We employ stochastic depth as regularization.

5.1. Synthetic Moving Object Trajectory Prediction

Moving MNIST. This dataset is a standard benchmark for
evaluating spatiotemporal predictive learning methods. We
compare our proposed approach with various recent strong
baselines. The quantitative results are detailed in Table 2,
and visualizations of the predictions can be found in Fig-
ure 5(a). Notably, our method exceeds all baselines under
four separate metrics. Compared to ConvLSTM [35], our
method reduces the MSE from 103.3 to 17.55 and increases
the SSIM from 0.707 to 0.966. In contrast to MIM [48],
our method can accurately predict motion trajectories and
appearances of two digits. We also tried to experiment with
autoregressive (w/ AR) methods of the recurrent-based ar-
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chitectures, finding that while it improved prediction qual-
ity, more time was needed to complete the training.

Moving MNIST (10 → 10 frames)
Method Reference MSE MAE SSIM PSNR

↓ ↓ ↑ ↑
ConvLSTM [35] NIPS’2015 103.3 182.9 0.707 16.17
PredRNN [46] NIPS’2017 56.8 126.1 0.867 19.12

PredRNN++ [44] ICML’2018 46.5 106.8 0.898 20.11
MIM [48] CVPR’2019 44.2 101.1 0.910 20.31

E3D-LSTM [45] ICLR’2019 41.3 87.2 0.910 20.70
MAU [5] NIPS’2021 27.6 86.5 0.937 22.59

PredRNNv2 [47] TPAMI’2022 48.4 129.8 0.891 20.12
SimVP [14] CVPR’2022 23.8 68.9 0.948 23.19
TAU [38] CVPR’2023 19.8 60.3 0.957 24.53

DMVFN [22] CVPR’2023 123.6 179.9 0.814 16.15
Ours - 17.55 59.81 0.960 25.08

Ours w/ AR - 15.68 51.85 0.966 25.71

Table 2. Quantitative results on the Moving MNIST dataset.

5.2. Traffic Flow Prediction

Taxibj. Traffic flow prediction presents significant chal-
lenges due to the unpredictability introduced by human
behavior. Our method is evaluated using the TaxiBJ
dataset [50], which embodies the complex nature inherent
in real-world traffic systems. The complexity of road net-
works and nonlinear temporal behaviors limit the efficacy
of traditional forecasting methods.

Table 3 reports the quantitative results, while Figure 5(b)
offers qualitative visualizations. To optimize the visual in-
terpretation, the error scale is limited to 0.1 and focuses

solely on the inflow case. Despite minor deviations be-
tween observed and future data frames, our model consis-
tently yields precise forecasts compared to recurrent-based
methods. Owing to the robust spatiotemporal relationships
captured by the triplet attention module, our methodology
sets new benchmarks across all evaluation metrics, suggest-
ing its suitability for application in traffic flow prediction.

TaxiBJ (4 → 4 frames)
Method Reference MSE MAE SSIM PSNR

× 100↓ ↓ ↑ ↑

ConvLSTM [35] NIPS’2015 48.5 17.7 0.978 37.38
PredRNN [46] NIPS’2017 46.4 17.1 0.971 38.52

PredRNN++ [44] ICML’2018 44.8 16.9 0.977 38.71
MIM [48] CVPR’2019 42.9 16.6 0.971 38.71

E3D-LSTM [45] ICLR’2019 43.2 16.9 0.979 38.75
PhyDNet [18] CVPR’2020 41.9 16.2 0.982 39.18
SimVP [14] CVPR’2022 41.4 16.2 0.982 39.17

PredRNNv2 [47] TPAMI’2022 38.3 15.6 0.983 39.38
TAU [38] CVPR’2023 34.4 15.6 0.983 39.50

SwinLSTM [40] ICCV’2023 43.1 17.3 0.977 38.71
Ours - 31.3 15.1 0.984 39.67

Table 3. Quantitative results in the TaxiBJ dataset.

5.3. Driving Scene Prediction

Kitti&Caltech. The ability to generalize is important in
artificial intelligence. Traditional supervised learning often
has limitations when applied to diverse domains. In con-
trast, self-supervised learning methods, such as contrastive
learning and masked reconstruction learning, aim to learn
robust representations from unlabeled data. These mod-
els then evaluate generalization ability through downstream



tasks. In this paper, we evaluated this ability across different
datasets, where we train our model on the KITTI [15] and
then evaluate its performance on the Caltech Pedestrian [9].

Figure 6 presents our qualitative visualizations, while
Table 4 offers the quantitative results. Remarkably, our
method not only surpasses all recurrent-based approaches
but also establishes new state-of-the-art results. It can be
seen from the prediction errors in the last two rows of Fig-
ure 6(a), that our model effectively predicts both lane lines
and distant vehicles. Given its consistent accuracy in deal-
ing with variations in lighting and lane lines, our approach
shows promise for application in autonomous vehicles.

Kitti&Caltech (10 → 1 frames)
Method Reference MSE MAE SSIM PSNR

↓ ↓ ↑ ↑

ConvLSTM [35] NIPS’2015 139.6 1583.3 0.9345 27.46
PredRNN [46] NIPS’2017 130.4 1525.5 0.9374 27.81

PredRNN++ [44] ICML’2018 129.6 1507.7 0.9453 27.89
MIM [48] CVPR’2019 127.4 1476.5 0.9461 27.98

E3D-LSTM [45] ICLR’2019 200.6 1946.2 0.9047 25.45
PhyDNet [18] CVPR’2020 312.2 2754.8 0.8615 23.26

MAU [5] NIPS’2021 177.8 1800.4 0.9176 26.14
SimVP [14] CVPR’2022 160.2 1690.8 0.9338 26.81

PredRNNv2 [47] TPAMI’2022 147.8 1610.5 0.9330 27.12
TAU [38] CVPR’2023 131.1 1507.8 0.9456 27.83

DMVFN [22] CVPR’2023 183.9 1531.1 0.9314 26.78
Ours - 122.9 1416.2 0.9469 28.18

Table 4. Quantitative results in Kitti&Caltech dataset.

5.4. Human Motion Capture

Human3.6M. Predicting human motion is challenging
due to both the need for high-resolution forecasting and
the complexity introduced by human unpredictability. To
provide a comprehensive evaluation from multiple perspec-
tives, we employ MSE, MAE, SSIM, and PSNR as metrics.
Table 5 provides qualitative results, and it can be seen that
our method consistently outperforms the recurrent-based
methods and establishes a strong baseline. We also present
the visualization in Figure 6(b), where the smaller predic-
tion error reveals that our method can handle real-world dy-
namic scenarios.

5.5. Ablation Study

Triplet attention layout. We tested four configurations
for our triplet attention mechanism: (i) temporal attention
first; (ii) spatial attention first; (iii) channel attention first;
and (iv) triplet attention parallel. Table 6 results show sim-
ilar performance across all settings, with a slight edge for
‘temporal attention first’.

Effects of different attention. We evaluate the contribu-
tion of different attentions by removing certain attention to

Human3.6M (4 → 4 frames)
Method Reference MSE MAE SSIM PSNR

↓ ↓ ↑ ↑

ConvLSTM [35] NIPS’2015 125.5 1566.7 0.9813 33.40
PredRNN [46] NIPS’2017 113.2 1458.3 0.9831 33.94

PredRNN++ [44] ICML’2018 111.3 1454.4 0.9832 33.92
MIM [48] CVPR’2019 112.1 1467.1 0.9829 33.97

E3D-LSTM [45] ICLR’2019 143.3 1442.5 0.9803 32.52
PhyDNet [18] CVPR’2020 125.7 1614.7 0.9804 33.05

MAU [5] NIPS’2021 127.3 1577.0 0.9812 33.33
SimVP [14] CVPR’2022 115.8 1511.5 0.9822 33.73

PredRNNv2 [47] TPAMI’2022 114.9 1484.7 0.9827 33.84
TAU [38] CVPR’2023 113.3 1390.7 0.9839 34.03

Ours - 108.4 1389.1 0.9839 34.18

Table 5. Quantitative results in Human3.6M dataset.

compare performance on the Human3.6M [23] dataset. Ta-
ble 6 shows the results, it can be seen that temporal attention
is relatively important as it models inter-frame dynamics,
and the other two attentions model intra-frame static.

Method SSIM↑ PSNR↑

Temporal Attention First 0.9839 34.18
Spatial Attention First 0.9826 34.10
Channel Attention First 0.9824 34.07
Triplet Attention Parallel 0.9804 33.12

Triplet Attention Module 0.9839 34.18
- Temporal Attention 0.9794 (-0.0045) 32.77 (-1.41)
- Spatial Attention 0.9809 (-0.0030) 33.26 (-0.92)
- Channel Attention 0.9813 (-0.0026) 33.55 (-0.63)

Table 6. Ablation study in Human3.6M dataset.

6. Conclusion

This work introduces a novel triplet attention mecha-
nism comprising causal temporal attention, grid unshuffle
attention, and group channel attention. This mechanism ef-
fectively learns short and long-range spatiotemporal depen-
dencies while maintaining computational parallelism. The
three self-attentions are complementary: (i) temporal atten-
tion captures temporal dependence due to the abstract rep-
resentations in each temporal token; (ii) spatial and channel
attention together refine intra-frame representation via fine-
grained interactions across spatial and channel dimensions.
Extensive validation across multiple scenarios demonstrates
the superior performance of our method. In sum, our ap-
proach highlights the importance of both intra-frame and
inter-frame variations and provides a novel perspective on
spatiotemporal predictive learning.
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