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Abstract

Visual as well as genetic biometrics are routinely em-
ployed to identify species and individuals in biological
applications. However, no attempts have been made in
this domain to computationally enhance visual classifica-
tion of rare classes with little image data via genetics. In
this paper, we thus propose aligned visual-genetic learn-
ing as a new application domain with the aim to implic-
itly encode cross-modality associations for improved per-
formance. We demonstrate for the first time that such align-
ment can be achieved via deep embedding models and that
the approach is directly applicable to boosting long-tailed
recognition (LTR), particularly for rare species. We exper-
imentally demonstrate the efficacy of the concept via appli-
cation to microscopic imagery of 30k+ planktic foraminifer
shells across 32 species when used together with indepen-
dent genetic data samples. Most importantly for practi-
tioners, we show that visual-genetic alignment can signif-
icantly benefit visual-only recognition of the rarest species.
Technically, we pre-train a visual ResNet50 deep learning
model using triplet loss formulations to create an initial
embedding space. We re-structure this space based on ge-
netic anchors embedded via a Sequence Graph Transform
(SGT) and linked to visual data by cross-domain cosine
alignment. We show that an LTR approach improves the
state-of-the-art across all benchmarks and that adding our
visual-genetic alignment improves per-class and particu-
larly rare tail class benchmarks significantly further. Over-
all, visual-genetic LTR training raises rare per-class accu-
racy from 37.4% to benchmark-beating 59.7%. We con-
clude that visual-genetic alignment can be a highly effec-
tive tool for complementing visual biological data contain-
ing rare classes. The concept proposed may serve as an im-
portant future tool for integrating genetics and imageomics
towards a more complete scientific representation of taxo-
nomic spaces and life itself. Code, weights, and data splits
are published for full reproducibility.

1. Introduction
1.1. Motivation

Visual, Genetic, and Long-Tailed Data in Biology.
Both genetic and visual biometrics are extensively utilised
to support species and individual identification in biological
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Figure 1. Visual-Genetic Co-Learning Architecture. This work
combines imageomics with genetics to improve on visual biomet-
ric recognition of particularly rare species in biology. (1) 30k+ im-
ages of 32 species from the EndlessForams dataset are used to train
(2) a traditional metric deep learning baseline for species classifi-
cation. However, we also use (3) independent rDNA sequence data
(4) transformed into the same embedding space via SGT. Each
species can now also be represented via genetic anchor informa-
tion. (5) Cross-modality triplets of a genetic anchor and a positive
and negative visual embedding are co-used via (6) the cosine trans-
form to learn a visual-genetic species space adjusting late layers of
the visual embedding. We show that (7) cosine KNN visual-only
testing of such a network when weight-balanced can (8) signifi-
cantly improve performance, particularly for rare species.
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applications [28]148]50]. Yet, modalities are usually learned
and processed independently without explicitly considering
cross-modal information. In how far information from ge-
netics of a species can assist classification of visuals of the
phenotype is of particular practical interest given that vi-
sual source or training data for imageomics [3} 46 48} [53]]
may be prohibitively limited for some classes (e.g. visual
samples for very rare species). In fact, the distribution
of most biological species datasets [[19} [39] follows a
‘long-tailed’ pattern or at least contain many rare classes.
Thus, models trained on such data often struggle accurately



to encode and consequently recognise less common species.

Cross-Modal Taxonomic Information. In living or-
ganisms, the relationship between taxa is traditionally de-
termined by their genetics. However, sister taxa that are
closely related commonly share morphological features ob-
servable via imaging techniques too. Consequently, visual
and genetic feature distances between species as well as
their orientation in any overarching, cross-domain feature
space should be related to some degree. We therefore hy-
pothesise that enriching imageomic representation spaces
via information transfer from genetics may enhance deep
visual species representation models particularly when the
latter is built under long-tailed training data limitations.

Deep Visual-Genetic Embedding. In this paper and fol-
lowing the above line of argument, we explore enriching
deep imageomics for taxonomic species classification with
independently sourced genetic information in order to im-
prove visual-only species recognition performance for long-
tailed datasets. Fig.[I|provides a schematic overview of the
proposed approach and how it combines imageomics with
genetics to improve visual classification of rare species. In
particular, we propose utilising relative orientation infor-
mation from rDNA (ribosomal genes DNA) embeddings to
optimise visual embeddings. Technically, state-of-the-art
(SOTA) triplet loss formulations [23]] for learning metric vi-
sual classification spaces are expanded across modalities in
a second learning stage that uses rDNA anchors and cosine
similarity metrics to draw in additional information from
the genetic domain. We test the approach on the challeng-
ing task of identifying planktic foraminifer species at scale,
which is of critical importance for paleoclimatology.

1.2. Paper Contributions

To the best of our knowledge, this work employs rDNA
information to guide the orientations of deep visual embed-
dings for species recognition for the first time. Our key con-

tributions are as follows:
* Concept. We propose a new type of modality inte-

gration for imageomics combining visual and genetic
information in one metric space usable for inference.

* Implementation. We provide a deep transfer learning
framework that implements the new concept for bio-
logical applications and publish the full source code of
this visual-genetic co-learning architecture.

* Experimentation. We demonstrate that the proposed
implementation achieves state-of-the-art accuracy re-
sults whilst significantly boosting tail class recognition
performance for a visual species recognition task on a
large 30k+ example image set covering 32 species of
difficult to identify planktic foraminifers. We provide
all weights and data splits for full reproducibility.

e Analysis. We structurally analyse the novel visual-
genetic spaces created and interpret as well as visualise
effects of cross-modal alignment.
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Figure 2. Metric Learning via Reciprocal Triplet Loss. Using
triplets of an anchor sample (disc), a sample of the same (blue
core triangle), and a sample of a different class (white core trian-
gle) yields three vectors z,, Tp, and x,. The parameter-free loss
function Lrrr adjusts Eucledian distances d(-,-) in embedding
space by shortening d(zq, xp) and lengthening d(z4, ) and can
in conjunction with other losses [23] yield state-of-the-art results
for learning species spaces directly usable for inference.

2. Related Work
2.1. Microfossil Classification via Metric Learning

Metric Learning. The task of learning a classification-
relevant similarity function from data is known as Metric
Learning [2, 4, [11} |41} |47]], that is creating an embedding
function that produces feature vectors in a space where sam-
ples of the same class cluster together far away from other
data. Back-propagation with contrastive or triplet losses in
the mix of cost functions [2, 23] can effectively implement
such a system. The resulting distance metric can be used to
perform tasks such as classification for both open or closed-
set scenarios [2], clustering, and retrieval [12].

Deep Microfossil Classification. Recent taxonomic ap-
plications [23]] of deep metric learning to visual microfos-
sil identification achieve SOTA performance beyond other
CNN approaches [17,[30] when evaluated on the large End-
less Forams dataset [17]. Reciprocal Triplet Loss, as il-
lustrated in Fig. [2] together with the SoftMax Loss form
the key cost functions used in these SOTA imageomics sys-
tems [23]. By combining the two losses both class-relative
and class-absolute information can be utilised during learn-
ing. However, we note that the principal concept of ad-
justing distances via an anchor and nearby samples is not
bound to a single modality such as vision. Instead, it pro-
vides an opportunity to transfer information across modali-
ties by mixing anchor and sample modalities for alignment
of different domains within one space (see Section4.2).

2.2. Long-Tailed Recognition

Natural Data Collections. The distribution of most
biological datasets including microfossil [17] datasets and
other natural image collections [39} 51| is long-tailed, that



is a few classes have a lot more data than many other
classes. This uneven distribution causes most machine
learning models to perform poorly on the many rare classes.

Specific Long Tail Techniques. Long-tailed Recogni-
tion (LTR) techniques are used to improve the performance
of models with a focus on rare classes. Different LTR meth-
ods have been proposed, such as re-sampling the training
data to balance class distributions [36, [18]], re-weighting
classes and individual training examples [J], transferring
feature representations [54]] from common classes to rare
classes, relating head and tail information [39]], decoupling
feature learning and classifier learning [21) I56], or using
self-supervised or ensemble models [52]. For a more com-
prehensive overview of LTR, refer to the survey paper [53]].
Since our target data are of taxonomic nature and contain
rare classes LTR techniques offer a tool to potentially im-
prove performance. In addition, this allows us to separate
LTR compensation from the effect achieved by integrating
genetic information. Thus, in this work, we explicitly utilise
weight balancing [[L], one of the latest state-of-the-art reg-
ularization approaches to LTR making use of weight decay
and Max-Norm constraints (see Section [6.1|for its impact).

2.3. Genetic Data Embedding

Complexity of Genetic Data. In order to integrate ge-
netic information into other spaces sequence data needs to
be placed or ‘embedded’ within them. Genetic sequence
embedding is a challenging task due to the structuredness of
potentially unaligned sequences of arbitrary length and con-
tent. In addition, a good embedding function for sequences
has to capture both short- and long-term dependencies be-
tween symbols in the sequences.

Embedding of Genetic Sequences. For this task, Ran-
jan et al. [40] proposed the approach of a Sequence Graph
Transform (SGT), a technique that represents sequences via
the statistical relationships between symbols and casts this
information into a feature vector. We opt to utilise this ap-
proach for creating embedding functions since it captures
both local and global patterns into fixed-dimensional em-
bedding vectors. In addition, the produced features are in-
deed interpretable where components represent directional
dependencies between symbol pairs. Fig. 3| visualises key
features of the SGT technique. Note that, the grouping of
pairs of symbols towards a new alphabet ensures the embed-
ding vector is not dimensionality-limited — despite the fact
that the square of symbol cardinality is the fixed embed-
ding vector dimension. Section details the procedure
followed for genetic data in this work.

2.4. Cross-Domain Transfer Learning

Knowledge Carry-over. Applying knowledge gained
from one domain to a different — but related — domain for
improved performance is known as Cross-Domain Trans-
fer Learning. Such a methodology is clearly most useful if
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Figure 3. Genetic Embeddings via Sequence Graph Transform.
(a) After creating an alphabet V' of 16 symbols from pairs of the
4 bases, we use the Sequence Graph Transform to map a given
genetic sequence, S into a feature vector ¥g of size |V|x|V].
This vector is used as embedding and can also be interpreted as a
graph that captures both long and short-term interactions between
different symbols of the sequence. (b): 2D t-SNE visualisation of
rDNA sequence embeddings for the 32 microfossil species.

data is limited in the target domain itself. Since long-tailed
taxonomic image collections exhibit exactly this property,
we propose to transfer knowledge learned from the genetic
domain into the visual domain.

Vision-Language Transfer. Classic transfer learning
approaches in the literature often focus on bridging image
and text domains. They include DeViSE (Deep Visual-
Semantic Embedding) [10] to perform zero-shot image
classification via Word2Vec [32] embeddings used to link
visual and language-based semantics. Karpathy et al. pro-
posed VSA (Deep Visual-Semantic Alignments) [24] for
this task, which uses R—CNN [[13] and BRNN [43] to ex-
tract image features and text features, respectively. Kiros
et al. proposed UVSE (Unifying Visual-Semantic Em-
bedding) [26], which uses a VGG-19 [45] network to ex-
tract image features and an LSTM [15] network for text.
This was later extended to include hard negative mining in
VSE++ [8].

Concept of Compatible Representation. One key fea-
ture of most approaches is the mapping of different domains
into a common data format where information transfer be-
comes possible. Our cross-modality learning follows this
concept by mapping visuals via ResNet50 and rDNA in-
formation via SGT into a common space. We use settings
similar to DeViSE for cross-domain training.

Alignment Mechanism. DeViCE establishes a shared
embedding space for visual and semantic features, origi-
nally utilizing CNNs for visual descriptors and Word2Vec
for semantic descriptors. For alignment, the CNN’s late
projection layers are trained to align visual descriptors with
semantic ones in a shared space, originally capturing image-



text relationships. Inspired by DeViCE, we use CNNs for
image representations and SGT for genetic ones. Similarly,
we train projection layers of the CNN to align visual de-
scriptors with genetic ones, as depicted in Fig. [I]and Fig.[3

3. Datasets
3.1. Endless Forams Imagery

Taxa with Visual-Genetic Support. We utilise 32 out
of 35 species from the public Endless Forams image li-
brary [[17] for all our experiments. That is we utilise exactly
those species for which we were able to gather sufficient ge-
netic rDNA information. Figure[d]shows an associated phy-
logenetic tree. Endless Forams is one of the largest datasets
of its kind and freely available atlendlessforams.org
supporting full reproducibility of our experiments. In its
entirety, it contains 34,640 species-labelled and location-
centred images of 35 different marine calcareous plankton
species (foraminifera) as detailed phylogenetically in Fig.[4]
Further, Fig. [6] depicts the covered taxa and Fig. [7] shows a
histogram of sample sizes.

3.2. Endless Forams Genetics

Genetic Data Sources. For genetic information, we use
a fragment of the 18S rDNA sequences (ribosomal genes
DNA) of the 32 species selected in the study to serve as
embeddings. We select the sequences from the Planktonic
Foraminifera Reference Database [33] publically available
athttp://pfr2.sb-roscoff.fr,|and included se-
quences published afterwards [34} 135 49]. Overall, we re-
tained 878 sequences covering the entire barcode selected
for foraminifera studies [38]] and provide the sequence list
as supplementary material.

Pylogenetic Tree Inference. As discussed, Figure
reconstructs the evolutionary relationships between extant
species via phylogenetic inference from sequence repre-
sentation to a tree structure. We included further species
to cover the full phylogenetic spectrum of planktonic
foraminifera in this representation. The sequences were
automatically aligned using MAFFT v.7 [23], and we in-
ferred the phylogenetic tree with RAXML-NG [27] using
the model GTR+I+G that was selected with Modeltest-
NG [6] and with 100 non-parametric bootstrap runs.

4. Generating Visual-Genetic Spaces
4.1. Metric Visual-Only Pre-Training.

Constructing Latent Image Embeddings. In order to
construct a maximally rich initialisation of a task-aligned
data space before visual-genetic integration we first con-
struct a traditional deep mapping from source images to a
class-distinctive embedding space [23]. The simplest way
of creating such a metric embedding is via the use of a ba-

sic contrastive loss L¢ [[14] using pairs of data points:

(1-Y)

Lo ="

d(z1,x2) + gmaa:(o, a—d(z1,23)), (1)

where x1 and x, are the embedded input vectors, Y is a bi-
nary label denoting class equivalence/difference for the two
inputs, and d(-, -) is the Euclidean distance between two em-
beddings. However, this formulation cannot put similarities
and dissimilarities between different embedding pairs in re-
lation. A triplet loss formulation [42] instead utilises three
embeddings ., T, and x,, denoting an anchor, a positive
example of the same class, and a negative example of a dif-
ferent class, respectively:

Ly = maz(0;d(zq, zp) — d(zq, 2,) + @), 2)

where « is the margin hyper-parameter. Reciprocal Triplet
Loss as visualised in Figure 2]removes the need for this pa-
rameter [31]] and naturally accounts for offsetting the impact
of large margins far away from the anchor:

Lprr = d(zq,zp) + 1/d(2a, n). 3)

As shown by recent work [29, [16], including a SoftMax
term in this loss can improve performance further. Thus,
SoftMax and Reciprocal Triplet Loss can be combined into
a standard formulation used here and published in [2] as a
mixture with balancing hyper-parameter \:

Tclass
W) + ALRrL- “)
Application-Specific Relevance and Baseline. For the
foraminifer classification problem at hand this allows for
the use of both relative inter-species information captured
by the L7 component as well as absolute species infor-
mation captured by the SoftMax term as back-propagation
gradient components. Training a latent embedding space as
described essentially acts as a single modality baseline (see
Fig.[I), replicating a SOTA image-only deep learning solu-
tion following [23] to solve the biometric species identifica-
tion problem.

L = —log(

4.2. Genetic to Visual Information Transfer

Multi-Symbol Genetic Embedding. rDNA sequences
as resulting from genetic sources as described in Section[3.2]
strictly contain four base symbols, thatis A, C, G, T Thus,
the SGT algorithm applied to this raw data would produce
an embedding vector of very low dimensionality, that is
4 x 4 = 16. For rDNA vectors to structurally fit the high-
dimensionality required for visual embeddings, we there-
fore bin every two symbol terms in rDNA sequences to
form a new alphabet of 4 x 4 = 16 symbols made of 4
base symbols. Application of SGT to this new symbol set
then creates embeddings of size 16 x 16 = 256 as required.
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Figure 4. Phylogenetic Reconstruction of Relevant Foraminifera. RAXML phylogenetic inference showing the relationships between
the extant planktonic foraminifera without branch length. The values next to the branches indicate the bootstrap values and the bars next
to the species names the number of images used in the study. Numbers O to 31 associated with the taxa used in experiments align with the
visual depictions in Fig.[f]and the detailed histogram in Fig.[7} The tree is rooted on the phylogenetically basal G. vivans and D. anfracta.
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Figure 5. Visual-Genetic Alignment via Transfer Learning. The
proposed cross-modality alignment of pre-trained ResNet50 vi-
sual embeddings towards genetic anchors generated via SGT uses
a mixed-modality triplet cosine loss to transfer information. See
Fig. 2] for further details regarding symbol semantics.

Figure [3| depicts a 2D t-SNE representation of the resulting
genetic embedding space. Note that the embedding dimen-
sion may be adjusted to some lower size via compression
via a trained fully connected or convolutional layer.

Visual Model Alignment Towards Genetics. The visu-
ally pre-trained ResNet50 model (see Section [4.1) is used
as initial embedding function. Since the dimensional struc-
ture of this space is identical to the rDNA embeddings,
the latter can be used to guide visual embedding positions.

For each species a single rDNA target embedding is calcu-
lated as a genetic anchor defined as the median vector over
all available -DNA embeddings of the taxa. Note that the
choice of median vector over the mean vector is to elimi-
nate the impact of any outliers that may be present in the
datasets. Given this, we freeze the convolutional layers of
the ResNet50 model and tune the remaining projection lay-
ers to capture cross-domain information. Methodologically,
this is achieved by using a triplet formulation that uses Co-
sine distances. That is, for anchor-positive pairs the loss is
defined as 1 — cos(x1, x3), while for anchor-negative pairs,
the loss is defined as max(0, cos(x1,x2)) — m) and these
two terms are summed to form a loss Lcosine. The param-
eter m = 0.5 is the margin set as recommended in [37]).
Repeated application of this loss moves the model towards
a higher orientational alignment between visual model and
genetic anchors transferring information from the latter to-
wards the visual imageomics classification model.

Choise of Distance Metric. Cosine distances operate
invariant to vector scaling, ie. their application is implic-
itly scale-normalized which is critical for information trans-
fer between non-aligned spaces. Experimentally, our triplet
formulation of the cosine embedding loss boosted tail-class
performance when compared to using standard Euclidean
distances L gy, for alignment.
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Figure 6. Structure of Latent Species Spaces. Visual samples of all 32 numbered taxa together with a 2D visualisation of Delaunay
Triangulations of the taxa centroids for three latent spaces constructed: (left) visual-only baseline space, (middle) SGT-created genetic
space, and (right) our proposed visual-genetic dual space still permits for visual-only inference and reveals qualitatively improved grouping
of genera (shown by colours) together with more equidistant taxa spacing compared to the visual model resulting in superior per-class
inference. Note that 256D latent spaces are approximately visualised in 2D by taking cosine distance matrices and minimizing a global
energy function via the Kamada Kawai algorithm. Different colors (excluding black) correspond to different genera in line with Fig.[7]

| Row | Method | Architecture | Modalities | PC Ace | Tail PC Acc | Head PC Acc | Acc
Hsiang et al.* [15] GG16 visual-only 69.9 43.3 88.5 87.4
2 Karaderi et al.* [20 ResNet50 (WD) visual-only 76.8 43.7 89.1 89.6
3 Baseline 1 (Naive) ResNet50 visual-only 73.6 = 3744 ¢
4 Baseline 2 [20] ResNet50 (WD) visual-only 75.9 ;( 47.6 g 7.9
5 LTR Weight Balancing | ResNet50 (WD+M) visual-only 77.2 wp482 |5 89.2
6 Naive (+A) Resnet50 visual-genetic 75.3 E{ 45.6 GE 88.2
7 Ours (LTR+A) ResNet50 (WD+M) | visual-genetic 77.6 @597V §

Table 1. Quantitative Results with Focus on Per-Class and Tail Performance. Experimental accuracy (Acc) results for the Endless
Forams visual-only test set across the 32 used taxa at 8bit grayscale and 160 x 160 pixels resolution. Starting from a Naive visual vanilla
model (row 3) adding LTR weight balancing here for the first time to the domain (row 5) improves all benchmarks and beats the SOTA
Baseline 2 model (row 4). Further adding our proposed visual-genetic alignment to this LTR training (row 7) boosts tail performance
to 59.7% and can further enhance per-class accuracy at a cost of only 1.6% overall accuracy loss. [Tail Per-Class (PC) accuracy is for
classes with less than 100 visual samples. Head PC accuracy is for classes with more than 1,000 samples.] [A: visual-genetic alignment,
WD: Weight Decay, M: Maxnorm. *: not directly comparable models with access to 35 visual training classes.]

5. Experimental Setup transforms for training. Exact sample-accurate data splits
are published with this paper for full reproducibility. The
network is first tasked to optimize the visual-only loss spec-
ified in Eq. d] combining SoftMax and Reciprocal Triplet
Loss components with the mixing parameter A = 0.01
as described in Section[d.T|via SGD for 20 epochs. We train
both a naive baseline version and one enhanced with LTR

5.1. Implementation Details

Basic Training Details. For all experiments, we use
a PyTorch-implemented metric learning architecture with
a ResNet50 backbone pre-trained on ImageNet [7] using
two fully connected projection layers to map the standard

ResNet50 feuture space of width 2048 to first 1000 and then weight bala'ncin.g to separate thg effect of LTR learning
to our 256-element feature vector, which is the same em- from genetic alignment. Our published source code

bedding size as for the genetics. For universal comparabil- provides ,fl?l,l details regarding all of the above and result
ity, we utilise a fixed, withheld test set of 6, 801 images for reproducibility.

performance stipulation, whilst using the remaining 27, 731 Cross-Modality Alignment. After these 20 epochs of
images augmented via rotations, scale, and Gaussian noise visual-only training, we engage our genetic anchors ob-
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Figure 7. Histogram of Available Samples Across Taxa. A visu-
alisation of the highly variable sample number associated to the 32
taxa used in the study (Dashed Upper Bars: rDNA, Filled Lower
Bars: Visual). Groupings of taxa known as genera are indicated
by colouration in line with Fig. [f]

tained through SGT and align the space across modalities
using a Cosine embedding loss with triplet formulation as
explained in Sec. 2] for another 5 epochs via SGD. We
note that the choice of this loss function is critically impor-
tant when integrating visual-genetic spaces. Neither using
SGT embeddings as anchors with the standard Euclidean-
based Lrpr loss nor utilizing extra trainable integration
layers yielded any integrative success and cross-modality
data transfer. Consequently, the use of the proposed orien-
tational cosine alignment between visual embeddings and
genetic anchors (see Fig.[5) proved a critical design choice
and effective cost function for information transfer. Full im-
plementation details are available via the source code repos-
itory published with this paper.

6. Results and Discussion
6.1. Quantitative Performance Benchmarks

Baselines. Table [T quantifies performance for the sys-
tem and across various baselines. We show performance of
the original Endless Forams paper in row I and the current
SOTA work in row 2 recalculating performance for our 32
covered taxa from the exact models built from all 35 taxa.
For fair comparability we then retrain the SOTA model in
row 4 on only our 32 taxa covered (ie. where genetic data
was available). For full ablation of effects we also stipulate
performance for the exact model used, but without genetic
alignment and without LTR techniques given as ’Naive’
model in row 3. All baselines show low performance on
rare tail classes compared to per-class or general accuracy.

Improving SOTA Performance via LTR. This work is

the first to apply a SOTA LTR technique to the problem at
hand. When adding weight balancing [[1] in (row 5) to the
’Naive’ Baseline 1, we were able to outperform all bench-
marks and also beat the directly comparable SOTA Baseline
2 (row 4) across all measures without degradation of overall
top accuracy. However, without using genetic information
tail performance gains of LTR techniques are still limited.

Visual-Genetic Alignment. = When adding visual-
genetic alignment techniques to the ’Naive’ Baseline 1
without LTR techniques (see row 6) an overall increase
in per-class accuracy of 1.7% can be seen and for rare
classes (N<100) per-class accuracy improved significantly
by 8.2%. However, in order to improve performance
for rare classes further we tested combining visual-genetic
alignment with LTR-improved latent spaces.

Improving Per-Class and Rare Class Benchmarks.
Combining the proposed visual-genetic alignment with
LTR training (row 7) boosts tail performance significantly
by another 11.5% to 59.7% and can further enhance per-
class accuracy at only 1.6% overall accuracy trade-off.
Given the practical importance of determining the presence
of rare classes in paleoclimatology[9] this cost at the distri-
bution’s head is negligible in many important tasks. More-
over, the effect of genetically-driven improvements is par-
ticularly pronounced for the rarest classes where least image
data is available. Fig.[9]plots per-class accuracy against car-
dinality of available class samples. This analysis confirms
that a visual-genetic LTR model consistently yields superior
performance to component ablations and that relative gains
grow with sample rarity.

Visual-Genetic Alignment Control. In order to show
that genetic information indeed has a domain-specific ef-
fect, we also test visual-genetic alignment with a ResNet50
model trained only on the ImageNet, that is one which has
never seen images of foraminifers. We aligned this model
as before to genetic anchors. As shown in Fig. [B[a), such
alignment still improves both overall accuracy (by 16.9%)
and the per-class accuracy (by 15.5%) from the generic off-
the-shelf ImageNet pre-training model. This confirms that
visual-genetic alignment indeed transfers domain-specific
information.

6.2. Qualitative and Class-Specific Discussion

Structure of Species Spaces. Based on these results,
Fig. [f] explains and depicts a structural visualisation of the
underlying latent spaces. It can be seen that superior per-
class inference observed in the proposed visual-genetic dual
space on the (right) is underpinned by more equidistant taxa
spacing compared to the visual-only Baseline 1 model on
the (left). In addition, an improved clustering of genera
(see colours) shows that aligned information from pheno-
type and genotype can indeed efficiently encode relation-
ships between taxa in the metric structure of a latent space.
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Figure 8. Alignment Effect on Per-Class Accuracy. Visual-ge-
netic alignment consistently improves visual-only per-class test
accuracy particularly for tail classes. (a) Alignment improve-
ments for a out-of-domain control network initialised on ImageNet
highlight effective information transfer from the genetic domain;
(b) Alignment of the Baseline 1 *Naive’ visual-only model shows
significantly raised tail performance; (¢) Alignment of an LTR
visual-only model shows further per-class accuracy improvements
with high gains on tail classes well beyond LTR-only performance.

Taxa-Specific Discussion. In order to quantify per-
formance fine-grained on taxa level, Fig. [] depicts a
breakdown of the effect of transferring genetic informa-
tion towards the visual domain for control, ’Naive’ vi-
sual, and LTR enhanced models. For the rare tail classes
0,12,19,20,22,29,31 in particular accuracy increases after
alignment for classes 0,19,22,29,31. For the remaining two
rare classes 12 and 20 the genetic placement on the phy-
tologentic tree of foraminifers (see Fig. ) is in fact un-
clear [44]] according to domain experts, thus casting doubt
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Figure 9. Tail-Class Performance vs Sample Abundance. Aver-
age per-class accuracy for classes with samples less than the ab-
scissa value. The proposed combination of LTR weight balancing
and visual-genetic alignment outperforms other ablations noting
that gains improve with sample rarity.

over whether genetic information can at all be reliable for
improving visual classification in these taxa. Overall, per-
class accuracy consistently improves after visual-genetic
alignment with highest impact on tail classes quantified in
Fig.[0] Thus, the novel concept of proposed deep visual-
genetic biometrics is demonstrably effective in the tested
domain of taxonomic species classification.

7. Conclusion and Future Work

Visual-Genetic Biometrics for Rare Taxa. We pre-
sented visual-genetic biometrics, a novel domain for im-
proving visual taxonomic classification in datasets with rare
species via information transfer from the genetic domain.
We provided a deep proof-of-concept implementation that
leverages tDNA data to align imageomic and genetic in-
formation to create a multi-domain embedding space. Us-
ing 30k+ visuals across 32 taxa from the Endless Forams
dataset we first demonstrated that traditional CNN applica-
tion can be enhanced by LTR techniques to outperform the
state-of-the-art on all benchmarks. We then showed that
visual-genetic alignment can further improve per-class per-
formance, particularly for rare classes. This establishes a
new benchmark and confirms the effectiveness of visual-
genetic biometrics by proof-of-concept. We note that the
latent species space built with LTR techniques is particu-
larly receptive to genetic information transfer.

Future Integration of Imageomics and Genetics. We
believe that the implementation of artificial intelligence sys-
tems that organise life based on both phenotype and geno-
type will be important and significant with respect to rec-
onciling genetic and imageomic spaces. This stems from a
widely unexplored potential for a data-driven formal inte-
gration of the various approaches to the classification of life
and for establishing tractable interfaces between the forms
and levels life exhibits.
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