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Abstract

Continual learning (CL) methods designed for natural
image classification often fail to reach basic quality stan-
dards for medical image segmentation. Atlas-based seg-
mentation, a well-established approach in medical imag-
ing, incorporates domain knowledge on the region of in-
terest, leading to semantically coherent predictions. This
is especially promising for CL, as it allows us to leverage
structural information and strike an optimal balance be-
tween model rigidity and plasticity over time. When com-
bined with privacy-preserving prototypes, this process of-
fers the advantages of rehearsal-based CL without compro-
mising patient privacy. We propose Atlas Replay, an atlas-
based segmentation approach that uses prototypes to gen-
erate high-quality segmentation masks through image reg-
istration that maintain consistency even as the training dis-
tribution changes. We explore how our proposed method
performs compared to state-of-the-art CL methods in terms
of knowledge transferability across seven publicly avail-
able prostate segmentation datasets. Prostate segmentation
plays a vital role in diagnosing prostate cancer, however, it
poses challenges due to substantial anatomical variations,
benign structural differences in older age groups, and fluc-
tuating acquisition parameters. Our results show that At-
las Replay is both robust and generalizes well to yet-unseen
domains while being able to maintain knowledge, unlike
end-to-end segmentation methods. Our code base is avail-
able under https://github.com/MECLabTUDA/
Atlas-Replay .

1. Introduction

Continual learning (CL) plays a crucial role in safety-
critical applications of Deep Learning (DL), particularly in

healthcare. In such domains, models must continually adapt
to data drift over time while maintaining high performance
on older data, even in cases where direct access to part of the
data is restricted for privacy reasons. The objective of CL
is to train a model that demonstrates high performance on
sequentially arriving datasets, despite the constrained time-
frame during which the datasets are accessible. Achieving
this objective is challenging, as approaches tend to fall into
one of the extremes: either suffering from catastrophic for-
getting [19] by being too plastic, or unable to learn new
tasks by being too rigid. Additionally, some methods ex-
hibit linear growth in training time and resource require-
ments as the number of training tasks increases. CL models
are further susceptible to domain shifts over time [15], in-
creasing the amount of catastrophic forgetting even further.
While various strategies have been proposed for CL, they
often fail to perform well with medical data [9], resulting
in segmentations that do not meet basic semantic standards.
Therefore, striking a delicate balance between preserving
previous knowledge and maintaining the necessary plastic-
ity to learn new tasks is a key requirement when training in
a continual fashion [8, 16].

As we have domain knowledge on the geometry of the
organ to be segmented, we go back to the roots of medical
image segmentation and contextualize atlas-based segmen-
tation [26], as an alternative to end-to-end CL segmenta-
tion pipelines. In the context of CL, the access to structural
information is key for achieving accurate and semantically
coherent predictions. In atlas-based segmentation, registra-
tion is used to adapt the best-fitting labeled mask from an
atlas (i.e. a pre-defined set of reference images) to a patient
scan. The natural reliance of atlas-based approaches on ge-
ometrical aspects makes it ideally applicable for CL setups
as the structural information can be leveraged to extract do-
main knowledge.

CL for end-to-end models can be generally classified
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Figure 1. Demonstration of different problems CL methods face.

into one of the following three categories: (1) (pseudo-)
rehearsal, (2) regularization/distillation, and (3) expansion.
Figure 1 demonstrates the practical downsides of each strat-
egy.

The most successful CL methods follow some type of
replay or rehearsal, which involves storing samples to in-
terleave them during later training [33, 37]. Long-term
storage of patient scans, however, violates data protec-
tion regulations [12]. Distillation methods such as PLOP
[11] do not store data directly but rather distill knowl-
edge from previously trained models. Yet recent work
[14] shows that the additional computational burden associ-
ated with the pseudo-data generation hinders their use with
high-dimensional medical images. Regularization meth-
ods [6, 19] on the other hand work by penalizing severe
shifts from the previously-learned parameter space. These
approaches have lower resource requirements, but disap-
pointing performance across all tasks and merely allow
a trade-off between rigidity and plasticity. Models with
high plasticity increase the ability to learn new informa-
tion, whereas rigid models maintain more knowledge from
previous tasks and prevent catastrophic forgetting. Addi-
tionally, models trained end-to-end in a sequential manner
with regularization or distillation approaches tend to gen-
erate predictions with no semantic coherence. Expansion
techniques maintain stable performance across all tasks but
grow the model size with the number of tasks [15,17]. Other
works [29, 31, 32] propose architectural modifications that
are useful in certain settings but imply a high computational
overhead. Instead of relying on end-to-end CL, we propose
a modular atlas-based method for continual segmentation.
Atlas Replay leverages structural information to maintain
knowledge over time with the benefits of rehearsal while
preserving patient privacy and avoiding model growing.

Atlas Replay generates prototypes built from a set of pa-
tient scans and the VoxelMorph registration framework [4]
to perform registration between a specific patient scan and a
prototype. A prototype is a combination of multiple patient
scans – and corresponding segmentation masks – that dis-
allows the direct identification of a subject. Prototypes are

registered to new images to generate segmentation masks
for new patients during deployment.

We introduce an approach to build an atlas of prototypes,
irrespective of the anatomy; and propose a CL method to
perform atlas-based segmentation which maintains model
plasticity while preserving previous knowledge and out-
performs state-of-the-art (SOTA) end-to-end continual seg-
mentation approaches. We can consider using a stored at-
las to generate segmentation masks as a form of pseudo-
rehearsal that maintains relevant information from previous
examples without storing actual patient images.

The contributions of this work are three-fold. Our pro-
posed approach:

• succesfully builds privacy-preserved prototypes and
therefore being more protective towards patient pri-
vacy compared to traditional replay-based methods,

• leverages prototypes and structural information to
maintain knowledge over time,

• benefits from a rehearsal based approach and Voxel-
Morph to achieve stable performances for continual
image segmentation.

To validate our method, we investigate the problem of
prostate segmentation in T2-weighted Magnetic Resonance
Images (MRI), which is an important step in the diagno-
sis and treatment of prostate cancer [35]. Prostates have
relatively static shapes for which domain knowledge can be
leveraged over time. Variations in imaging protocol, such as
the diminishing use of endorectal coil over time [20], lead
to domain shift. Such shifts clearly state the importance of
CL from a clinical perspective.

With the introduction of Atlas Replay, we pave the path
for integrating atlas-based methods into the realm of CL.
We demonstrate that established conventional approaches
like atlas-based segmentation, which have fallen into a cer-
tain neglect due to the current DL era, can be effectively
utilized in dynamic clinical setups. This success can be at-
tributed to the use of structural information, which show-
cases highly favorable outcomes in CL scenarios.
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2. Methodology

Traditional end-to-end segmentation methods in CL typ-
ically struggle to strike a suitable balance between rigid-
ity and plasticity, which presents a significant drawback in
this field. Such models often face a trade-off where they ei-
ther fail to acquire new knowledge by retaining information
from previously seen data, or overly prioritize recent cases,
leading to catastrophic forgetting and predictions lacking
semantic coherence. Recognizing the importance of struc-
tural information for achieving a proper trade-off between
rigidity and plasticity in CL setups, we turn to atlas-based
segmentation as a solution. Most atlas-based segmenta-
tion methods are based on traditional (non-DL) techniques
[1, 26]. We combine the advantages of DL with the abil-
ity to leverage domain knowledge of atlas-based segmenta-
tion for CL. An atlas Λ is a manually labeled set of patient
scans [34]. Atlas-based segmentation is the modular pro-
cess of registering an image from the atlas to a new scan to
directly generate an accurate segmentation by transforming
the respective mask in the same manner [26], thus leverag-
ing structural information. This approach has been success-
fully applied to prostate cancer [3], heart regions [13], brain
tissue [1] and aortic tissue [18] for MRI scans.

Fundamentals We start by introducing some key termi-
nology: Ω ⊂ R3 defines a 3D spatial domain. Tp ⊂ ΩT is
referred to as dataset p and consists of m{(f i

m, fs
m)} pairs,

where f i is a patient scan and fs the corresponding seg-
mentation mask. Stage x in a continual setup defines the
process of training the model on dataset x after it has been
trained on all previous {1, . . . , x − 1} tasks. ΩT is a set
of datasets and ΩP , a set of prototypes. A prototype Pk

is a tuple Pk = (Pi
k,Ps

k), where Pi
k is the scan and Ps

k

the corresponding segmentation mask. We define our set of
prototypes ΩP as privacy-preserving representations.

VoxelMorph [4] is a popular framework for medical im-
age registration. The underlying architecture is a simple
U-Net, to which additional convolutional layers are added
to generate a deformation field ϕ. The network is trained
by penalizing the difference between the warped moving
image using ϕ and the target image. By using ϕ to alter
the prototype segmentation mask, one can utilize the frame-
work for atlas-based segmentation given a specific atlas Λ.

Prototype building We create four distinct prototypes
based on the coil type used during acquisition. For each
prototype Pk, we extract r random samples from the as-
sociated dataset Tp, a subset of ΩT . In this study, we set
r = 7, corresponding to the size of the smallest training
set. To evaluate the performance between prototypes, we
allocate three datasets from our data corpus to validate the
inter-prototype performance in Section 4.4.

First, r random images are selected from the training
dataset Tp. The first image I represents the initial proto-
typePk. For each following image I∗, we refinePk through
rigid alignment using SimpleITK [27,38]. We then compute
the average of Pk and I∗ to update the prototype, including
the corresponding segmentation masks. The final Pk is the
prototype for dataset T p. Taking the average over multiple
scans hinders the recovery of patient-sensitive information
during storing or interleaving, as illustrated in Figure 2.

Subject 1

Prototype 𝒫!

. . .

Subject 2 Subject 7

Figure 2. Illustration of prototype PA.

Figure 2 shows the difference between the final proto-
type PD and three out of seven subject scans that were used
to build the prototype. The intensity distribution for every
dataset is shown in Figure 3. We asses the effectiveness of
our prototypes in maintaining privacy by performing a user
study among senior radiologists, with more than 10 years of
experience, in Section 4.3.
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Figure 3. Intensity histograms for every dataset.
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Prototype registration A patient scan f i represents the
fixed image that is registered to the best-fitting prototypePk

– the moving image – using VoxelMorph. The deformation
field ϕ from the network is then used to warp the prototypes‘
segmentation mask: Ps

k ◦ ϕ. As illustrated in Figure 4, our
method only stores prototypes that preserve key information
and therefore preserves patient privacy better than storing
actual subjects.

Training continually using Atlas Replay Algorithm
1 demonstrates a continual training setup in simplified
pseudo-code for our proposed Atlas Replay approach using
the VoxelMorph (VxM) Framework.

Algorithm 1: Training using Atlas Replay
Input: Datasets to train on {Tp}p≤|ΩT |
Output: Trained model weights θ
// Initialize Mθ

1 θ ← initializeModel()
// Build k = 4 prototypes

2 {Pk} ← buildPrototypes
(
{Tp}p≤|ΩT |, k = 4

)
// Select prototype for T1

3 P ∈ {Pk}
// Train with VxM

4 θ ← VxM(θ, T1,P)
5 for i← 2 to |ΩT | do

// Select prototype for Ti
6 P ∈ {Pk}

// Train with VxM
7 θ ← VxM(θ, Ti,P)
8 end

3. Experimental Setup
In this section, we briefly describe our corpus of publicly

available datasets and report essential aspects of our exper-
imental setup.

Data corpus Our prostate data corpus ΩT consists of
seven publicly available datasets [2, 5, 21–24]. Table 1
shows the number of cases in each dataset and the ran-
dom 80:20 train/validation split. The splits along with our
code base is accessible under https://github.com/
MECLabTUDA/Atlas-Replay.

Prototypes To give the reader a proper understanding of
our set of prototypes ΩP , these are illustrated in Figure 5.

Training setup The VoxelMorph framework [4] with de-
fault optimizer and learning rate is used for all registra-
tion experiments. To ensure a fair comparison between the

Dataset Task ID # Cases (train, val) Vendor Source

RUNMC T1 30 – (24, 6) Siemens [5]BMC T2 30 – (24, 6) Philips
HCRUDB T3 19 – (15, 4) Siemens [21]
UCL T4 13 – (10, 3) Siemens

[22]BIDMC T5 12 – (9, 3) GE
HK T6 12 – (9, 3) Siemens
DecathProst T7 32 – (25, 7) Unknown [2]

Table 1. Characteristics of our prostate data corpus; including the
vendor of the acquisition device.

network’s performance, the same underlying U-Net archi-
tecture is used for end-to-end segmentation. Registration
models are trained for 250 epochs using a composition of
the Normalized Cross Correlation (LNCC), Cross-Entropy
(CE, LCE), and a gradient smoothing loss for the deforma-
tion field (Lsmooth). The total registration loss is calculated
in the following way:

Lreg = LNCC + 2 · LCE + Lsmooth (1)

Based on our ablation results from Section 4.5, we use
the double-weighted CE loss setup for all our VoxelMorph
experiments. Segmentation networks are trained for 250
epochs with LCE only. All experiments were carried out
on a GeForce RTX 3090 GPU (24 GB).

Metrics We report the mean Dice and standard devia-
tion across the test images from all tasks as well as av-
erage backward (BWT) and forward (FWT) transferability
[10, 25]. BWT indicates the amount of maintained knowl-
edge on test samples (f i

m, fs
m) ⊂ Tj during training on dif-

ferent stages {Tp}p≤|ΩT | ; j < p over time. FWT on the
other hand measures the impact of the current training stage
{Tp}p≤|ΩT | on test data (f i

m, fs
m) ⊂ Tj ; j > p from an

untrained stage.
Let Tp be a specific task:

BWT (Tp) = Dice
(
M[T1,...,Tp,...,Tn], Tp

)
− Dice

(
M[T1,...,Tp], Tp

)
, (2)

where M[T1,...,Tp] is a network trained on stages
{1, . . . , p} ≤ |ΩT | and Dice(M[T1,...,Tj ], Tp) indicates the
Sørensen–Dice coefficient from a network trained on stages
{1, . . . , j} evaluated on dataset p. FWT is defined as:

FWT (Tp) = Dice
(
M[T1,...,Tp−1], Tp

)
− Dice

(
M[Tp], Tp

)
. (3)

FWT for the last model state as well as BWT for the first
model state are not defined. Models with high plasticity
are able to learn new knowledge and achieve higher FWT,

4
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Figure 4. Comparison of sequential training on n tasks against traditional rehearsal and Atlas Replay in terms of privacy preservation; ΩP
represents the stored prototypes.

(a) PA (b) PB (c) PC (d) PD

Figure 5. Prototypes and their overlapping segmentation mask.
For every prototype, a random slice was selected.

whereas models that maintain most knowledge from previ-
ous tasks obtain a higher BWT.

To validate our user study, we report sensitivity,
specificity, precision (positive predicted value), and the
Matthews Correlation Coefficient (MCC) [7, 28, 36]. We
calculate the MCC to provide an overall assessment of the
classification performance with respect to both, true nega-
tive and true positive rates.

Baselines We compare Atlas Replay to end-to-end se-
quential training, the upper bound of simple replay training,
which requires the storage of actual patient scans, and four
popular CL methods: Elastic Weight Consolidation (EWC)
[19], Riemannian Walk (RWalk) [6], Incremental Learning
Techniques (ILT) [30] using distillation on the output (KD),
intermediate (MSE), or both (KD, MSE) layers and Bias
Correction (BiC) [37]. A hyperparameter search is con-
ducted for EWC and RWalk, and the best settings are used
of λ = 2.2 (EWC), α = 0.9, and λ = 1.7 (RWalk). For ILT,
we used the default distillation parameter λD = 1. Since
BiC is a rehearsal-based method, from each task, seven
samples were interleaved.

4. Results

We present a comprehensive evaluation of various as-
pects of our work. We start by analyzing the performance
of Atlas Replay compared to sequential training, EWC,
RWalk, BiC, and rehearsal training. We then proceed with
a qualitative temporal evaluation in Section 4.2. Section 4.3
explores the effectiveness of privacy-preserving prototypes
through a user study conducted with senior radiologists and
computer scientists. We assess the inter-prototype perfor-
mance during inference in 4.4. Furthermore, we conduct
a loss ablation study in 4.5 and compare the U-Net’s end-
to-end segmentation with our atlas-based segmentation ap-
proach in 4.6. The results are based on the hyperparameter
search we conducted in Section 4.7. These evaluations pro-
vide multiple insights into the performance, robustness, and
effectiveness of the proposed approach and prototype gen-
eration strategy.

4.1. Continual learning performance

In this section, we compare Atlas Replay to training a
U-Net model sequentially alongside the continual learning
methods EWC, RWalk, ILT and BiC. Further, we compare
against the upper bound of rehearsal training (storing seven
samples from each task).

Figure 6 shows the mean Dice scores of the final net-
works evaluated across all seven datasets. EWC (6b)
achieves more or less the same Dice performance across
the tasks as the simple sequential setup (6a) showing slight
shifts in BWT and FWT as seen in Table 2. RWalk, on
the other hand, achieves a better BWT, meaning it main-
tains more knowledge. However, this comes at the cost of
a lower mean Dice and FWT (6c). This indicates that even
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Figure 6. CL performance as Dice; the larger the area the better.

after tuning the hyperparameters, end-to-end state-of-the-
art CL methods under-perform for medical image segmen-
tation. BiC on the other hand preserves previous knowledge
the best (BWT), but at the cost of plasticity loss (FWT), Ta-
ble 2. Atlas Replay (6f) is the only method that maintains
good performance over all seen tasks. BWT is higher than
for the rehearsal upper bound, as indicated in 6d to 6f, with-
out compromising the plasticity loss (FWT) as observed by
BiC, Table 2. The different ILT versions on the other hand
achieve slightly better performances than EWC.

Method BWT ↑ [%] FWT ↑ [%]
Sequential −26.60± 17.88 −25.10± 17.44
EWC −27.48± 15.00 −29.65± 18.32
RWalk −22.79± 18.94 −51.48± 13.23
ILTKD −27.86± 11.85 −26.79± 21.32
ILTMSE −25.56± 14.90 −34.26± 18.94
ILTKD, MSE −16.59± 12.77 −34.58± 17.73
BiC −0.56± 7.42 −29.01± 7.42
Rehearsal −6.60± 7.02 −24.23± 15.58
Atlas Replay −8.13± 7.68 −18.26± 15.22

Table 2. CL performance indicated by BWT and FWT along with
standard deviation.

With the default U-Net specifications of VoxelMorph,
the average mean segmentation Dice is about 61%. How-
ever, a significant improvement in our proposed method can
be clearly observed.

4.2. Qualitative temporal evaluation

To analyze the robustness of our proposed method qual-
itatively, we visualize segmentation masks in Figure 7.

Atlas Replay consistently produces coherent segmenta-
tion masks, irrespective of the training stage. Sequential
training and EWC on the other hand produce low-quality

segmentations until the network is trained on the particu-
lar stage 3 ({Tp}p≤3). In particular, the low performance
on later tasks shows the effect of catastrophic forgetting,
where the network adapts too strongly to the later training
data. Atlas Replay is neither too rigid nor plastic, as is out-
puts robust predictions for data from both early and later
training stages.

The image shows the impact of selecting the correct pro-
totype during inference for the effectiveness of the regis-
tration method. Using a prototype that was built from a
non-coil dataset (PA) to perform registration with a coil-
acquired sample (T2) is expected to have lower performance
as the geometric shape of the prostate changes significantly
depending on the type of coil. Since the coil type is a cen-
tral aspect of the examination that can be easily recognized,
it is to be expected that the user applying the algorithm
knows the type of coil that was used during acquisition and
can select the correct prototype accordingly. If this were
not known, a simple solution would be to register the de-
sired sample across all prototypes and then use the proto-
type leading to the best registration performance in terms of
NCC or MSE.

4.3. Effectiveness of privacy preserving prototypes

In order to evaluate the effectiveness of our privacy-
preserving prototypes, we conducted a user study involving
two senior radiologists with more than 10 years of experi-
ence (RAD) and two computer scientists (CS). The study
aimed to assess the participants’ ability to correctly select
the used subject from a set of three patient scans, with only
one scan being the correct match for the shown prototype.
This selection process was performed five times for each
prototype.

To measure the performance of the participants, we re-
port four key metrics: sensitivity, specificity, precision (pos-
itive predicted value), and Matthews Correlation Coefficient
(MCC). Sensitivity refers to the ability to correctly identify
the true positive cases, i.e., correctly selecting the match-
ing patient scan. Specificity measures the ability to cor-
rectly identify the true negative cases, meaning to correctly
exclude the non-matching patient scans. Precision repre-
sents the proportion of correctly selected matching patient
scans out of the total selected matching scans. MCC on the
other hand provides an overall assessment of the classifi-
cation performance, taking into account both true positive
and true negative rates. Table 3 shows the average results of
our user study for the radiologists and computer scientists
including the standard deviation and random chance.

Table 3 clearly shows that correctly selecting the used
subject from a set of three samples, along with the proto-
type, proved to be very challenging for senior radiologists
as well as computer scientists. The results illustrate that
possessing technical knowledge about the process of proto-
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Group Sensitivity ↑ [%] Specificity ↑ [%] Precision ↑ [%] MCC ↑ [%]

random – – 33.33
(
1
3

)
–chance

RAD 47.50± 7.50 74.00± 4.00 47.50± 7.50 21.50± 14.50
CS 45.00± 10.00 73.00± 5.00 45.00± 10.00 18.00± 15.00

Table 3. Results of our user study evaluation on privacy-preserving
prototypes compared to random chance. The evaluation included
participation from both radiologists and computer scientists.

type building has minimal impact on selecting the correct
samples as the classification rates are very similar to the
ones from the radiologists. Such a difficulty in correctly
identifying the matching patient scan demonstrates the ef-
fectiveness of our privacy-preserving prototype building ap-
proach. The average precision achieved by the radiologists
was 47.50%, indicating the complexity of the task and the
privacy preservation capabilities of our prototypes.

4.4. Inter-prototype performance

A B C D

Prototype

20

40

60

80

Di
ce

1
2
3
4
5
6
7

Figure 8. Combination of scatter and box plot showing perfor-
mance distribution and change in Dice for every task based on the
used prototype during inference with the final model trained se-
quentially on all datasets.

To assess the inter-prototype performance, we trained se-

quentially on all seven tasks using Atlas Replay and utilized
the final model to analyze the influence of prototypes during
inference (Figure 8). Specifically, for each sample from the
test sets we performed registration using all four prototypes.

Figure 8 illustrates the distribution of Dice for every task
based on the utilized prototype during inference with the
sequentially trained model. This visualization effectively
shows how the choice of prototype during the registration
process influences the performance observed in inference
across different tasks.

4.5. Loss ablation study

To determine the optimal setup for atlas-based segmen-
tation, we conduct an ablation study where we modify the
traditional registration loss proposed in the VoxelMorph pa-
per [4]. This study allows us to identify the most effec-
tive VoxelMorph configuration. The networks are trained on
the joint dataset

⋃|ΩT |
p=1 Tp and the evaluation is performed

across all seven datasets {Tp}p≤|ΩT |.
Table 4 shows that weighting the Cross-Entropy loss

twice leads to the best segmentation performance across all
tasks. A network trained with no segmentation loss term,
i.e. only for registration, achieves a limited contribution in
terms of segmentation performance. Given this insight, we
use the double weighted Cross-Entropy loss setup for all our
VoxelMorph related experiments as shown in Equation 1.

4.6. End-to-end segmentation vs. atlas-based seg-
mentation

To better assess the generalizability of the models, we
train U-Net and Atlas Replay networks for every dataset
Tp ⊂ ΩT and validated them across all datasets.

Figure 9 illustrates the difference between an end-to-end
segmentation approach (U-Net) and Atlas Replay in terms
of generalizability and segmentation performance. Using
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Ablation (Lreg, 1)
Dice ↑ ± σ ↓ [%]

T1 T2 T3 T4 T5 T6 T7

LNCC + 0 · LCE + Lsmooth 37.03± 17.05 62.63± 1.97 66.56± 6.06 69.78± 2.08 58.48± 6.94 63.73± 8.74 38.84± 11.86
LNCC + 1 · LCE + Lsmooth 56.01± 15.05 68.95± 3.46 70.83± 3.36 73.80± 1.27 60.18± 8.94 63.28± 11.71 57.89± 10.83
LNCC + 2 · LCE + Lsmooth 70.55± 6.32 73.29± 3.65 71.39± 1.94 79.84± 3.49 60.07± 4.88 65.36± 8.89 69.47± 6.70
LCE (U-Net joint) 79.62± 2.50 77.01± 11.10 78.95± 6.61 79.72± 4.13 83.49± 1.97 82.45± 1.98 80.34± 1.94

Table 4. VoxelMorph ablations trained on joint prostate data with different loss variations (top) and U-Net joint results (bottom).

1 2 3 4 5 6 7
Trained on

0

20

40

60

80

Di
ce

U-Net
Atlas Replay

Figure 9. Scatter plot showing the performance distribution in
Dice when trained on one dataset and evaluated across all seven
datasets from the prostate corpus ΩT ; trend line is based on mean
Dice performance across all evaluated samples.

the proposed registration-based approach, we obtain robust
results regardless of what dataset is used for training. The
U-Net performance on the other hand is clearly dependent
on the training dataset, as indicated by the strong distribu-
tion shifts in the figure, i.e. lack of generalizability. T5,
for instance, shows a significant performance deterioration.
Besides an increase in generalizability, the performance of
the registration-based method is also higher, as shown by
the mean Dice trend line, which is consistently above that
of the U-Net. These results show the increased versatility
and robustness of Atlas Replay even before continual learn-
ing is performed.

4.7. Hyperparameter search

For every used end-to-end CL method, a hyperparame-
ter search was performed using four different settings. The
setup with the highest mean performance in terms of Dice,
BWT, and FWT together was selected for our experiments.
Table 5 shows the results for each hyperparameter setting.
The highest values for a method and the best parameter set-
tings are marked in bold.

The results clearly show the addressed trade-off prob-
lem from Figure 1b. Depending on how the hyperparam-
eter(s) are set, the trade-off between plasticity and knowl-
edge preservation varies. The network either performs well
in terms of maintaining knowledge over time – increased λ
for EWC – or the results are very similar no matter how the
hyperparameter is set – λ for RWalk.

Method Prostate

Fixed params Tuned param Dice ↑ [%] BWT ↑ [%] FWT ↑ [%]

EWC –

λ = 0.4 42.44± 20.67 −28.47± 12.35 −28.87± 19.48
λ = 1.1 44.83± 20.86 −29.28± 14.82 −27.47± 16.29
λ = 1.7 44.03± 20.49 −30.96± 15.33 −30.59± 16.66
λ = 2.2 46.06± 18.46 −27.48± 15.00 −29.65± 18.32

RWalk
α = 0.9,

update = 20

λ = 0.4 29.94± 23.59 −29.01± 12.84 −46.69± 13.29
λ = 1.1 27.80± 20.07 −25.91± 17.21 −50.06± 6.757
λ = 1.7 30.58± 21.38 −22.79± 18.94 −51.48± 13.23
λ = 2.2 30.48± 23.26 −21.43± 10.50 −54.31± 11.07

Table 5. Results of the hyperparameter search considered for the
two used end-to-end CL methods; mean Dice, BWT and FWT
over all tasks including standard deviation [in %]; highest values
and best parameter setup are marked in bold.

5. Conclusion
We introduce Atlas Replay, a robust atlas-based segmen-

tation technique for continuous training in clinical environ-
ments with data drift. We evaluate our approach on seven
prostate segmentation scenarios and show that it outper-
forms state-of-the-art continual learning methods by main-
taining knowledge from early stages without compromising
model plasticity. Atlas Replay is more generalizable than
U-Net models even when trained statically with only data
from one site, with a performance difference of 15% on
average. We additionally introduced a prototype-building
method with initial privacy preservation from a human per-
spective that can be leveraged to maintain structural in-
formation over time resulting in a proper balance between
rigidity and plasticity for CL setups. Future work should ad-
dress more stringent privacy preservation for prototypes and
a self-growing atlas technique in combination with proper
prototype adjustments over time to further push the poten-
tial of registration for segmentation in terms of CL. By
releasing our code base along with instructions and pre-
trained networks, we hope to amplify and inspire CL re-
search beyond end-to-end models that incorporates atlas-
based segmentation for medical settings.
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Supplementary Material

1. End-to-end vs. atlas-based segmentation
Table 6 provides the Dice scores with standard de-
viation for every trained baseline evaluated across
all tasks which were used to create Figure 9 from
the main manuscript.

Baselines Dice ↑ ± σ ↓ [%]

T1 T2 T3 T4 T5 T6 T7

U
-N

et

T1 75.38± 5.96 37.82± 15.47 17.04± 4.83 42.02± 23.75 6.66± 6.86 50.86± 1.78 76.14± 5.66
T2 36.36± 19.55 70.25± 6.30 25.81± 9.26 52.21± 15.53 50.30± 8.01 36.78± 7.98 37.01± 10.70
T3 21.12± 17.64 53.55± 6.23 78.50± 5.04 55.44± 2.65 37.54± 6.98 50.12± 5.39 18.94± 9.90
T4 46.48± 17.13 65.69± 6.29 60.23± 2.08 66.44± 11.89 49.19± 13.37 65.73± 10.23 44.92± 11.52
T5 9.61± 7.19 48.44± 8.02 29.82± 5.24 40.26± 18.72 59.55± 4.97 38.21± 4.85 7.87± 7.35
T6 22.05± 19.25 54.02± 10.05 58.41± 4.21 59.37± 4.41 52.10± 1.99 77.42± 3.27 22.13± 17.11
T7 73.52± 7.57 37.38± 9.17 20.28± 3.27 32.83± 22.86 10.75± 7.59 45.11± 3.84 76.12± 3.83

A
tla

s
R

ep
la

y

T1 70.50± 4.63 56.02± 4.78 72.87± 6.30 73.79± 1.55 34.81± 22.70 63.69± 9.80 73.02± 3.63
T2 44.27± 18.47 72.30± 6.05 73.92± 3.50 75.16± 0.91 53.73± 13.33 66.62± 7.50 43.99± 9.74
T3 34.30± 7.69 34.69± 6.41 73.11± 4.42 71.33± 2.28 23.81± 11.07 44.28± 8.05 31.97± 7.77
T4 23.20± 9.93 23.61± 7.13 63.36± 7.56 78.40± 0.72 20.57± 7.71 37.11± 4.82 19.55± 5.34
T5 32.79± 15.13 53.30± 2.42 72.87± 5.67 74.55± 2.59 60.31± 3.02 58.50± 9.19 30.31± 8.77
T6 34.66± 15.19 44.05± 6.22 68.91± 3.17 71.48± 4.08 39.16± 15.10 64.97± 13.40 33.47± 8.32
T7 69.02± 5.74 53.63± 8.64 74.94± 5.43 73.69± 1.35 36.15± 16.09 59.41± 10.48 67.73± 5.20

Table 6. Results for all baseline networks trained on every task individually and evaluated across all tasks; Bold values indicate the
performance of the baseline on the validation set of the task it has been trained on.
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