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Abstract

Undersampling is a common method in Magnetic Res-
onance Imaging (MRI) to subsample the number of data
points in k-space, reducing acquisition times at the cost of
decreased image quality. A popular approach is to employ
undersampling patterns following various strategies, e.g.,
variable density sampling or radial trajectories. In this
work, we propose a method that directly learns the under-
sampling masks from data points, thereby also providing
task- and domain-specific patterns. To solve the resulting
discrete optimization problem, we propose a general op-
timization routine called ProM: A fully probabilistic, dif-
ferentiable, versatile, and model-free framework for mask
optimization that enforces acceleration factors through a
convex constraint. Analyzing knee, brain, and cardiac
MRI datasets with our method, we discover that differ-
ent anatomic regions reveal distinct optimal undersampling
masks, demonstrating the benefits of using custom masks,
tailored for a downstream task. For example, ProM can
create undersampling masks that maximize performance in
downstream tasks like segmentation with networks trained
on fully-sampled MRIs. Even with extreme acceleration fac-
tors, ProM yields reasonable performance while being more
versatile than existing methods, paving the way for data-
driven all-purpose mask generation. 1

1. Introduction
Undersampling plays a crucial role in accelerating the

acquisition time of magnetic resonance imaging (MRI) by
selectively sampling only specific data points in k-space, a
representation of spatial frequency information. Through
undersampling, acquisition times in MRI can be shortened,
which in turn can be traded into higher spatial resolution,
spatial coverage, or shorter scanning sessions. The lat-
ter promise to reduce patient discomfort and anxiety, par-
ticularly for individuals who may experience claustropho-

1Code: https://github.com/saiboxx/bernoulli-mri

bia or have difficulty lying still for extended periods [24].
Likewise, undersampling techniques can be employed to
increase temporal resolution in dynamic imaging enabling
real-time MRI [23,30], allowing for visualization and mon-
itoring of dynamic processes as they occur. This is particu-
larly relevant in interventional radiology procedures, where
real-time guidance is, among others, crucial e.g. for ac-
curate needle placement [16] or catheter navigation [7].
Without optimized reconstruction, however, reducing the
number of acquired data points results in decreased image
quality and artifacts like infolding, blurring, or distortions,
which can hinder accurate diagnosis and interpretation. To
tackle this issue, various techniques have been developed to
enhance reconstructions and produce high-quality images
from undersampled data, e.g., via compressed sensing [21]
or parallel imaging [10, 14].

Rather than focusing on enhancing the image quality for
a predetermined undersampling pattern through image re-
construction, this paper addresses the challenge of iden-
tifying the optimal sampling pattern or k-space acquisi-
tion mask in terms of reconstruction quality or downstream
task performance for a given undersampling ratio. Previ-
ously, in the area of deep learning this challenge has been
mainly addressed by combined approaches that simultane-
ously learn a reconstruction network and an undersampling
mask [1, 31–34]. While image enhancement has proven
to work well using such neural network approaches, these
black box algorithms give little to no control over the recon-
struction process and often have practical as well as legal
limitations when being used as the basis of a reliable system
in safety-critical applications. Furthermore, the application
of large architectures in clinical practice, especially for real-
time systems, requires computational resources not afford-
able by many healthcare institutions, particularly in devel-
oping regions where such advanced technology is scarce or
cost-prohibitive.

Most closely related to our work, [27, 28] propose a di-
rect undersampling mask optimization scheme based on it-
erative gradient sampling (IGS), which repeatedly deter-
mines k-space elements that contribute the most to a loss
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criterion.
In contrast to previous work, we examine the potential

of directly learning the mask itself via projected gradient
descent. Our method called ProM is a fully differentiable,
learning-based, and probabilistic framework for mask op-
timization. By framing the search for an optimal mask as
a probabilistic optimization problem for a pre-specified ac-
celeration factor, ProM is able to find the optimal under-
sampling distribution using ideas from relaxed categorical
optimization in deep learning research. ProM optimizes the
parameters of the undersampling distribution directly with-
out the need for a model, resulting in runtimes of up to a
few seconds. ProM does not operate under the assumption
of any predetermined undersampling pattern. As such, it
adapts to deliver bespoke results tailored to the specific re-
quirements of the downstream task and the anatomical re-
gion as depicted in Figure 1. This adaptability makes ProM
a versatile, data-driven tool, capable of serving as an all-
purpose mask generator.

2. Related Work
The field of learning-based undersampled MRI recon-

struction can largely be divided into two main branches:
one focused on enhancing the quality of the reconstructed
images, and the other on optimizing the initial sampling pat-
tern itself.

Image enhancement. In the field of image quality en-
hancement, [13] consider the auto-regressive nature of
encoder-decoder transformer architectures to derive miss-
ing spokes in radial undersampling. Using adversarial
methods, [4] is able to enhance images with extreme ac-
celeration factors. [8] apply the conditioning mechanism
in diffusion models to retrieve enhanced images from low-
quality reconstructions. Instead of conditioning on the ac-
tual image, [26] utilize the undersampled mask directly to
guide the diffusion process. To mitigate domain shifts,
[9] propose a diffusion prior trained via adversarial map-
ping. Through open-sourcing high-quality and large MRI
datasets, the fastMRI [36] challenge actively promotes de-
velopment in the area of enhancing undersampled MRI.

Mask optimization and hybrid approaches. While
most approaches that optimize masks fall under the category
of hybrid approaches (see below) as they also try to enhance
the image quality at the same time, a few learning-based
optimization approaches exist that exclusively focus on the
sampling pattern. Iterative gradient sampling (IGS; [27,28])
is capable of efficiently deriving undersampling masks in
1D, but its complexity scales quadratically when moving
to a 2D setting, whereas ProM’s complexity is only de-
pendent on the number of optimization steps. [1] propose

LOUPE which encourages sparsity of the mask through ℓ1-
penalization (without directly enforcing a specific acceler-
ation factor) and approximates mask probabilities using a
sigmoid output. As this approach includes a reconstruction
network, it can also be seen as a hybrid approach. A dif-
ferent network-assisted idea is to employ a binarized mask
on the forward pass and – in contrast to our proposal –
transfer its gradients to a continuous real-valued mask on
the backward pass [33, 35]. An updated binary mask with
induced sparsity is then produced on the subsequent iter-
ation by thresholding and pruning the real-valued scores.
With a focus on enforcing physical constraints, [19] pro-
pose optimized trajectories for compressed sensing. Sim-
ilarly, [32] solve for k-space trajectories, but additionally
use a reconstruction network to enhance image quality. [31]
jointly optimize quadratic B-spline kernels together with a
reconstruction network for multi-coil data.

Other approaches. Further approaches include varia-
tional models to jointly synthesize and reconstruct MRI im-
ages [6], sharpening networks [12] to counter the absence
of high-frequency features in undersampled MRIs, or learn-
able Fourier interpolation [11]. To account for meta infor-
mation such as the manufacturer, [20] condition the recon-
struction network on side information.

3. Methods

In our presentation on learning a distribution for fully
probabilistic undersampling masks, we first describe our
routine for a single image and later extend this idea to
jointly optimize masks across a whole dataset.

3.1. Probabilistic Undersampling Masks

In the following, we define D as the number of elements
on the 2-dimensional or 3-dimensional k-space grid and use
a vectorized notation for all objects for simplicity. Thus,
xk = (x

(1)
k , . . . , x

(D)
k )⊤ ∈ CD depicts an image residing

in k-space. Partial acquisition is augmented by applying a
binary mask m ∈ {0, 1}D to the fully-sampled xk element-
wise: xk ⊙m. For a given m, the translation of the image
from the under-sampled k-space to the complex image do-
main X ⊆ CD is done by xc = F−1(xk ⊙ m), where
F−1 is the inverse Fourier transform matrix. This procedure
amounts to a simple zero-filling reconstruction strategy.

Empirical Bayes Optimization. Instead of following a
distinct sampling pattern for m, we assume that every ele-
ment m(i), i = 1, ..., D, in m is the result of an independent
Bernoulli experiment of a random variable M (i) with distri-
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ProM undersampling mask optimization

Figure 1. Visualization of the ProM optimization routine for the ACDC dataset with an acceleration factor of x8 for a 2D mask. The bottom
row shows our Bernoulli mask distribution pM|x, where a lighter color implies a higher probability for sampling the respective entry in
the cartesian k-space grid. Starting from a randomly initialized distribution, ProM gradually optimizes pM|x to maximize reconstruction
quality while simultaneously increasing the sparsity of the masks. The resulting distribution converges to a domain-specific mask with
desired acceleration factor that preserves most of the image’s quality (top row). The original image is displayed on the right.

bution defined by

pM := P(M = m | θ) =
D∏
i=1

θm
(i)

i (1− θi)
1−m(i)

, (1)

M = (M (1), . . . ,M (D))⊤, and θi ∈ (0, 1) the sampling
probability of the ith element. Eq. 1 can be thought of as
a Bayesian prior for the image mask. While this factorized
prior allows the method to be adaptable for any task and
domain, other choices are possible and discussed in more
detail in Section 5.

Given the prior distribution, we strive to optimize the
posterior sampling distribution of masks (i.e., after account-
ing for the specific reconstruction task and data) for arbi-
trary differentiable loss functions L, in particular those used
in computer vision. As these loss functions are typically de-
signed to only work in real-valued space, we transform xc

into a real-valued representation using its magnitude image
x̂ = |xc| ∈ RD. The quality of the reconstruction can
then be assessed by L(x̂,x), where x is the fully-sampled
original image and x̂ the undersampled image as a function
of m (or a random variable when M is not yet observed).
Given a data point x, we take an empirical Bayes approach
and directly optimize θ by minimizing the expected loss via

argmin
θ

EM∼pM|xL(x̂,x) ≈ argmin
θ

1

L

L∑
l=1

L(x̂(l),x) ,

(2)
where we approximate the expectation w.r.t. the poste-
rior distribution pM |x using L Monte-Carlo samples x̂(l)

from pM |x. Although in general, no analytical representa-
tion of the posterior exists, the optimization of Eq. 1 and
1
L

∑L
l=1 L(x̂(l),x) individually is straightforward and al-

lows us to derive an iterative optimization procedure (Algo-
rithm 1) to optimize θ.

Constrained Optimization. Without further constraints,
the optimal solution of Eq. 2 is θ = 1, i.e., the fully-

sampled image with minimal loss, as x̂ ≡ x. To incorporate
undersampling into our objective, we introduce a constraint
similar to [38] by limiting the sum of all probabilities in
pM |x to a pre-specified value S, i.e.,

∑D
i=1 θi ≤ S. Prac-

tically speaking, S will result in the number of sampled k-
space elements as

∑D
i=1 θi is the expected value of ||m||0.

Given a user-defined acceleration factor α, i.e. the ratio
between the amount of acquired k-space points in the full
versus the undersampled image, we can alternatively define
S = ⌊Dα ⌋ and our final objective as

argmin
θ

EM∼pM|xL(x̂,x)

s.t.
∑D

i=1 θi ≤ S and S ∈ {0, ..., D} .
(3)

The constraint in Eq. 3, which can equally be expressed as
an ℓ1-norm penalty for θ, has an intrinsic affinity for sparse
mask distributions (c.f. Figure 2).

0 1

0% Progress
0 1

25% Progress
0 1

50% Progress
0 1

75% Progress
0 1

100% Progress

Figure 2. Histograms of probabilities in θ during different op-
timization phases for a sample of fastMRI Knee. Starting from
a random initialization (leftmost distribution), the sparsification
constraint leads to a posterior pM|x with probabilities that tend
to be close to zero or one.

3.2. Differentiability through Reparameterization

Except for the stochastic sampling of m, the proposed
approach is fully differentiable including F−1 and |.|. In
order to use modern autograd frameworks for stochastic
masks, we apply the Gumbel-Softmax trick [15] tailored to
the Bernoulli distribution [38]. Let ρ := log

(
θ

1−θ

)
be the

3



log odds-ratio for θ. Then, a “soft mask” msoft, allowing
for differentiability, can be obtained by sampling

msoft ∼ 1 (ρ+ g1 − g0 ≥ 0)

≈ σ
(
(ρ+ g1 − g0)τ

−1
)

,
(4)

where g1, g0 are independent and identically distributed
samples from a Gumbel(0,1) distribution and the indicator
function 1 is relaxed using a sigmoid function σ. A tem-
perature parameter τ controls the softness of the discrete
approximation and is annealed during optimization. Here,
stochasticity is rerouted over the Gumbel samples and thus
a computational graph is able to propagate gradients to θ.
As the mask m needs to be strictly binary, which is not the
case for msoft, we adopt the straight-through Gumbel esti-
mator trick [15], yielding

m = 1 (msoft ≥ 0.5)− sg[msoft] +msoft , (5)

where 1 is applied element-wise and returns our final binary
mask sample. sg denotes the stop gradient operation, which
blocks gradients from backpropagation. In other words,
Eq. 5 yields discrete values while we obtain gradients for
its soft approximation.

3.3. Optimization via Projected Gradient Descent

The optimization problem in Eq. 3 cannot be solved ef-
fectively with standard gradient descent. Instead, we fol-
low [38] and use a projected gradient approach by first up-
dating the unconstrained parameter vector θ̃ = [θ̃1, ..., θ̃D]
using θ̃ = θ − η∇θEM∼pM|xL(x̂,x) with η being the
learning rate, and then project θ̃ into the space of valid ele-
ments by solving∑D

i=1 min(1,max(0, θ̃i − λ)) = S (6)

for λ ∈ R, yielding

θ = min(1,max(0, θ̃ −max(0, λ)1)) . (7)

See Supplementary Material A.2 for an extended deriva-
tion of the objective. A solution to Eq. 6 can be obtained
using a convex solver or root-finding method such as bi-
section search. To foster exploration at the beginning of
the training and allow for exploitation at later stages, we
anneal S during optimization. First, exploration iterations
with S = D allow for unrestricted optimization. Then, an
annealing phase following the schedule of [39] (see Supple-
mentary Material A.1) decreases S to meet the desired ac-
celeration factor. Finally, the exploitation phase optimizes
θ under the nominal constrained S (c.f. Figure 3).

Our procedure is summarized in Algorithm 1 for a sin-
gle image xk. While our previous approach is presented
for only a single sample, it can be equivalently applied to a
whole dataset by iteratively taking random batches instead

0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75 100

Optimization Progress (%)

Active Mask Elements (%) Dense Rate SSIM

ConstrainingExploration Exploitation

Figure 3. Sparsity versus reconstruction quality for a sample of
fastMRI Knee. The amount of active masked elements in m is
bounded by the continuously annealed dense rate S

D
. During op-

timization, the average SSIM metric (measuring reconstruction)
plummets when θ is limited by the constraint (at around 20%
progress) but roughly stays constant or even slightly improves
while the number of active elements is further restricted.

of a single xk for the optimization of θ. Note that the only
trainable parameters in ProM are the D parameters θ. Op-
timization can thus be done in a matter of seconds (single
image) or a few minutes (full dataset).

Algorithm 1 Optimization routine of ProM

Input: k-space image xk, mask distribution pM , number
of samples L, acc. factor α, iterations i, learning rate η,
criterion L
for 1, ..., i do

▷ Draw samples (cf. Eq. (4) and (5))
M← {m1, ...,mL}
▷ Expand image to match shape ofM
Xk ← expand(xk)
▷ Compute undersampled magnitude images
X̂ ← |F−1(Xk ⊙M)|
▷ Compute fully-sampled image and expand
X ← expand(|F−1(xk)|)
▷ Compute batched loss and apply gradients
θ̃ ← θ − η∇θL(X̂,X)
▷ Anneal to acc. factor over iterations
S ← anneal(α)
▷ Project updated weights (cf. Eq. (6) and (7))
θ ← project(θ̃, S)

end for

3.4. Constraint Posterior Mode

Although realizations of the resulting distribution pM |x
of our approach are sparse in practice (cf. Figure 2) and
adhere to the constraint, no real data set will result in a pos-
terior with all θi values being optimized to be either exactly
0 or 1. Whereas this result simply reflects the uncertainty
in the data, some practical applications require masks to be
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Figure 4. Optimized undersampling 2D mask distributions for ACDC, BraTS and fastMRI Knee (rows) with varying acceleration factors
(columns). Different anatomic regions (right) have a distinct unique optimal distribution. The color indicates the value of each θi
representing a point in k-space. Bright color implies a high probability of acquiring the respective entry.

deterministic. Therefore, we propose a deterministic vari-
ant of our approach by generating the mask m using the
mode of (the optimized) posterior pM |x conditional on the
constraint ||m||0 = S. In other words, we find this mask
m∗ as

m∗ = argmax
m,||m||0=S

pM |x(m) . (8)

This approach is equivalent to setting all mask en-
tries m∗(i) corresponding to the S largest probabilities
θ(D−S+1), . . . , θ(D) to the value one and all others to zero.

4. Experiments
We investigate the performance of ProM using slices

from ACDC [5], BraTS [2, 3, 22] and fastMRI Knee [36]:
ACDC are cardiac MRIs with 100 train and 50 test sub-

jects. We extract the end-diastolic frame in 256px resolu-
tion including segmentation labels of the left and right ven-
tricular cavity as well as the left ventricular myocardium,
yielding 548 train and 338 test slices. k-space data is emu-
lated via Fourier transform.

BraTS contains brain MRIs with T2-FLAIR, T1-,
T1Gd- and T2-weighted modalities. The goal of the seg-
mentation is to determine the classes of whole, core, and
enhancing tumors. The dataset is split into 387 train and 97
test subjects. We extract 19, 350 train and 4, 850 test slices
using slice indices between 60 and 110 with 256px resolu-
tion. k-space data is emulated as in ACDC.

fastMRI Knee includes raw k-space data of single coil
knee MRI. To focus on pathologies, we extract the anno-
tated subset of fastMRI+ [37] amounting to 8, 057 train and

1524 test slices with a center-crop to 320px resolution.
For ProM we use 2500 iterations with a learning rate of

0.01 in the Adam [17] optimizer. From the full amount of it-
erations, we took 250 steps for exploration and exploitation
each. This configuration provided an ideal balance between
runtime and convergence. We use batches of size 32 and
draw L = 4 Bernoulli samples for each sample, yielding a
total batch size of 128. Similar to [18], we found that a low
number of Monte Carlo samples is sufficient if the batch
size is large. The temperature τ follows a linearly decreas-
ing schedule from 1 to 0.03 in the last step, which aligns
with [38]. For reconstruction, we use the mean squared er-
ror for L. The mask distribution pM is initialized by draw-
ing θi from U(0, 1). The final masks are obtained by apply-
ing Bayesian model averaging on 10 different ProM solu-
tions.

Optimization is done in PyTorch v.1.13 [25] on an
NVIDIA A100 GPU. We compare our approach against
an equispaced mask with fully-sampled central region of
4% [36] and random offset, a 2D variable density Gaus-
sian mask, and the learning-based IGS [28]) method. The
reported metrics represent the mean across 10 randomly ini-
tialized runs per method.

4.1. Domain-specific Masks

Each anatomic region (as a composition of different ele-
mental shapes) yields a distinct k-space representation. Our
first experiment not only demonstrates that this is the case in
practice but also shows that a data-driven optimization rou-
tine for masks such as ProM is indeed necessary to facilitate
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optimal reconstruction (c.f. Figure 4 for the results of ProM
trained on the three different datasets). For instance, the
cardiac ACDC dataset consists dominantly of elliptic prim-
itives, which results in a completely different optimal mask
than fastMRI Knee with a lot of vertical lines and some hor-
izontal elements in image space.

4.2. Convergence and Stability

ProM is a stochastic method, which involves random-
ness in its optimization process through the initialization of
pM and Monte Carlo samples x̂(l) on each forward pass
or batch collection of data samples. Figure 5 displays the
point-wise variance per mask parameter θi over multiple
independent runs. We observe the presence of a distinct
central area that exhibits very small variance / high stabil-
ity across all runs for most acceleration factors. Only in the
case of an extreme acceleration factor (x32), more variance
is found within this central region. This suggests that partic-
ular segments within the k-space exhibit varying degrees of
relevance, with the central region providing greater impor-
tance than the respective peripheral regions. Consequently,
an optimal sampling strategy would entail precisely target-
ing this central area. If this region cannot be fully covered
for larger acceleration factors (α = 32), the main source
of uncertainty is located within this important area with no
distinct best solution.

Apart from the convergence of the mask distribution,
sampling masks from pM |x induces stochasticity in the in-
ference process. As shown in Figure 6, drawing random
samples from pM |x produces coherent images, which only

x4 x8 x16 x32

Figure 5. Pointwise variance in cartesian k-space per mask param-
eter over 10 randomly initialized runs on the fastMRI Knee dataset
shown for various α. Brighter color indicates a larger variance.

Original Constr. mode of pM |x Random pM |x samples

Figure 6. Comparison of an original scan (left) with reconstruc-
tions based on the constrained mode (middle) and random samples
(right) of the learned mask distribution for fastMRI Knee.

x4 x8 x16 x32

Figure 7. Pixel-variance on fastMRI Knee reconstructions based
on random mask samples. Brighter color indicates larger variance.

differ slightly in their high-frequency noise patterns. Inter-
estingly, when investigating the variation of reconstructed
pixels across multiple mask samples in Figure 7, a peri-
odic pattern along the horizontal axis appears in the case
of fastMRI Knee. The wavelength of the observed pattern
is getting longer with higher α. The stochasticity can be
eliminated and reconstruction quality can be enhanced by
using the suggested approach in Section 3.4 and generating
the mask based on the conditional posterior mode.

4.3. Reconstruction Quality

To assess the reconstruction quality of ProM we evalu-
ate the peak signal-to-noise ratio (PSNR), structural simi-
larity index measure (SSIM), and normalized mean squared
error (NMSE) for acceleration factors α ∈ {4, 8, 16, 32}
(abbreviated as x4 to x32) on the tests sets of fastMRI
Knee, ACDC and BraTS. Results (Table 1) show that the
IGS method works well, the additional flexibility of ProM
to operate in 2D, however, allows to obtain superior results.
For fastMRI Knee this advantage increases for higher α.
As an instance, in the case of factor x4, the SSIM / NMSE
of ProM is 5.00% / 19.23% better compared to IGS, with
the improvement increasing to 15.64% / 134.78% for fac-
tor x32. Moreover, when compared to more conventional
masking approaches, the gain in quality of ProM is even
larger. In addition, Figure 8 shows that the ProM mask does
not introduce noise nor artifacts, unlike the other evaluated
methods. However, even with a custom-tailored undersam-
pling strategy, high-frequency details are omitted to a cer-
tain degree.

On the other hand, when evaluating on the BraTS
dataset, ProM is superior for acceleration factors x4 and
x8, but reveals performance limitations on higher α val-
ues. Interestingly, for α = 16 ProM exhibits the highest
PSNR among the compared methods but has a rather low
SSIM. This can be reasoned by PSNR and SSIM capturing
different aspects of image quality, where PSNR is primarily
concerned with the amount of noise and SSIM focuses on
structural information. Thus, this implies the presence of a
low distortion level but differences in perceptual quality, as
it is also visible in Figure 9.
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Equispaced 2D Gaussian IGS ProM Full
x
1
6

x
3
2

Figure 8. Reconstructions of a fastMRI Knee sample with α = 16 (top) and α = 32 (bottom). Each cell contains an evaluated method,
where the reconstructed scan is displayed on the left and the applied mask on the right side. The original scan is shown in the right column.
Equidistant spacing and IGS display strong infolding artifacts, which are less pronounced with Gaussian sampling. The reconstruction with
the data-driven mask of ProM is much closer to the fully-sampled image and reduces image noise as well as artifacts very clearly.

x4 x8 x16 x32

PSNR ↑ SSIM ↑ NMSE ↓ PSNR ↑ SSIM ↑ NMSE ↓ PSNR ↑ SSIM ↑ NMSE ↓ PSNR ↑ SSIM ↑ NMSE ↓

fa
st

M
R

I Equi. 24.481 0.601 0.066 23.803 0.524 0.077 23.365 0.474 0.085 23.158 0.448 0.090
Gauss. 29.570 0.664 0.027 28.118 0.560 0.035 23.342 0.440 0.112 17.373 0.299 0.396
IGS 28.553 0.640 0.031 26.428 0.532 0.047 24.376 0.458 0.070 22.313 0.409 0.108
ProM 29.787 0.672 0.026 28.472 0.570 0.034 27.575 0.511 0.040 26.739 0.473 0.046

A
C

D
C

Equi. 23.566 0.716 0.069 22.552 0.674 0.0857 21.785 0.653 0.103 21.772 0.650 0.104
Gauss. 39.169 0.959 0.001 24.681 0.705 0.073 18.038 0.512 0.265 15.786 0.428 0.422
IGS 33.856 0.925 0.007 27.804 0.813 0.026 23.804 0.712 0.065 20.705 0.621 0.132
ProM 40.906 0.977 0.001 33.852 0.896 0.007 26.344 0.735 0.035 20.401 0.580 0.140

B
ra

T
S

Equi. 26.732 0.716 0.033 25.599 0.687 0.043 25.660 0.693 0.042 25.149 0.692 0.048
Gauss. 38.372 0.779 0.002 22.452 0.301 0.112 17.543 0.225 0.307 14.357 0.152 0.574
IGS 35.550 0.911 0.004 30.607 0.821 0.014 26.995 0.739 0.032 24.054 0.679 0.061
ProM 39.623 0.943 0.002 35.660 0.874 0.004 27.002 0.375 0.031 15.495 0.174 0.425

Table 1. Quality of reconstruction for the fastMRI Knee, ACDC, and BraTS.
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Figure 9. ProM reconstructions of T2-weighted BraTS samples
with α = 16 with high PSNR and low SSIM.

4.4. Zero-shot Undersampled Segmentation

Visual reconstruction quality does not necessarily cor-
relate with performance in downstream tasks such as seg-
mentation [27]. We now investigate the quality of ProM
in a transfer learning scenario, where we apply a frozen
segmentation network trained on fully-sampled MRIs and
learn a mask to maximize its performance with undersam-
pled MRIs. For this, we choose a standard U-net [29] imple-
mentation and training routine with channel multipliers of

(16, 32, 64, 128, 256). We substitute L and use the trained
segmentation network net as a proxy paired with a com-
bination of Dice and cross-entropy loss Lseg, i.e. L(x̂,x)
becomes Lseg(net(x̂),xseg) where xseg is the segmentation
label of x. Additionally, for the task of segmentation, we
introduce a 1D variant of ProM to better understand its gain
in performance compared to other methods.

The segmentation performance is evaluated in Table 2
via Dice score and Intersection-over-Union (IuO). Exam-
ples are visualized in Figure 10. The fully-sampled MRI
achieves a macro-averaged Dice score of 0.855 and an IoU
of 0.763 for ACDC as well as 0.772 and 0.710 for BraTS,
respectively. While 1D ProM does not surpass the per-
formance of IGS, our contention is that 1D ProM would
benefit from optimized parameters specifically tailored for
1D masking. 2D ProM achieves competitive segmentation
performance for α = 8 and is overall notably better for
extreme acceleration factors such as α = 32 with a Dice
score / IoU of 0.727 / 0.606 in ACDC and 0.706 / 0.608
in BraTS. The Gaussian mask appears to be an efficient and
straightforward method to achieve competitive performance
for smaller α. Note that the ProM mask determined by Lseg
differs substantially from the one obtained to maximize re-
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Equispaced 2D Gaussian IGS ProM (1D) ProM (2D) Full
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Figure 10. Segmentation with a pre-trained U-net using Lseg in x16 accelerated ProM. The contours in ACDC correspond to the left ( )
and right ( ) ventricular cavity as well as the left ventricular myocardium ( ). BraTS markings in the T1Gd sample imply whole ( ),
core ( ) and enhancing ( ) tumor.

construction quality (Figure 4), emphasizing the fact that an
optimal mask does not only vary with the dataset but also
with the task.

Equi. Gauss. IGS ProM
(1D)

ProM
(2D)

A
C

D
C

x8
Dice ↑ 0.671 0.847 0.828 0.762 0.839
IoU ↑ 0.546 0.752 0.726 0.650 0.742

x16
Dice ↑ 0.645 0.644 0.745 0.717 0.789
IoU ↑ 0.517 0.534 0.627 0.599 0.679

x32
Dice ↑ 0.644 0.399 0.592 0.587 0.727
IoU ↑ 0.517 0.301 0.466 0.460 0.606

B
ra

T
S

x8
Dice ↑ 0.596 0.733 0.716 0.646 0.739
IoU ↑ 0.489 0.638 0.619 0.542 0.646

x16
Dice ↑ 0.589 0.597 0.651 0.537 0.735
IoU ↑ 0.481 0.494 0.546 0.426 0.640

x32
Dice ↑ 0.580 0.315 0.537 0.483 0.706
IoU ↑ 0.472 0.226 0.428 0.374 0.608

Table 2. Segmentation metrics using a pre-trained U-net on ACDC
and BraTS, showing that ProM (2D) excels especially for extreme
acceleration factors.

5. Conclusion
This paper proposes ProM as a general framework and

building block for data-driven and probabilistic undersam-
pling mask learning, with theoretically guaranteed acceler-
ation factor enforcement. Our evaluation protocol consisted
in investigating image reconstruction and zero-shot seg-
mentation of cardiac, brain, and knee MRIs. ProM shows
promising performance, with increased benefits compared
to other methods, especially in the downstream task of seg-
mentation, enabling extreme acceleration factors, which,
can be traded into higher spatial resolution or coverage.
Further, ProM again demonstrated the benefit of not only
having domain-specific but also task-specific undersam-
pling masks, as the efficacy for a task does not necessarily
overlap with visually correct reconstructions.

Clinical Practice. MRI is an extremely flexible imaging
modality, which involves optimization and multiple trade-

offs, e.g., between total acquisition time (or temporal reso-
lution in case of time-resolved imaging), spatial resolution
and coverage, signal-to-noise ratio, and k-space data to be
acquired. Generally, any approach to reduce the amount of
k-space data to be acquired while maintaining the quality of
reconstructed images relaxes constraints on a multitude of
protocol parameters and opens up possibilities for protocol
optimization. Learning-based reconstruction and optimized
k-space sampling for task-specific undersampling patterns
as provided by ProM provides such an approach for better
and faster MR data acquisition. This is, e.g., particularly
useful for high-speed interventions or pathology localiza-
tion. The minimalistic and model-free strategy of ProM al-
lows us to derive these optimal masks within seconds from
a single data sample. As this also does not require extensive
computational infrastructure, our approach further reduces
barriers to actual deployment.

Currently, our evaluations have primarily focused on a
2D Cartesian pattern, forming scanner trajectories along the
depth axis. However, more scanner parameters and physi-
cal limitations need to be taken into account when consid-
ering deployment. An extension of ProM to work with ra-
dial or spiral acquisition trajectories could open a new area
of investigation. Furthermore, the implications of deriving
custom masks in a multi-coil setting need to be considered.
Additionally, custom masks for specific scanner parameters,
acquisition protocols, or manufacturers could be developed.

Future Work. Despite our take on not using a reconstruc-
tion network, ProM as an encapsulated layer with end-to-
end differentiability can be integrated into any architecture
of choice without major adaptions. Further, potentially even
higher performance could be achieved by finetuning the net-
work of the respective downstream task, e.g., segmentation,
during the ProM process. Another possible direction to im-
prove our approach is to integrate prior domain knowledge
into pM . While our factorized prior distribution assump-
tion proved to work well in most experiments, it could be
beneficial to incorporate further prior knowledge if data is
scarce, i.e., for very large acceleration factors.
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A. Supplementary Material
A.1. S annealing schedule

Acceleration factor α, annealing start iteration imin, an-
nealing end iteration imax, current iteration icur, dtarget =
1
α .

dcur = dtarget + (1− dtarget)

(
1− icur − imin

imax − imin

)
Scur = dcur ·D

A.2. Proof of Constraint Projection

Proof for Eq. 6 and Eq. 7 is taken and adapted from [38].
Transforming updated parameters θ̃ ∈ RD into θ, which
fulfills the sparsification constraint can be described as a
least-squares convex problem:

argmin
θ

1

2
||θ̃−θ||2 s.t.

D∑
i=1

θi = 1⊤θ ≤ Sand0 ≤ θi ≤ 1 .

(9)
This can be solved by the Lagrangian multiplier method:

L(θ, λ) =
1

2
||θ − θ̃||2 + λ(1⊤θ − S) (10)

=
1

2
||θ − (θ̃ − λ1)||2 + λ(1⊤θ̃ − S)− n

2
λ2 ,

(11)

where λ ≥ 0 and 0 ≤ θi ≤ 1. Minimizing w.r.t. θ results in

θ̄ = 1s̃−λ1≥1 + (s̃− λ1)1>s̃−λ1>0 . (12)

Thus, for λ ≥ 0

g(λ) = L(θ̄, λ)

=
1

2
||[s̃− λ1]− + [θ̃ − (λ+ 1)1]+||2

+ λ(1⊤θ̃ − θ)− D

2
λ2

=
1

2
||[s̃− λ1]−||+

1

2
||[θ̃ − (λ+ 1)1]+||2

+ λ(1⊤θ̃ − θ)− D

2
λ2

(13)

and

g′(λ) = 1⊤[λ1− θ̃]+ + 1⊤[(λ+ 1)1− θ]−

+ (1⊤θ̃ − θ)−Dλ

= 1⊤ min(1,max(0, θ̃ − λ1))− S

= [
∑D

i=1 min(1,max(0, θ̃i − λ))]− S .

(14)

With g′(λ) being a monotone function, λ∗
1 a solution for

g′(λ) = 0 can be obtained by e.g. a convex solver or a

bisection method. The maximum of g(λ) with λ ≥ 0 is at
λ∗
2 = max(0, λ∗

1). Eventually,

θ∗ = 1s̃−λ∗
21≥1 + (s̃− λ∗

21)1>s̃−λ∗
21>0 (15)

= min(1,max(0, θ̃ − λ∗
21) (16)

= min(1,max(0, θ̃ −max(0, λ∗
1)1) . (17)
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