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1 Abstract

Retinal image matching plays a crucial role in monitoring
disease progression and treatment response. However,
datasets with matched keypoints between temporally
separated pairs of images are not available in abundance
to train transformer-based model. We propose a novel
approach based on reverse knowledge distillation to train
large models with limited data while preventing overfitting.
Firstly, we propose architectural modifications to a CNN-
based semi-supervised method called SuperRetina [22] that
help us improve its results on a publicly available dataset.
Then, we train a computationally heavier model based on
a vision transformer encoder using the lighter CNN-based
model, which is counter-intuitive in the field knowledge-
distillation research where training lighter models based
on heavier ones is the norm. Surprisingly, such reverse
knowledge distillation improves generalization even fur-
ther. Our experiments suggest that high-dimensional fitting
in representation space may prevent overfitting unlike
training directly to match the final output. We also provide
a public dataset with annotations for retinal image keypoint
detection and matching to help the research community
develop algorithms for retinal image applications.

1. Introduction
Keypoint detection and matching, also referred to as fea-

ture point extraction or feature detection, is a fundamen-
tal task in the field of computer vision. Its primary objec-
tive is to identify and locate prominent points or landmarks
within images. These keypoints possess distinct and robust

1* Indicates equal contribution

characteristics, making them valuable for various applica-
tions including object recognition, image registration, im-
age stitching, pose estimation, facial recognition, and aug-
mented reality. Typically, keypoint detection algorithms
identify points in an image that are locally unique in in-
tensity, color, or texture. These points are also expected
to be invariant to changes in scale, rotation, and illumina-
tion. Keypoint locations are typically represented as 2D or
3D coordinates. Along with location, a feature descriptor is
extracted for each point, which helps in its recognition or
matching with corresponding points in another image.

Throughout the years, numerous methods have been de-
veloped for keypoint detection. These methods span from
classical techniques like the Harris corner detector [32],
scale-invariant feature transform (SIFT) [25], and speeded-
up robust features (SURF) [9], to more recent approaches
based on deep learning, such as oriented fast and rotated
BRIEF (ORB) [31] and SuperPoint [13].

Several methods have been proposed for keypoints
matching in retinal images. Addison et al. [6] introduced
a technique called low dimensional step pattern analysis
(LoSAP) for image registration. LoSAP is capable of han-
dling intensity changes and is invariant to rotation. How-
ever, the SPA descriptor used in LoSAP lacks discrimina-
tive power in identifying specific eye identities. Truong
et al. [37] presented a semi-supervised CNN-based feature
point detector known as Greedily Learned Accurate Match
Points (GLAMpoints) specifically designed for matching
and registering retinal images. GLAMpoints utilizes deep
learning techniques to improve the accuracy and precision
of keypoint matching. Another approach, proposed by Her-
nandez et al. [18], involves a registration framework based
on eye modeling. This framework simultaneously estimates
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eye pose and shape and solves the registration problem as
a 3D pose estimation task, utilizing corresponding points in
the retinal images.

Our work makes the following contributions. Firstly, we
are releasing annotations on a curated dataset specifically
for detecting keypoints in retinal images. Additionally, we
introduced a more powerful architecture that surpasses the
state-of-the-art SuperRetina model for detecting keypoints
in retinal images [22]. Furthermore, we investigated the
significance of using a CNN versus incorporating a trans-
former model. Finally, we propose and explore a reverse
knowledge distillation as a training methodology for large
models, especially when limited training data is available.
In this approach, the large model (student) learns from the
small model (teacher) to enhance its performance and sur-
pass the performance of its teacher as we will see later in
section 5.

2. Related work
In this section, we will review important methods for

keypoint detection. We will also provide an overview of
vision transformers, emphasizing their significance in com-
puter vision. Additionally, we will delve into various tech-
niques employed for training vision transformers when data
is limited.

2.1. Keypoint detection

Traditional keypoint detection algorithms, such as Harris
corner detector [32], SIFT [25] and SURF [9], have been
widely used in computer vision applications for decades.
These algorithms detect keypoints in images, which are in-
variant to scaling, rotation, and lighting changes. They
then describe the local image patch around the keypoints
using a set of features, which can be used to match key-
points between different images or recognize objects. How-
ever, these techniques have some drawbacks, including high
computational cost, limited accuracy under extreme light-
ing and viewpoint changes, and difficulty in handling oc-
clusions and cluttered backgrounds.

Deep learning-based keypoint detection algorithms,
which can automatically learn robust and discriminative
features directly from data, and can handle complex and
diverse image variations more effectively, have been pro-
posed in recent years. These methods have shown promis-
ing results in various applications, such as object detection,
semantic segmentation, and image retrieval.

In deep learning, there are different types of keypoint
detection algorithms: supervised, semi-supervised, self-
supervised and unsupervised techniques. Supervised tech-
niques require annotated data, where the keypoints are man-
ually labeled in the training images. These algorithms are
useful in applications where there is a large amount of la-
beled data available, such as facial recognition or object de-

tection. On the other hand, unsupervised techniques do not
require labeled data, and instead, the network learns to de-
tect keypoints by maximizing certain objectives, such as the
amount of information preserved during feature extraction.
These methods are useful in applications where labeled data
is scarce or expensive to obtain, such as medical imaging or
remote sensing.

Prominent deep-learning based keypoint detection meth-
ods include UnsuperPoint, SuperPoint, GLAMpoints, and
SuperRetina. UnsuperPoint [11] uses a new unsupervised
training approach based on a combination of a differentiable
soft nearest neighbor loss and an unsupervised clustering
loss. SuperPoint [13] is a self-supervised deep learning-
based algorithm for keypoint detection and description. It
uses a novel loss function to train on unannotated images,
making it more scalable and adaptable to various applica-
tions. The loss functions (geometric consistency loss, and
descriptor matching loss) encourage the network to learn to
predict the spatial location of the keypoints and their de-
scriptors without supervision. It uses a convolutional neural
network (CNN) to extract keypoint locations and descrip-
tors from images. The main difference between Unsuper-
Point and SuperPoint is the training process. SuperPoint is
trained in a self-supervised manner, whereas UnsuperPoint
is trained in an unsupervised manner. Additionally, Unsu-
perPoint achieves state-of-the-art performance on various
benchmarks and outperforms SuperPoint in some challeng-
ing scenarios, such as large viewpoint changes and illumi-
nation variations. GLAMpoints [37] is a semi-supervised
deep learning-based algorithm for interest point detection
and description. It uses a novel greedy training strategy to
learn keypoint detection and description in an end-to-end
manner and learns to select the most accurate keypoints
and their descriptors resulting in high accuracy and effi-
ciency. GLAMpoints outperforms SuperPoint and Unsu-
perPoint in terms of accuracy and efficiency, especially un-
der challenging scenarios such as large viewpoint changes,
scaling, and rotation, and on various benchmarks such as
HPatches [8]. Moreover, GLAMpoints is designed to han-
dle multiple object instances in the same image, making
it suitable for multi-object tracking and matching. Super-
Retina [22] is a semi-supervised approach for keypoint de-
tection and description in retinal images. The method uses
a combination of labeled and unlabeled data to improve the
performance of the keypoint detector and descriptor. The
approach consists of three main components: a supervised
keypoint detector, an unsupervised keypoint descriptor, and
a semi-supervised loss function that combines both labeled
and unlabeled data. Their proposed method uses an iterative
refinement process to improve the accuracy and robustness
of the keypoint matches. The refinement process involves
removing outlier matches and adding new matches based
on geometric constraints.



2.2. Vision transformers

Taking inspiration from the success of transformer mod-
els in natural language processing, vision transformers
adopt the same self-attention mechanism to process visual
data [24, 39]. By treating the entire image as a sequence
of tokens or patches, vision transformers excel at captur-
ing global dependencies and long-range interactions within
the image. They have demonstrated promising performance
across various tasks, including image classification, object
detection, and segmentation. Vision transformers typically
require a substantial amount of labeled training data to ac-
quire meaningful representations and achieve good gener-
alization on new examples. Consequently, training vision
transformers with limited data can be challenging due to
their extensive parameter count and the risk of overfitting.

Several strategies can be employed to mitigate the chal-
lenge of training in smaller datasets [35]. One effective
approach is data augmentation, which involves generat-
ing synthetic training examples by applying transformations
like rotations, translations, flips, and color variations to the
available data [35]. This augmentation technique expands
the effective size of the training set and aids the model in
learning more robust and invariant features. Another strat-
egy is transfer learning, whereby a pre-trained vision trans-
former model on a large-scale dataset (such as ImageNet)
serves as a starting point [38]. The model can then be fine-
tuned on the limited dataset of interest. Transfer learning
allows the model to leverage the knowledge acquired from
the larger dataset, thereby enhancing its generalization even
with limited data. Furthermore, regularization techniques
like dropout and weight decay can be employed to prevent
overfitting and improve generalization [35]. These regular-
ization techniques encourage the model to avoid excessive
reliance on specific training examples, enabling it to learn
more general patterns and representations.

2.3. Knowledge distillation

Knowledge distillation [16] is a technique whereby a
pre-trained model (known as the teacher model) is utilized
to guide the training of another model (the student model).
The student model learns to mimic the predictions or in-
ternal data representations (features) of the teacher model.
This is typically done to leverage the knowledge and gen-
eralization capabilities of the larger teacher model into a
smaller student model.

In our work, we adopt distillation in the reverse direc-
tion where a small CNN-based model serves as the teacher
model, while a large transformer-based model acts as the
student model. We hypothesize that larger models can over-
fit when they fit a smaller-dimensional output, but this curse
can be broken if they are trained to fit a larger dimensional
representation (feature vector).

Figure 1. Distribution of keypoints per image in MeDAL dataset.

3. Datasets
To train a network that can detect keypoints on retinal

images, it is essential to have images with accurately la-
beled keypoints. Previous methods used the FIRE dataset
for testing the detection of keypoints on retinal images, and
to ensure a fair comparison with those methods, we adopted
the same approach and exclusively used the FIRE dataset
for testing in our study. Unfortunately, despite reaching out
to others who had utilized private datasets for training their
networks, we were unable to obtain access to those datasets.

Consequently, we decided to create our own training an-
notation set using publicly available datasets originally in-
tended for other tasks, such as retinal disease classifica-
tion. As we lack expertise in the domain, we restricted our
dataset exclusively to normal images, with the hope that it
would still help develop the capability to detect keypoints
in abnormal images during the testing phase, including spe-
cific images present in the FIRE dataset. In this section we
will provide detailed insights into our dataset and its anno-
tations, and the FIRE dataset.

3.1. Our Dataset

Our dataset comprises a total of 261 retinal images,
which were divided into 208 images for training purposes
and 61 images for validation [15]. Each image underwent
meticulous annotation to identify keypoints at intersections,
crossovers, and bifurcations. The number of keypoints de-
tected in each image varied from 18 to 86, with an average
of 42.96 ± 14.03 keypoints. The distribution of keypoints
across the images is visually represented in Figure 1.

To assemble our dataset, we gathered images from two
distinct sources. Firstly, we included 201 normal images
obtained from the e-ophtha dataset [1]. Additionally, we in-



corporated 60 images from the retinal disease classification
dataset [5], see the figure on the dataset provided in the sup-
plemental material [7].The annotation process was executed
by a team of five engineering students, with each student
assigned a specific set of images. On average, annotating a
single image required approximately five minutes, while the
annotation of a pair of images took approximately 8 min-
utes. For annotating the images, we developed a Python
script to aid the process.

In Section 4, we will observe that in order to utilize Swin
UNETR [17] as the backbone of our network, we needed
training a Swin UNETR in a self-supervised manner before
using it and for that a substantial dataset was required. Since
the distribution of retinal images significantly differs from
that of the ImageNet data [12], we made the decision to
gather a substantial retinal dataset specifically for training
Swin UNETR. The dataset, comprising ∼ 1.9K images,
was collected from various online resources [2–4,19,33] by
our team. Additionally, this dataset was utilized to train the
descriptor decoders as well.

For preprocessing, our initial step involves normaliz-
ing the images using z-score normalization. Subsequently,
we applied contrast limited adaptive histogram equalization
(CLAHE) and gamma correction. Finally, we divided the
preprocessed images by 255. Throughout all our experi-
ments, we consistently utilized the green channel, as it con-
sistently demonstrated the most optimal performance.

3.2. FIRE Dataset

The FIRE dataset, which focuses on fundus image regis-
tration, consists of a total of 129 retinal images [19]. These
images were organized into 134 pairs based on the degree
of overlap and deformation between them, with each pair
belonging to a specific category. The dataset is divided into
three categories: S, P, and A. The S category comprises 71
pairs of images with a large overlap (> 75%) and minimal
visual anatomical differences. These pairs exhibit changes
in brightness, as well as slight shifts and/or rotations. The P
category contains 49 pairs of images with smaller overlaps
compared to the S category. These pairs exhibit significant
differences, including large shifts and rotations, between the
images. The A category consists of 14 pairs of images with
a large overlap. However, the images in each pair were
acquired at different examinations, resulting in substantial
anatomical changes such as spots, cotton-wool patches, and
increased vessel tortuosity.

The retinal images were captured using a Nidek AFC-
210 fundus camera, providing images with a resolution of
2912×2912 pixels and a field of view (FOV) of 45° in both
the x and y dimensions. The images were obtained from 39
patients at the Papageorgiou Hospital, Aristotle University
of Thessaloniki, Thessaloniki.

The figure on the dataset provided in the supplemental

material [7] illustrates examples from both our dataset [15]
and the FIRE dataset. The first and second rows display im-
ages from the e-ophtha dataset and the retinal disease clas-
sification dataset, respectively, along with our annotations
presented as keypoints overlaid on these images. The third
row showcases images from the FIRE dataset, accompanied
by the corresponding annotations for reference.

4. Proposed Method
SuperRetina [22] is a state-of-the-art (SOTA) technique

for identifying informative keypoints in retinal images. It is
an adapted version of the SuperPoint model [13], specif-
ically designed to excel in retinal image analysis. This
innovative approach leverages a semi-supervised learning
framework, effectively combining supervised and unsuper-
vised techniques to maximize the utilization of the limited
amount of labeled data found in retinal image datasets. The
network architecture comprises an encoder responsible for
extracting downsampled feature maps from the input im-
age, along with two decoders: one for detecting keypoints
and another for generating descriptors associated with these
keypoints. The keypoint detector is trained using a combi-
nation of labeled and unlabeled data, while the descriptor
is trained using self-supervised learning methods. Rigor-
ous experimentation conducted on established benchmark
retinal image datasets showcases the proposed approach’s
exceptional performance in terms of keypoint detection and
matching accuracy, outperforming existing methods [27].
By employing a semi-supervised framework, this method
effectively capitalizes on the available data, which is partic-
ularly advantageous in the domain of retinal image analy-
sis where annotated data is often scarce. Consequently, the
suggested method exhibits significant potential for enhanc-
ing various applications in retinal image analysis, including
image registration, image alignment, and image-based dis-
ease diagnosis.

4.1. UNet-empowered SuperRetina

The initial encoder-decoder architecture of SuperRetina
drew inspiration from the U-Net architecture [30]. In Super-
Retina, the encoder is shallow, comprising a single convo-
lutional layer followed by three convolutional blocks. Each
block consists of two convolutional layers, a 2×2 max pool-
ing layer, and a ReLU activation function. The decoder
for keypoint detection includes three convolutional blocks
with two convolutional layers in each block. It incorporates
bilinear upsampling, ReLU activation, and concatenation,
benefiting from skip connections originating from the en-
coder. Subsequently, feature maps of the same size as the
input image are obtained, and a convolutional block with
three convolutional layers and a sigmoid activation is em-
ployed to generate the detection map (P ). For the descriptor
decoder, the feature maps from the encoder are downsam-



pled into more compact w
16 × h

16 × d feature maps. Then,
a transposed convolutional block is utilized to upsample the
feature maps to match the size of the input image, ultimately
producing a full-sized descriptor tensor (D) of dimensions
h× w × d. All descriptors are l2-normalized.

Our focus lies in enhancing the performance of Super-
Retina through improvements in the encoder design. To
achieve this, we introduced several architectural modifica-
tions to SuperRetina. These modifications use two methods:
a CNN-based approach and a transformer-based approach,
aiming to improve the overall results.

4.2. Large kernel-empowered SuperRetina

Taking inspiration from the work of Jia et al. [21], which
successfully enhances the performance of a basic U-Net ar-
chitecture to rival that of the powerful transformer archi-
tecture, we propose a straightforward technique. This tech-
nique involves introducing kernels of varying sizes in each
layer of the encoder of SuperRetina, aiming to effectively
capture long-range dependencies in retinal image matching
tasks.

In our approach, we made specific modifications to the
architecture of SuperRetina’s encoder. Instead of using a
3× 3 kernel in each layer, we replaced it with three kernels
of different sizes: 1× 1, 3× 3, and 5× 5. By incorporating
these modifications, the modified SuperRetina surpasses the
state-of-the-art method for retinal image matching. It sur-
passes all previous methods evaluated on the FIRE dataset
across all evaluation metrics, establishing its superiority.

4.3. Swin UNETR-empowered SuperRetina

After observing promising results in our experiments by
using large kernels to increase the receptive field of Super-
Retina’s encoder, we considered the possibility of further
enhancing its performance by introducing a transformer-
based encoder. The rationale behind this choice stems
from the transformer’s inherent capability to capture long-
range dependencies, which could be advantageous for our
task. However, training a transformer on a limited dataset
presents significant challenges, which we will discuss in the
subsequent paragraphs.

To provide a comprehensive understanding of the mod-
ifications we made to SuperRetina’s architecture, we first
introduce the concepts of Swin Transformer [24] and Swin
UNETR [17]. These serve as foundational references for
our modifications. Subsequently, we delve into explaining
our specific architectural adjustments to SuperRetina and
outline the unique approach we employed to train such a
computationally intensive model on our small dataset.

4.3.1 Swin transformer

The primary factor contributing to the success of the Swin
Transformer is its hierarchical design [24]. Instead of treat-
ing the input image as a whole, it divides the image into
non-overlapping patches, considering each patch as a to-
ken. The developers of Swin Transformer introduced the
concept of shifted windows, where tokens only attend to a
limited neighborhood of tokens, rather than attending to all
tokens. By employing a multi-stage hierarchical architec-
ture, the Swin Transformer effectively captures long-range
dependencies while maintaining manageable computational
complexity.

4.3.2 Swin UNETR

Swin UNETR was developed specifically for semantic seg-
mentation tasks, merging the Swin Transformer and CNNs
within a UNet-style architecture to address pixel-level seg-
mentation [17]. The key benefit of the UNet-shaped archi-
tecture lies in its utilization of skip connections. In our
study, we substituted the encoder of SuperRetina with the
encoder from Swin UNETR.

4.3.3 Reverse knowledge distillation

Conventional approaches to knowledge distillation typi-
cally involve transferring knowledge from a larger model
to a smaller one, resulting in improved accuracy for the
lightweight model. However, in our case, where we aimed
to utilize a model with long-term dependencies, training a
transformer model with limited data, and even with self-
supervision and transfer learning, yielded inferior perfor-
mance compared to a CNN model. To enhance the perfor-
mance of the larger model, we employed reverse knowledge
distillation, a technique where we transferred knowledge
from the small model (teacher) to the large model (student).
We referred to this approach as reverse knowledge distilla-
tion.

The loss function utilized in the reverse knowledge dis-
tillation strategy consisted of two components: first, the loss
between the student network’s predictions and the actual
output, and second, the distillation loss between the student
network and the teacher network outputs. During the train-
ing process, we followed the traditional steps while intro-
ducing an additional step in each iteration. In conjunction
with the regular steps, we generated a keypoint heatmap us-
ing the teacher model and calculated the dice loss between
the keypoint heatmaps of the student and teacher models.
This loss was referred to as lRKD

clf . Additionally, we im-
plemented contrastive matching between the descriptors of
the teacher and student models, known as the lRKD

des . Both
the detect RKD loss lRKD

clf , and descriptor RKD loss lRKD
des

were incorporated into the original detector and descriptor



losses, respectively. Refer to the paper [22] for more in-
formation on the original losses. Equations 1, 2, 3, and 4
represent the detector loss of our Swin UNETR-empowered
SuperRetina model with SuperRetina/LK-SuperRetina as a
teacher. The total loss of the detector 1 is

ldet = l
′

clf + lgeo (1)

l
′

clf = lclf + lRKD
clf (2)

lclf (I;Y ) = 1−
2.
∑

i,j(P ◦ Ỹ )i,j∑
i,j(P ◦ P )i,j +

∑
i,j(Ỹ ◦ Ỹ )i,j

(3)

where Ỹ is the smoothed version of the binary ground truth
labels Y of the keypoints after blurring them with a 2D
Gaussian.

lRKD
clf (IS ; IT ) = 1−

2.
∑

i,j(PS ◦ PT )i,j∑
i,j(PS ◦ PS)i,j +

∑
i,j(PT ◦ PT )i,j

(4)
where PS stands for the keypoint heatmap of the student,
and PT refers to the keypoint heatmap of the teacher model.
And lgeo is the dice loss between the output heatmap of the
student model when the input is the image I , and the inverse
projection of the heatmap produced by the student when the
input to it is the augmented version of the image I , I

′
. Sim-

ilarly, the new descriptor loss is a combination of the orig-
inal descriptor loss and the reverse knowledge distillation
loss as in 5

lDes = ldes + lRKD
des (5)

When feeding the image I and its augmented version I
′

to the student network, we optain two tensors for the de-
scriptors D, and D

′
. For each keypoint (i, j) in the non-

maximum supressed keypoint set P̃ , two distances are com-
puted Φrand

i,j between the descriptors of (i, j) in the set P̃
and a random point from registered heatmap H(P̃ ). And
Φhard

i,j the minimal distance. As 6 depicts

ldes(I,H) =
∑

(i,j)∈P̃

max(0,m+Φi,j−
1

2
(Φrand

i,j +Φhard
i,j ))

(6)
Similar to ldes, we compute lRKD

des between the descriptors
generated when passing I to the student model, and the de-
scriptors generated when passing I to the teacher model. For
further details on the reverse knowledge distillation method
and the loss functions, check our supplemental material [7].

5. Experiments

We conducted a comprehensive evaluation of our pro-
posed method by comparing its performance against vari-
ous techniques in the retinal image matching task. Tab 1

presents a comprehensive comparison between our top-
performing technique, Swin UNETR-empowered Super-
Retina, and alternative approaches for retinal image match-
ing, encompassing both traditional and deep learning-based
methods. The results clearly demonstrate the utility of our
proposed method, as it outperforms all other approaches.

The evaluation metrics consist of two aspects: the fail-
ure rate and the acceptance rate. The failure rate is de-
termined by examining the number of matches between a
query image, and its reference. A registration is consid-
ered failed if the number of matches is less than 4, which
is the minimum required for estimating a homography, H.
On the other hand, the acceptance rate is calculated for each
query point in the query image. It involves computing the
L2 distance between registered point and its corresponding
reference point in the reference image. The median distance
is defined as the median error (MEE) for each query image,
with the maximum distance representing the maximum er-
ror (MAE). To be considered acceptable, MEE must be less
than 20 and MAE must be less than 50. If these conditions
are not met, the registration is deemed inaccurate.

To assess the overall performance of a specific method,
the area under receiver operating characteristic curve (AUC)
is reported. AUC estimates the expectation of the accep-
tance rates with respect to the decision threshold. It reflects
the performance across all methods. Additionally, AUC is
computed separately for each category (Easy, Mod, Hard),
and their mean (mAUC) is used as an overall measure.

In conclusion, the superior method is determined by hav-
ing a higher acceptance rate or AUC, and lower rates of
inaccuracies or failures. To analyze the impact of differ-
ent modifications to the encoder, varying kernel sizes of
the large kernel-empowered SuperRetina, and diverse tech-
niques for training the Swin Unetr encoder, we conducted
ablation studies, the details listed below.

5.1. Different kernel sizes

Through conducting an ablation study focused on ker-
nel size, we discovered that a combination of kernels with
dimensions of 1 × 1, 3 × 3, and 5 × 5 yielded the most fa-
vorable outcomes of large kernel-empowered SuperRetina.
See ablation studies in Table 2.

5.2. Transfer learning

In an attempt to address the difficulty of training a trans-
former model with limited data, we utilized transfer learn-
ing. To accomplish this, we gathered a substantial dataset
of retinal images from online sources. This dataset was
employed to train a Swin UNETR model on various tasks,
including image inpainting and angle prediction. We then
used pretrained encoder weights as initial weights for the
SuperRetina’s encoder. Tab. 2 shows the results of using
a pretrained Swin UNETR as a backbone of SuperRetina.



Figure 2. Performance comparison of our proposed methods on three example scenarios from FIRE dataset [19]: class S (easy), class A
(moderate), and class P (hard) from left to right. LK stands for large kernel, RKD refers to Reverse Knowledge Distillation with 50%
Dropout.

Method Failed Inaccurate Acceptable AUC-Easy AUC-Mod AUC-Hard mAUC

SIFT, IJCV04 [25] 0.00% 20.15% 79.85% 0.903 0.474 0.341 0.573
PBO, ICIP10 [26] 0.75% 28.36% 70.89% 0.844 0.691 0.122 0.552
REMPE, JBHI20 [18] 0.00% 02.99% 97.01% 0.958 0.660 0.542 0.720
SuperPoint, CVPRW18 [13] 0.00% 05.22% 94.78% 0.882 0.649 0.490 0.674
GLAMpoints, ICCV19 [37] 0.00% 07.46% 92.54% 0.850 0.543 0.474 0.622
R2D2, NIPS19 [28] 0.00% 12.69% 87.31% 0.900 0.517 0.386 0.601
SuperGlue, CVPR20 [34] 0.75% 03.73% 95.52% 0.885 0.689 0.488 0.687
NCNet, TPAMI22 [29] 0.00% 37.31% 62.69% 0.588 0.386 0.077 0.350
SuperRetina [23] 0.00% 01.50% 98.50% 0.940 0.783 0.542 0.755
Ours-1 (Large kernel-SuperRetina) 0.00% 00.75% 99.25% 0.942 0.783 0.558 0.761
Ours-2 (Swin UNETR-SuperRetina) 0.00% 00.00% 100.0% 0.935 0.780 0.550 0.755

Table 1. A comparison among various techniques for retinal image matching, specifically focusing on the results obtained when testing the
methods on the FIRE dataset [19]. Our proposed method demonstrates superior performance when compared to both traditional and deep
learning approaches. Ours-1 refers to large-kernel-empowered SuperRetina, while Ours-2 refers to Swin UNETR-empowered SuperRetina
with SuperRetina as a teacher and drop out 50%. In the table we provide the percentage values [%] of failed, inaccurate, and acceptable.

Unfortunately, this model outperforms other models for one
specific evaluation metric, namely AUC-Mod.



5.3. Reverse knowledge distillation

Transformers, as highlighted in the study by Dosovitskiy
et al. (2020) [14], have a high demand for extensive train-
ing data and tend to perform less effectively than CNNs
when dealing with limited data. Reverse knowledge distil-
lation refers to using the knowledge obtained by a smaller
model, e.g. a CNN, to train a larger model, e.g. a Trans-
formers. Typically, the knowledge of a larger model is used
to train a smaller model in knowledge distillation, as dis-
cussed in works such as Chen et al. (2022) [10], Touvron
et al. (2021) [36], and Hinton et al. (2015) [20]. Within
our research, we regard the CNN as the ”teacher” model,
previously trained for the keypoint detection task. The ob-
jective is to transfer the CNN’s knowledge and generaliza-
tion abilities to a transformer model, referred to as the ”stu-
dent” model. The distillation process entails training the
student model to imitate the behavior of the teacher model.
This typically involves employing the output probabilities
or feature representations of the teacher model as soft tar-
gets during the student model’s training. By mimicking
the teacher’s predictions, the student model effectively cap-
tures the teacher model’s knowledge and decision-making
process. We anticipated that by distilling knowledge from
a CNN to a transformer, the transformer model could po-
tentially benefit from both the CNN’s local feature extrac-
tion capabilities and the transformer’s ability to model long-
range dependencies. However, our experimental results in-
dicate that even after knowledge distillation, the transformer
model performed inferiorly compared to our expectations.
See Table 2. To resolve this problem, as shown in Ta-
ble 2, we incorporated a 50% dropout, which significantly
enhanced the performance of the Swin UNETR-empowered
SuperRetina, enabling it to achieve 100% accuracy on the
testing dataset. This improvement arises from the network’s
enhanced generalization capability on testing data by mit-
igating overfitting on the training data combined with re-
verse knowledge distillation. We conclude that regulariza-
tion strategies, such as dropout, will be critical to reverse
knowledge distillation. By using the dropout trick, we ob-
served an enhancement in the student model’s generaliza-
tion capability, enabling it to outperform its teacher model
on the testing dataset. See Fig. 2 for a visual comparison
between our proposed methods.

6. Conclusion

In conclusion, our research aimed to advance retinal im-
age matching through a novel approach utilizing a semi-
supervised learning framework. We successfully enhanced
the SuperRetina model and investigated the relevance of
CNN-based methods compared to vision transformers. By
introducing tailored architectural modifications, we sur-
passed the performance of state-of-the-art keypoint detec-
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Table 2. Ablation testing on FIRE dataset [19] (KS is kernel size).



tion architectures in retinal images. Surprisingly, we found
that strategic exploitation of the CNN encoder’s receptive
field was sufficient to capture accurate and discriminative
keypoints, eliminating the need for long-range dependen-
cies. This modification to the SuperRetina architecture
achieved state-of-the-art performance.

We also explored training methodologies for large mod-
els with limited data and employed reverse knowledge dis-
tillation by using a smaller CNN model to guide a larger
transformer during its training. This approach proved ef-
fective in overcoming the challenge of limited data, yield-
ing 100% accuracy on the testing dataset. Moreover, we
contributed to the research community by providing a pub-
lic dataset with annotations for retinal image detection and
matching, enabling the development of algorithms for vari-
ous retinal image applications.
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