
CryoRL: Reinforcement Learning Enables
Efficient Cryo-EM Data Collection

Quanfu Fan1,6, Yilai Li2,6, Yuguang Yao3, John Cohn1, Sijia Liu3, Seychelle M.
Vos4,7, and Michael A. Cianfrocco2,5,7

1 MIT-IBM Watson AI Lab, Cambridge, MA USA
2 Life Sciences Institute, University of Michigan, Ann Arbor, MI USA

3 Department of Computer Science and Engineering, Michigan State University, East
Lansing, MI USA

4 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
5 Department of Biological Chemistry, Michigan Medicine, University of Michigan,

Ann Arbor, MI USA
6 Equal contributions

7 For correspondence: M.A.C. mcianfro@umich.edu & S.M.V. seyvos@mit.edu

Abstract. Single-particle cryo-electron microscopy (cryo-EM) has be-
come one of the mainstream structural biology techniques because of its
ability to determine high-resolution structures of dynamic bio-molecules.
However, cryo-EM data acquisition remains expensive and labor-intensive,
requiring substantial expertise. Structural biologists need a more efficient
and objective method to collect the best data in a limited time frame. We
formulate the cryo-EM data collection task as an optimization problem
in this work. The goal is to maximize the total number of good images
taken within a specified period. We show that reinforcement learning
offers an effective way to plan cryo-EM data collection, successfully navi-
gating heterogenous cryo-EM grids. The approach we developed, cryoRL,
demonstrates better performance than average users for data collection
under similar settings.

1 Introduction

Single-particle cryo-electron microscopy (cryo-EM) has become one of the main-
stream structural biology techniques due to its ability to solve the structures
of many bio-molecules with moderate heterogeneity and without the need for
crystallization. In recent years, continued software development has led to au-
tomation in both data collection and image processing [2]. Moreover, with the
improvement of the detectors and microscopes techniques, data acquisition has
been dramatically accelerated [7,35].

Cryo-EM serves as a critical tool in the development of vaccines and therapeu-
tics to combat COVID-19 by SARS-CoV-2 (Fig. 1). Within weeks of the release of
the genomic sequence of SARS-CoV-2, cryo-EM determined the first SARS-CoV-2
spike protein structure [38]. Since this original publication, cryo-EM was used
to determine additional SARS-CoV-2 structures such as spike protein bound to
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antibody fragments [20,28], remdesivir bound to SARS-CoV-2 RNA-dependent
RNA polymerase [6,41,13], and reconstructions of intact SARS-CoV-2 virions
[39,11].

Fig. 1: Cryo-EM structure of the SARS-
CoV-2 spike protein.

Despite these advances, cryo-EM
data collection remains ad-hoc, rudi-
mentary, and subjective. Due to vari-
ations in sample quality across a cryo-
EM grid, users collect images at differ-
ent magnifications ranging from resolu-
tions of 0.66 mm to 500 Å. Significant
user expertise enables experts to de-
fine and refine locations suitable for
data collection. To provide objective

feedback, "on-the-fly" image processing [16,?] can confirm high-quality regions
on the cryo-EM sample. Despite this information, data collection remains highly
subjective. Cryo-EM is also an expensive technique, further compounding chal-
lenges faced by users. Purchasing, preparing, and installing a top cryo-electron
microscope can cost about $10 to 20 million USD, and the daily operational cost
can be around $10,000 USD [9]. Therefore, structural biologists need methods
that can help collect the best data possible in a limited amount of time.

In this paper, we formulate the data collection problem as an optimization task
where the goal is to learn intelligent strategies from data to guide the microscope
movement, possibly via manual suggestion or robotic manipulation. We model
the optimization problem as a Markov decision process and propose to solve it by
combing supervised classification and deep reinforcement learning (RL) [31]. We
present a new data acquisition algorithm, cryoRL, which enables data collection
with no subjective decisions, no user intervention, and increased efficiency. To
address the potential enormously large action space in our problem, we further
propose to eliminate irrelevant or sub-optimal actions based on the classification
results to enable effective policy exploration, which improves cryoRL in both
efficiency and accuracy. As compared with human subjects, cryoRL achieves
better performance than average users. To the best of our knowledge, cryoRL is
the first AI-based algorithm in cryo-EM data acquisition such that a policy is
learned and can directly help the user steer the microscope.

We collected datasets on different grid types to design, implement, and test
cryoRL. The first of its kind, our data collection involves no user decision; instead,
we selected the areas from a systematic pattern of data collection to obtain images
of all holes and micrographs (See Section 3 for details of our data). Our datasets
will be released to the public to serve as a critical benchmark for evaluating
cryo-EM data collection algorithms.

To summarize, our high level conclusions and contributions include:

– CryoRL achieves better performance than other popular optimization tech-
niques such as Genetic Algorithm [36] and Simulated Annealing [12], and
demonstrates good generalization capability;
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– CryoRL with our proposed invalid action elimination runs 2∼3 times faster
than the vanilla DQN baseline while enabling more robust policy learning;

– CryoRL offers a new approach to cryo-EM data collection that demonstrates
promising results by outperforming average users in a human performance
study;

– We are providing a first-kind-of cryo-EM dataset that is critical for algorithm
development and benchmarking.

2 Related Work

There are currently no automated, ’intelligent’ cryo-EM data collection ap-
proaches. Instead, subjective decision-making drives cryo-EM data acquisition.
To guide user-driven data collection, on-the-fly image analysis provides feed-
back on data quality, including Appion [16], Warp[32], and cryoSPARC Live.
To provide more objective measures of data quality to users, researchers have
developed a pretrained deep learning-based micrograph assessment model [21]
and downstream on-the-fly data processing [30]. However, despite these efforts,
on-the-fly processing requires a sizeable number of micrographs before providing
useful feedback. Data collection requires user training to develop expertise to
guide data collection in the most efficient manner possible.

Reinforcement learning (RL) has been widely applied to address practical
optimization problems such as network planning [1], vehicle routing [23], on-
line recommendation [44], robot trajectory optimization [14] as well as game
playing [29]. Some practical applications have adopted RL for enabling fast data
collection or processing. For example in [33,43], RL-based methods are proposed
to optimize unmanned aerial vehicle flight trajectories for efficient data collection.
In [15], a deep RL agent is used to condition the state of the probe for autonomous
Scanning Probe Microscopy (SPM). Nevertheless, automating data collection by
machine learning techniques in real-world scenarios remains an under-explored
problem.

Large action spaces are a common problem to deal with in RL. Existing
techniques include action masking [4,40] to mask out invalid actions, action
elimination [42] to remove inferior actions, and action reshaping [10] to transform
a discrete action space to a simpler one or a continuous one. Our proposed action
elimination is in a similar spirit to Action Elimination Network (AEN) [42], but
instead relies on the estimated quality of a hole to exclude invalid actions directly
rather than learning to reduce the action space.

3 Cryo-EM Data Collection

The general practice of data acquisition in cryo-EM is abstracted in Fig. 2.
Typically, a purified biological sample is dispensed and vitrified onto a grid
comprised of gold or copper support bars. A grid contains a mesh of squares,
and each square has a lattice of regularly-spaced holes. Ideally, within each hole,
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Fig. 2: Overview of cryo-EM data collection. A purified sample is prepared and vitrified
on the support grid. The atlas image provides a low magnification overview by stitching
multiple "grid-level" images into a single montage. Next, users will select specific squares
to image at medium magnification. After inspection, the user selects "patch" areas on
the square to inspect holes with higher magnification, using the patch image to decide
holes to collect for micrographs. The micrographs contain high-resolution images for
downstream data processing.

there are vitrified single-particles related to the sample of interest, where data
collection amounts to users recording images of each hole as micrographs.

Cryo-EM samples exhibit heterogeneity across the specimen. Whereas there
are many local correlations between squares and holes on the grid, many holes are
empty, contain aggregates, or contain non-vitreous ice contamination. The user
has no prior knowledge of such distribution until the square-level or hole-level
images are acquired, which can be captured by the microscope by changing to
different magnifications. Note that each greater magnification requires significant
time for the microscope to move and settle. Moreover, because the time on the
microscope is precious and limited, data collection can typically cover less than
1% of the total grid. The user needs to navigate through the "grid-square-hole"
hierarchy and collect the best micrographs in a limited time.

In this paper, we suppose that a user preselects a set of squares and patch-level
images by a quick atlas survey. We formulate the data acquisition task to find
the highest quality holes and plan the overall data collection route with cryoRL.
Although this is not the traditional way people collect cryo-EM data, we believe
such prerequisites provide a global understanding of the hole quality distribution
on a grid by taking a series of low to medium magnification square and patch
level images.
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Fig. 3: cryoRL-guided cryo-EM data collection. cryoRL consists of an offline hole-level
classifier to estimate the quality of holes and a deep Q-network to learn effective
strategies for steering the microscope for data collection. The hole classifier outputs
serve as features of the RL network. The agent (or user) provides feedback (rewards)
to the system according to the microscope movement and the measured quality of the
micrographs taken for the holes recommended by the system. In addition, to address the
potential issue of large action spaces in our problem, we developed an efficient method
to eliminate invalid actions based on the quality of holes.

Each micrograph has an objective measure of data quality, which is the
goodness-of-fit for the frequency domain when estimating the defocus of the
micrograph. We introduce the term "CTFMaxRes" to be the maximum resolution
(Å) for the fit of the contrast transfer function (CTF) to a given micrograph
using the program CTTFIND4 [26]. CTFMaxRes is calculated from the 1D
power spectrum of the micrograph and estimates the maximum resolution for
the detected CTF oscillations [5]. The field of cryo-EM utilizes CTFMaxRes to
provide an indirect metric for data quality. In general, the lower this value, the
higher the quality of the micrograph. CryoRL will predict the quality of each hole
from the patch-level image using an image classifier (Section 4). For simplicity,
we define CTFMaxRes as the CTF value for this paper.

4 RL-based Approach

4.1 Overview

During data collection, a user needs to make decisions based on the quality of
images taken at different magnification levels: grid, square, and patch-level. Given
that the data are visually similar and there are significant costs (time) of moving
to other grid areas and refocusing, there is no easy planning that a user can make
manually in a regular data collection. As a result, the user explores only a small
portion of a grid, making the data collection process inefficient and subjective.

In this work, we formulate the data collection problem as planning an optimal
path for operating the microscope. The goal is to move the microscope to explore
desired places on a grid in a given amount of time, with the operational cost
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constraints taken into account (Section 4.2). We propose to solve the path
planning problem by RL, a technique that has demonstrated success in many
vision applications [18]. Compared to other widely used optimization solvers such
as Genetic Algorithm (GA) [36] and Simulated Annealing (SA) [12], RL is more
suitable for modeling sequential problems and possibly less heuristic in system
design.

As illustrated in Fig. 3, our proposed approach combines an image classifier
and an RL network to enable automatic planning of microscope movement. The
supervised classifier categorizes a hole into low or high quality based on its
CTF value. Efficient hierarchical feature representations for cryo-EM images
at different magnification levels are generated from the classification results.
These features, along with the observation history, are exploited to train a deep
Q-network (DQN) [22] to assess the status of all the unvisited holes and suggest
the best holes to look at next. We further design a rewarding mechanism to drive
the learning of DQN. The design in general values small microscope movements
to avoid wasted time. For example, moving to a different patch on the same
grid-level image receives a higher score than changing to an entirely new grid-
level image (Section 4.3). Finally, to handle the potentially large action space in
our problem, we propose a method to eliminate invalid actions, which not only
results in a significant speedup of CryoRL by 2∼3 times, but also improves the
robustness of the approach (Section 4.3).

As mentioned earlier, a human user can usually cover a small portion of the
grid during a data collection session. In contrast, one significant advantage of
our proposed approach is that it allows for a substantially larger exploration of
the grid by the microscope as the approach learns to focus on promising regions
with high-quality data. We demonstrate in Section 5 that our system is highly
effective, achieving comparable performance to human subjects.

4.2 Problem Formulation

Fig. 4: A schematic illustration of a path
showing the microscope movement planned
in data collection. Different microscopic op-
erations are associated with different costs,
which are indicated by the edge width.

As previously described, cryo-EM data
collection is steering the microscope hi-
erarchically at different magnification
levels to explore a grid to identify high-
quality micrographs. This sequential
process involves several mechanical op-
erations to allow microscope naviga-
tion to different regions of a grid. The
process of data collection involves area
switching (changing to a new grid-level
image), square switching (changing to
a new square-level image), and patch
switching (changing to a new patch-
level image). Since the data distribu-
tion is non-uniform on a grid and it
takes time to prepare the microscope
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for imaging at different levels, an au-
tomatic method to guide the data exploration more intelligently will improve
data quality and efficiency for data collection.

As shown in Fig. 4, an effective data collection session aims at finding a
sequence of holes where there is a considerable portion of high-quality micrographs.
Let H = {hl|l = 1 · · ·nh} be a sequence of holes in a set of patches P sampled
from different square-level and grid-level images (S and G) by the user. We denote
Phl

, Shl
and Ghl

as the corresponding patch-level, square-level and grid-level
images of hl, respectively. Also, ctf(hl) is a function representing the CTF value
of a hole hl. Our goal is to identify a maximum subset of holes from H with
low-CTF values in a given amount of time τ . Mathematically, this is equivalent
to optimizing an object function as follows,

max

nh−1∑
l=0

(ρ(hl)− c(t(hl))) s.t.
nh−1∑
l=0

t(hl) ≤ τ (1)

where ρ(hl) be such an indicator function for a hole h that

ρ(hl) =

{
1 if ctf(hl) ≤ 6.0

0 otherwise
(2)

and c is a cost associated with the corresponding microscope operation and
determined by the total amount of time t(hl) spent on hl. In this work, we define
t(hl) in minutes by the movement of the microscope, i.e,

t(hl) =


2.0 if Phl−1 = Phl (same patch)
3.0 if Phl−1 6= Phl ,Shl−1 = Shl (same square)
5.0 if Shl−1 6= Shl ,Ghl−1 = Ghl (same grid)
10.0 if Ghl−1 6= Ghl (different grid)

Note that the time t above is set in a way so that it highly corresponds to the
natural time of the microscope movement in real-world scenarios. Nevertheless,
in practice, it can be more precisely calculated based on the distance of the
microscope movement and other factors.

By setting r(hl) = ρ(hl)− c(t(hl))), we can further rewrite Eq. 1 as

max

nh−1∑
l=0

r(hl) s.t.
nh−1∑
l=0

t(hl) ≤ τ (3)

Eq. 3 has the same form as the standard accumulative reward (without a
discount factor) that is maximized in RL [31]. In what follows, we describe how
to design a RL system to solve the path optimization problem in Eq. 3.

4.3 Path Optimization by Reinforcement Learning

We study the cryo-EM data acquisition task by RL, where an agent interacts
with environment (i.e. the grid here) by sequentially selecting holes for taking



8 Q. Fan et al.

micrographs over a sequence of time steps, with an objective to maximize the
cumulative reward described in Eq. 3. We briefly describe the basic components
of our system as follows.

Environment : the atlas or grid.
Agent : a robot or user steering the microscope.
States. Let ui ∈ {0, 1} be a binary variable denoting the status of hole, i.e.

visited or unvisited. Then a state s in our setting can be represented by a sequence
of holes and their corresponding statuses s =< (h1, u1), (h2, u2), ..., (hnh

, un) >
where n is the total number of holes.

Actions. An action ai of the agent in our system is to move the microscope
to the next target hole hi for imaging. Note that in our case, any unvisited hole
has a chance to be picked by the agent as a target, thus the action space is
large. Also, during tests, the number of holes (i.e actions) is unknown. Instead
of adopting more sophisticated methods to handle continuous action space as
proposed in [17,19], we simply modify the Q-network to estimate the Q-value
for every single hole rather than all of them at once. We show this suffices for
handling the large action space in our case.

Rewards. We assign a positive reward 1.0 to the agent if an action results in
a target hole with a CTF value less than 6.0Å and 0.0 otherwise. The agent also
receives a negative reward depending on the operational cost associated with a hole
visit. Specifically, we model the negative reward as c(hl) = 1.0−e−β(t(hl)−t0)(β >
0, t0 ≥ 0). We empirically set β and t0 to 0.185 and 2.0, which define the final
reward function for our RL system as,

r(ai) =



1.0 if ctf(hl) < 6.0 & Phi−1 = Phi

0.57 if ctf(hl) < 6.0 & Phi−1 6= Phi & Shi−1 = Shi

0.23 if ctf(hl) < 6.0 & Shi−1 6= Shi & Ghi−1 = Ghi

0.09 if ctf(hl) < 6.0 & Ghi−1 6= Ghi

0.0 otherwise

Note that the design principle of these rewards is to reward more small microscope
movement. As shown later in the experiments (Section 5.3), CryoRL is not
sensitive to the changes of the rewards as long as the design described above is
followed.
Deep Q-learning We apply the deep Q-learning approach proposed in [22]
to learn our policy for cryo-EM data collection. The goal of the agent is to
select a sequence of actions (i.e. holes) based on a policy to maximize future
rewards (i.e the total number of low-CTF holes). In Q-learning, this is achieved by
maximizing the action-value function Q∗(s, a), i.e. the maximum expected return
achievable by any strategy (or policy) π , given an observation (or state) s and
some action a to take. In other words, Q∗(s, a) = maxπ E[Rt|st = s, at = a, π]
where Rt =

∑∞
t γt−1rt is the accumulated future rewards with a discount factor

γ. Q* can be found by solving the Bellman Equation [31] as follows,

Q∗(s, a) = Es′ [r + γmax
a′

Q∗(s′, a′)|s, a] (4)



CryoRL: Reinforcement Learning Enables Efficient Cryo-EM Data Collection 9

In practice, the state-action space can be enormous, thus in [22], a deep neural
network parameterized by θ is applied to approximate the action-value function.
The network is referred to as Deep Q-Network (DQN) in the original paper. DQN
can be trained by minimizing the following loss functions L(θ),

L(θ) = Es,a,r,s′ [(y −Q(s, a; θ)2] (5)

where y = Es′ [r + γmaxa′ Q(s
′, a′)|s, a] is the target for the current iteration.

The derivatives of the loss function L(θ) are expressed as follows:

∇θL(θ) = Es,a,r,s′ [(r + γmax
a′

Q(s′, a′; θ′)−Q(s, a; θ))∇θQ(s, a; θ)] (6)

Experience replay is further adopted in [22] to store into memory the transition
at each time-step, i.e (st, at, rt, st+1), and then sample the stored samples for
model update during training.

Fig. 5: The architecture of DQN. The net-
work has only one single output node to
estimate the Q-value for an action-state
pair.

Fig. 6: Examples of hole images and their
CTF values. A hole with a CTF ≤ 6 is
considered good in our paper.

DQN with Action Elimination via Patch Ranking In a regular scenario
such as playing Atari [22] where the action space is small and fixed, a network
can be trained to predict all the actions at once. However, this is not suitable for
our case as our action space is not fixed and can grow large depending on the
training data size. To deal with this issue, we modify the Q-network to predict
the Q-value for each hole (i.e., action) using one single output, as shown in Fig. 5.
The Q-value for all the actions can then be batch processed and the ε-greedy
scheme is applied for action selection. The DQN used in our work is a 3-layer
fully connected network. The size of each layer is 128, 256 and 128, respectively.

The potentially enormously large action space in our problem makes policy
exploration quite inefficient as most actions sampled from such a space are not
useful. To avoid executing too many sub-optimal actions in learning, we propose
an effective method to reduce the action space by restricting the valid actions
to a small portion of holes predicted by the classifier as low-CTFs. We start by
ranking all the grid-level images by their numbers of low-CTF predictions, from
high to low, and then the patches in the same way. The high-ranked patches are
likely to contain more valid holes and should be visited more frequently during
the learning. The pre-specified duration (i.e. τ in Eq. 1) as well as the switching
costs t(hl) defined in Section 4 allow us to obtain an upper limit Nmax of good
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Feature Type Definition Value

hole is it low-CTF?
is it visited? {0,1}

# of unvisited holes
patch/square/grid # of unvisited lCTFs 0∼ 150∗

# of visited holes
# of visited lCTFs

a new patch-level image? {0,1}
microscope a new square-level image? {0,1}
movement a new grid-level image? {0,1}

∗: the maximum number of holes allowed in a grid-level image in our setting
Table 1: Input features to DQN

holes if all the holes are assumed to be low CTF and visited in the sorted order
described above. We then select a minimum set of patches P with a total number
of low-CTF predictions ≥ βNmax (β > 0), and all the holes in P define a reduced
new space for Q-learning. Here, β is a user-defined parameter to control the
size of the valid action set. Our approach is not sensitive to β, and any number
between 1.0 ∼2.5 works reasonably well. We thus empirically set β to 1.5 in tests
and a larger number in training to enlarge the exploration space for CryoRL.

The details of our algorithm can be found in the appendix. Unlike the
Elimination Network (EAN) proposed in [42], our approach redefines the action
space before Q-learning, so it can be applied to any policy learners without
modification of them. We show later in the experiments that our approach results
in a significant speedup of 2∼3 times over the vanilla DQN and improves other
policy learners such as A2C [24] and C51 [3] remarkably.

Features to DQN The quality of a hole is directly determined by its CTF
value. Similarly, the number of low-CTF holes (lCTFs) in a hole-level image
indicates the quality (or value) of the image, and a good RL policy should always
consider prioritizing high-quality patches first in planning. The same holds true
for square-level and grid-level images. Based on this, we design hierarchical input
features to the DQN according to the quality of images at different levels. We
also consider the information of microscope movement as it tells whether the
microscope is exploring a new region or staying at the same region. The details of
these features can be found in Table 1. Finally, a sequence of these features for the
last k − 1 visited holes as well as the current one to be visited are concatenated
together to form the input to DQN. In our experiments, k is empirically set to 4.
Hole-level Classification We trained the hole-level classifier offline by cropping
out the holes in our data using the location provided in the meta data. Fig. 6
illustrates a few examples of hole images. These images are actually visually
ambiguous, confounding the task of building generalized hole classifiers, as shown
in Section 5.2. Using an offline classifier enables fast learning of the Q function as
only the Q-network is updated in training and its input features can be computed
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efficiently. However, it is possible to jointly learn the classifier and DQN to further
improve performance. We leave this possibility for future work.

5 Experiments

5.1 Experimental Setup

Dataset To design and evaluate the performance of cryoRL, we collected an
"unbiased" cryo-EM dataset (Y1) to provide a systematic overview all squares,
patches, holes, and micrographs within a defined region of a cryo-EM grid.
Specifically, aldolase at a concentration of 1.6 mg/ml was dispensed on a support
grid and prepared using a Vitrobot. Instead of picking the most promising squares
and holes, we randomly selected 31 squares across the whole grid and imaged
almost all the holes in these selected squares. This resulted in a dataset of 4017
micrographs from holes in these 31 squares. Overall, the data quality was poor,
given that only 33.4% of the micrographs have a CTF below 6 Å. However, this
makes the dataset very suitable for developing and testing algorithms for data
collection algorithms, because 1) a perfect algorithm will aim to find the best
data from mostly bad micrographs, and 2) the "unbiasedness" of this dataset
ensures that when an algorithm selects a hole, the corresponding micrograph,
and its metric can be provided as feedback.

In addition, we collected another different dataset (Y2) of 3969 micrographs
with a different sample and grid type. We split both datasets into training
and validation sets by a ratio of 2:1. In the experiments below, we evaluate
our approach mainly based on Y1 while using Y2 to test the transferribility of
CryoRL.
Training and Evaluation We used the Tianshou reinforcement learning frame-
work [37] to learn cryoRL. Each model was trained with 20 epochs, using the
Adam optimizer and an initial learning rate of 0.01. We set the duration in our
system to 240 minutes for training, and evaluate the system at 120, 240, 360 and
480 minutes, respectively.

5.2 Main Results

Comparison with Baselines.We first developed a greedy-based method purely
based on the hole classification results. This method performs a primary sorting
on the grid-level images by their quality (i.e., the total number of low CTF
holes), followed by a secondary sorting on the patches within a grid by the quality
of patches. The sorted patches are then scanned in order, with only the holes
classified as low CTFs visited. While simple, this greedy approach serves as a
strong baseline when the hole-level classifier is strong.

We also compare our approach with two other widely used optimization
techniques in practice: Genetic Algorithms (GA) [36] and Simulated Annealing
(SA) [12]. In these two solvers, solutions are sampled at the patch level rather
than at the hole level for efficiency, and the fitness of the solutions are assessed
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according to the objective function proposed in this paper, i.e Eq. 1. Since GA
and SA are largely based on heuristic, the best solutions determined by them are
scanned in a similar way to the greedy-based approach described above during
the evaluation.

Methods τ=120 τ=240 τ=360 τ=480

Random 2.6±1.4 5.1±1.6 7.3±2.3 9.8±2.2
Greedy 41.8±2.5 69.3±3.2 104.9±4.9 147.9±5.1
Genetic Alg. (GA) [36] 28.3±6.5 72.3±6.8 115.7±7.8 150.4±6.8
Simulated Annealing (SA) [12] 39.4±6.5 73.3±7.0 104.7±8.9 147.9±9.6
offline path planing [31] 44.3±0.9 84.6±6.1 121.4±6.7 166.6±4.9

CryoRL-DQN (ours) 41.7±3.1 86.6±3.0 132.0±2.3 171.4±2.0
CryoRL-DQN† (ours) 47.4±0.5 89.0±3.1 131.8±1.8 172.6±2.0

human 31.9±10.6 77.4±6.2 - -

Table 2: Perf. comparison of CryoRL with baseline approaches on Y1

Table 2 reports the total number of low-CTF holes (#lCTF ) found by each
approach. For fair comparison, all the results are averaged over 50 trials starting
from random picked holes. Here, ResNet50 is used as the offline classifier, which
achieves an accuracy around 83% in low-CTF hole classification (see Table 4).
The results based on ResNet18 can be found in the appendix. As shown in the
table, our approach (cryoRL-DQN) is clearly superior to all the baseline methods,
producing quite promising results. With action elimination, the fast version of
CryoRL (cryoRL-DQN†) improve the performance further. Note that while offline
path planning yields comparable performance to our method, it is prohibitively
costly in computation.

To further illustrate the advantage of our approach, we plot for each approach
the percentage of low-CTF holes over the total number of holes visited by time
in Fig. 7. Our approach demonstrates high efficacy in data collection, finding
∼95% of the holes in good quality. As a comparison, the percentage of low-CTF
holes in Y1 is 33.4% and the classification accuracy of low CTFs is only 83.9%.

Fig. 7: Percentage of lCTF images vis-
ited during data collection.

Fig. 8: Runtime comparison of CryoRL-
DQN and its fast version with action
elimination (CryoRL-DQN†).

We also experimented with several other RL variants including dueling
DQN [34], DQN with prioritized replay [27], A2C [24] and C51 [3]. As seen
from Table 3, the DQN family overall perform better than A2C and C51. Inter-
estingly, A2C and C51 benefit substantially from action elimination and gain
significant performance boosts, suggesting that restricting the actions to smaller
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Methods τ=120 τ=240 τ=360 τ=480

CryoRL-A2C 35.5±7.8 74.0±9.0 111.3±8.8 147.0±8.8
CryoRL-C51 39.4±4.2 76.3±3.1 109.6±2.0 141.0±2.7
CryoRL-DQN 41.7±3.1 86.6±3.0 132.0±2.3 171.4±2.0
CryoRL-DQN (dueling) 44.6±3.3 89.3±4.4 126.3±4.2 157.4±4.4
CryoRL-DQN (prioritized) 42.5±4.3 86.4±3.9 128.7±5.1 172.0±3.5

CryoRL-A2C† 47.0±1.3(+32.3%) 90.8±4.0(+22.7%) 128.2±2.4(+15.1%) 163.9±4.7(+11.5%)
CryoRL-C51† 47.4±0.9(+20.3%) 82.2±2.3(+7.7%) 116.9±1.0(+6.7%) 144.0±1.9(+2.1%)
CryoRL-DQN† 47.4±0.5(+13.7%) 89.0±3.1(+2.8%) 131.8±1.8(+0.0%) 172.6±2.0(+1.0%)
CryoRL-DQN† (dueling) 47.3±1.0(+6.1%) 89.4±2.9(+0.0%) 128.6±2.0(+1.8%) 165.4±2.5(+5.1%)
CryoRL-DQN† (prioritized) 47.2±1.7(+11.1%) 90.6±2.8(+4.9%) 132.9±3.0(+3.3%) 174.0±3.1(+1.2%)

Table 3: Perf. comparison of different CryoRL variants on Y1 († indicates action
elimination (Section 4.3)). The performance gains from action elimination are highlighted
by numbers in parentheses.

Test Training Top1 Acc. #lCTFs found

classifier CryoRL lCTF hCTF all τ=120 τ=240 τ=360 τ=480

Y1 Y1 Y1 83.9 91.2 88.5 47.4±0.5 89.0±3.1 131.8±1.8 172.6±2.0

Y1 M Y1 66.6 85.1 73.6 44.7±2.2 70.0±4.7 104.0±3.6 138.9±2.6
Y2 M Y2 69.5 77.4 73.5 31.0±6.5 56.3±7.7 87.1±8.0 125.5±8.3
Y2 M Y1 69.5 77.4 73.5 20.9±4.3 55.8±3.7 83.1±3.5 91.8±3.3
Table 4: Generalization ability of the offline classifier and CryoRL.

valid sets helps these methods learn policies more effectively. CryoRL with action
elimination also achieves considerable speedups in runtime by 2∼3 times, as
shown in Fig. 8. Since the performance differences between DQN models are
minor, we focus on the vanilla DQN in the analysis below.

Comparison with Human Performance. We developed a simulation tool
to benchmark human performance against the performance of cryoRL. Fifteen
students from two different cryo-EM labs with various expertise levels were
recruited in this human study. The users did not have any prior knowledge of
this specific dataset before participating in this study. Patch images containing
holes in the same dataset were shown to the user. The user had either 50 or
100 chances to select the holes to take micrographs from, corresponding to the
experiment’s test duration of 120 or 240 minutes. After each selection, the CTF
value for the selected hole was provided to the user. The goal of the users is
to select as many "good" holes as possible in 50 or 100 chances. Note that we
did not penalize the users for switching to a different patch or square as we did
in cryoRL. This encouraged the users to explore different patches initially and,
theoretically, resulting in better performance than penalties applied. Nevertheless,
we found that cryoRL outperforms the human performance in both time durations
(Table 2).

Transferrability. We further evaluate the transferability of our proposed
approach based on a new dataset M, which consists of users’ daily use of
microscope in real-life scenarios from 2019 to 2021. Different from Y1 and Y2
data where almost each hole in the patch images was imaged, M were only
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Table 5: Ablation study of CryoRL

Training Test Duration

Duration τ=120 τ=240 τ=360 τ=480

τ=120 40.4 82.1 123.1 163.4
τ=240 41.1 87.5 130.0 165.5
τ=360 45.7 90.2 125.7 163.5

(a) Effects of time duration used in train-
ing on cryoRL performance.

Rewards Duration (minutes)

square-level grid-level τ=120 τ=240 τ=360 τ=480

0.23 (default) 0.09 (default) 41.1 86.6 132.0 171.4
0.23 (×2) 0.09 43.0 87.0 131.1 172.0

0.23 0.09 (×2) 41.6 86.9 129.5 165.9
0.23 (×2) 0.09 (×2) 41.8 80.8 124.7 163.3

(b) Effects of different rewards on cryoRL’s
performance.

sparsely inspected, with a small portion of holes visited by the users. In other
words, there are a lot of holes in the patch images without a CTF ground truth
available. As a result, the limited coverage in M data is not sufficient for learning
effective RL policies for planning microscope movement. Nevertheless, M data
were collected under different realistic settings where various grid types and
microscopes were used. It is much more diverse and substantially larger than Y1
data (over 100, 000 holes with CTF ground truth in M vs. 4, 000 in Y), making
it suitable for building a foundation model for hole classification.

We split M data into training and validation sets at a ratio of 4:1 and trained
a hole classifier based on Resnet50. We then applied the classifier to both test
sets in Y1 and Y2, and the results are listed in Table 4. As seen from the table,
the classifier achieves moderate performance on Y1 and Y2, with an accuracy of
around 70% in low-CTF classification, suggesting that hole classification is still a
challenging problem that needs further improvement.

We further trained RL models on Y1 and Y2 using the classification results
based on the M model mentioned above. As shown in Table 4, a modest classifier
(M) results in a performance drop in CryoRL (4th row) as expected, but the
results are still reasonably good. Additionally, we extend to test the transferability
of the RL models. Specifically, we applied the RL model based on Y1 to Y2
dataset and compared the results (6th row) to those from the RL model trained
on Y2 itself (5th row). Even though Y1 and Y2 datasets were collected with
different samples and grid types, the results between these two models are still
comparable, showing the good transferability of CryoRL.

5.3 Ablation Study

In this section, we conduct experiments to characterize our proposed approach.
We investigate how hole time duration and rewarding affects the performance
of cryoRL (i.e. the total number of low-CTF holes found ain a given amount
of time). We also provide visualization of a planned path by CryoRL and the
learned RL polices.
Effects of Time Duration In principle, the time duration τ used in training
cryoRL controls the degree of interaction of the RL agent with the data. A small
τ limits cryoRL to a few high-quality patches only, which might result in a more
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Fig. 9: A trajectory of microscope movement planned by CryoRL at square level (left)
and patch level (right), respectively, in a 8-hour data collection session. The blue and
yellow boxes show part of the training and validation sets while the color bar represents
the ground-truth CTF value. The trajectory within a specific patch (right) illustrates
that cryoRL can identify patches with more good holes (CTF≤6.0) in a global sense
and prioritize their visits first. It is also noticed that some patches with a few good
holes are left untouched in the square. This is because moving to a patch in another
square (not shown here) is more rewarding than staying.

conservative policy that underfits. Table 5a confirms this potential issue, showing
inferior performance when a short duration of 120 minutes is used for training.
Effects of Rewarding Strategies. In our approach, the rewards used in policy
learning are empirically determined. To check the potential impact of different
rewards on the performance of cryoRL, we trained more Q networks by doubling
the reward for a) square switching; b) grid switching; and c) both. These changes
are intended to encourage more active exploration of the data. As shown in
Table 5b, the different rewarding schemes perform comparably, and increasing
the reward for square switching leads to slightly better performance than the
default setting. This suggests that CryoRL is not sensitive to rewards setup as
long as the rewards value small microscope movement more. Nevertheless, how
to optimize rewards for better performance of cryoRL is an area of improvement
in future work.
Trajectory Path and RL Policy Visualization. We plot one trajectory path
of the microscope movement on the atlas planned by our CryoRL at square level
(left) and patch level (right), respectively, in a 8-hour data collection session.
The trajectory within a specific patch (right) illustrates that cryoRL can identify
patches with more good holes (CTF≤6.0) in a global sense and prioritize their
visits first. It is also noticed that some patches with a few good holes are left
untouched in the square. This is because moving to a patch in another square
(not shown here) is more rewarding than staying.

We further compare and visualize the policies learned by our approach as
well as the strategies used by human users. Specifically, we count how often the
microscope visits a pair of hole-level images (i.e patches) in the 50 trials of our
results and illustrate such information by an undirected graph. A node of the
graph represents a patch and a blue edge between two patches indicates the
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a) RL policy b) user policy

Fig. 10: Illustration of data collection policies from cryoRL and human subjects.
Here a graph node denotes a patch in our data and the size of the node indicates
the quality of the patch (i.e the number of low-CTF holes). Patches from the same
grid are grouped by color and linked by light grey edges. A blue edge between a
pair of patches shows how often the two patches are visited by the microscope.
Intuitively, an effective policy should demonstrate strong connections between
large-sized nodes, which is the case for the learned policy by our approach. As
opposed to the RL policy, the human users presents random behaviors (b)).

frequency of them being visited by the microscope. Note that the node size here
denotes the quality of a patch determined by the number of good holes in the
patch, and the node color indicates the grid the patch belongs to. Intuitively,
a good policy should show strong connections between large-sized nodes. As
observed in Fig 10a), our learned RL policy favors larger-size nodes, clearly
demonstrating that CryoRL enables efficient data collection. Oppositely, the
behavior of human users is random, with a lot of more patches being explored.
This is because that the users were not penalized for switching different patches in
the human study, and may also be due to the large variance in the user expertise.

6 Conclusion

To summarize, by combining supervised classification and deep RL, cryoRL
provides a new framework for cryo-EM data collection. It can not only return
the quality predictions for lower magnified hole level images but can also plan
the trajectory for data acquisition. We have shown that cryoRL combined with
an offline hole classifier achieves better performance than average human users.
Nevertheless, cryoRL needs squares to be pre-selected and all their corresponding
patch-level images to be pre-captured. Future work will be needed to further
optimize the RL system to consider more of this hierarchical process of cryo-EM
data collection. The specific hyper-parameters, especially the penalties in the
reward function, can also be improved for a more practical application.
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A Appendix

Methods classifier τ=120 τ=240 τ=360 τ=480

CryoRL-A2C 37.0±6.7 71.9±9.5 104.1±9.4 144.8±9.3
CryoRL-C51 37.2±4.2 70.6±5.0 98.1±5.0 128.0±3.6
CryoRL-DQN Resnet18 42.9±3.6 80.8±3.0 123.3±5.9 168.5±2.0
CryoRL-DQN (dueling) 42.9±4.2 86.9±5.2 125.2±5.3 159.5±6.9
CryoRL-DQN (prioritized) 42.3±4.1 86.0±4.3 128.3±3.6 174.1±5.5

CryoRL-A2C† 46.0±2.6(+24.3%) 86.4±1.2(+20.2%) 124.4±2.2(+19.5%) 158.8±4.5(+9.7%)
CryoRL-C51† 46.5±0.8(+25.0%) 78.1±1.3(+10.6%) 116.7±1.0(+18.9%) 138.2±2.8(+8.0%)
CryoRL-DQN† Resnet18 47.4±2.0(+10.5%) 91.0±2.5(+12.6%) 132.8±2.1(+7.7%) 176.5±3.5(+4.7%)
CryoRL-DQN† (dueling) 47.2±1.0(+10.0%) 89.1±2.7(+10.0%) 129.2±1.8(+3.2%) 166.2±5.0(+4.2%)
CryoRL-DQN† (prioritized) 47.1±2.3(+11.3%) 90.4±2.3(+2.5%) 133.0±3.0(+3.7%) 177.4±4.1(+1.9%)

CryoRL-DQN 41.7±3.1 86.6±3.0 132.0±2.3 171.4±2.0
CryoRL-DQN† Resnet50 47.4±0.5(+13.7%) 89.0±3.1(+5.1%) 131.8±1.8(+0.0%) 172.6±2.0(+1.0%)

Table 6: Performance of different CryoRL variants on the Y1 dataset using Resnet18
as the offline hole classifier († indicates action elimination.). The performance gains
from action elimination are highlighted by numbers in parentheses. The numbers in
bold mark the best performance achieved by CryoRL under different time durations
using Resnet18 as the classifier.

Resnet18 Results. We adopted Resnet18 as the offline classifier for CryoRL,
which achieves better low-CTF classification accuracy than Resnet50 (91.0%
v.s 83.9%), but lower high-CTF classification accuracy (87.5% v.s 91.2%). This
suggests that Resnet18 yield more falsely classified good holes. As a result,
CryoRL based on Resnet18 underperforms its counterpart based on Resnet50
(Table 6). However, when action elimination is applied, the performance of
Resnet18 is significantly boosted and even gets slightly better than that of
Resnet50. Additionally, action elimination greatly improves A2C and C51, similar
to what’s shown in the main paper.
Require: States S, Actions A, Rewards R
Require: Learning Rate α, Discounting factor γ,

Elimination coefficient beta
Require: Switching costs C, Duration τ
1: procedure QLearning_AE(S,A,R,C, α, β, γ,

τ)
2: P ← [p0, p1, · · · , pn] . Patches
3: L← [l0, l1, · · · , ln] . # of predicted lCTFs in

each patch
4: A′ ← Action_Elim(P,L,C, τ)
5: Q← QLearning(S,A′, R, α, γ) . standard

Q_learning
return Q

6: end procedure
7:
8:

1: procedure Action_Elim(P,L,C, β, τ)
2: Nmax ← β∗max_lCTF (P,C, τ) . max-

imum lCTFs found assuming that all holes
are good

3: n← 0
4: A′ ← {}
5: for pi in P do
6: n← n+ li
7: A′ ← A′

⋃
{hj ∈ pi|j = 1 · · ·mi}

8: if n ≥ Nmax then
9: break
10: end if
11: end for

return A′

12: end procedure

Alg. 7: Fast CryoRL with Action Elimination

Algorithm for Action Elimination. The psudo code for action elimination
is illustrated in Alg. 7. In the algorithm, Action_Elim returns a list of valid
actions, which are provided to the standardQLearning procedure or other policy
learners for policy learning. The procedure max_lCTF finds an upper limit of
the number of low-CTF holes within a time duration τ under the assumption
that all holes are in good quality. The elimination coefficient β controls the size
of the valid action set. During training, β should be set large to ensure sufficient
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training data with diversity. However, in test, β can be set smaller to eliminate
bad microscope movements while making action execution efficient.
Experimental Setup for Genetic Algorithm (GA) and Simulated An-
nealing (SA) As mentioned in the main paper (Section 5.2), the solutions of
both GA and SA are assessed based on the same objective function used for RL,
i.e Eq. 1 in the main paper. We implemented CryoRL-GA based on pyGAD [8]
and Cryo-SA base on SimAnneal [25]. For CryoRL-GA, we set the number of
generations to 40 and the solutions per population to 10. We use single-point
crossover and and random mutation. For CryoRL-SA, the minimum and maxi-
mum temperatures are chosen as 1e− 8 and

√
N , respectively, where N is the

total number of training samples. The temperature reduction rate is set to 0.995.
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