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Abstract

The performance of optical character recognition (OCR)
heavily relies on document image quality, which is crucial for
automatic document processing and document intelligence.
However, most existing document enhancement methods re-
quire supervised data pairs, which raises concerns about
data separation and privacy protection, and makes it chal-
lenging to adapt these methods to new domain pairs. To
address these issues, we propose DECDM, an end-to-end
document-level image translation method inspired by recent
advances in diffusion models. Our method overcomes the
limitations of paired training by independently training the
source (noisy input) and target (clean output) models, mak-
ing it possible to apply domain-specific diffusion models
to other pairs. DECDM trains on one dataset at a time,
eliminating the need to scan both datasets concurrently, and
effectively preserving data privacy from the source or target
domain. We also introduce simple data augmentation strate-
gies to improve character-glyph conservation during transla-
tion. We compare DECDM with state-of-the-art methods on
multiple synthetic data and benchmark datasets, such as doc-
ument denoising and shadow removal, and demonstrate the
superiority of performance quantitatively and qualitatively.

1. Introduction

In our daily lives, we encounter a large number of doc-
uments, such as receipts, invoices, and tax forms, that are
often degraded in various ways, including noise, blurring,
fading, watermarks, shadows, and more, as shown in Fig. 1.
These degradations can make the documents difficult to read
and can significantly impair the performance of OCR sys-
tems. Automatic document processing is the first step in
document intelligence and aims to enhance document qual-
ity using advanced image processing techniques such as
denoising, restoration, and deblurring. However, applying
these techniques directly to document enhancement may
not be effective due to the unique challenges posed by text
documents. Unlike typical image restoration tasks, where
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the degradation function is known and the recovery of the
image task can be translated into solving an inverse problem
such as inpainting, deblurring/super-resolution, and coloriza-
tion, real-world document enhancement is a blind denoising
process with an unknown degradation function, making it
even more challenging. Many state-of-the-art methods have
been proposed that rely on assumptions and prior informa-
tion [16, 37], but there is still a need for more effective
techniques that can handle unknown degradation functions.

[ Denoise } [ Shadow Removal

[ Watermark Removal } [

Figure 1. A performance overview of our DECDM methods on doc-
ument enhancement tasks, including denoising, shadow removal,
binarization, watermark removal, deblur, and defade.

Deep learning has led to the development of discrimina-
tive models based on convolutional neural networks (CNNs)
[48] and auto-encoder (AE) architectures [45], which are
important for solving image restorations. However, these
methods require noisy/clean paired image data, which is diffi-
cult to obtain in real-world applications. Existing benchmark
datasets [1] collect clean documents and add synthetic noise,
but these do not always accurately represent real-world noise
or degradation. To address this, recent works have proposed
unpaired ideas based on generative models, such as gen-
erative adversarial networks (GANSs) [12], which transfer
images from one domain to another while preserving content
representation [52]. Document denoising can be achieved
by transferring from a noisy style to a clean style while pre-
serving the text content. However, these models typically
require minimizing an adversarial loss between a specific
pair of source and target datasets [32], which has limitations
in training instability and potential data privacy leakage [41].
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Figure 2. Cycle-Consistent Diffusion Models leverages two deterministic diffusions through ODEs for unpaired document-level image-to-

image translation. Given source data x(®) the source diffusion model 1)95) runs in the forward direction to convert it to the latent space x(®,

while the target diffusion model vét) reverse ODE to construct the target document-level images x® . to and ¢; are the starting point and

ending point, typically setting to o = 0 and ¢; = 1.

‘ Unpaired ‘ Backbone Models ‘ Document Enhancement Tasks
Methods or paired
GANs CNNs Transformers | Denoise Shadow Binarization Watermark Deblur  Defade
Removal Removal
SCGAN [46] (ICCV 17) Paired v - - - - - v -
SCDCA [50] (ICPR 18%) Paired - v - v - - - v -
BEDSR-Net [21] (CVPR 20°) Paired v - - v - - -
DE-GAN [40] (TPAMI 20°) Paired v - - - - - v v -
RED-Net [4] (PR 19”) Paired - v - - - v - - -
SauvolaNet [19] (ICDAR 21°) Paired - v - - - v - - -
CharFormer [33] (ACM MM 22’) Paired - - v v - - - - -
DocEnTr [39] (ICPR °22) Paired - - v - - v - v v
CycleGAN [32] (ACCV 18) Unpaired v - - - - - v v v
CycleGAN-MOE [11] (ICCV 21°) | Unpaired v - - v - - v v v

Table 1. A summary of document enhancement methods, including unpaired/paired supervision, backbone models (CNNs, GANS,
Transformers), and enhancement tasks (denoise, shadow removal, binarization, watermark removal, deblur, defade).

Beyond both disadvantages of existing methods, the task
of document enhancement presents several unique chal-
lenges compared to typical image translation problems.
These include (1) High-resolution, which poses scalability
challenges, leading to performance degradation and signifi-
cant increases in training costs. (2) Lack of large benchmark
datasets, which makes it infeasible to use large pre-trained
models. While the success of large generative models such
as Stable diffusion [27], Dall-E [26], and Imagen [29] is
largely attributed to large datasets, such as LAION-5B [31],
there is currently no large pre-trained model available for
document-level tasks. (3) Character feature damage. Unlike
image translation at the pixel level, document-level image
translation requires preserving original content such as char-
acters and words while accounting for style differences in the
background, i.e., noise to clean. Current methods only focus
on pixel-level information and do not consider critical char-
acter features such as glyphs, resulting in character-glyph
damage during the translation process [33].

In this work, we present DECDM, an unsupervised end-
to-end document-level image translation method that ad-
dresses the challenges faced by existing document enhance-
ment methods. Inspired by recent advances in diffusion
models [35,37,41,44], our approach independently trains
the source (noisy) and target (clean) models, decoupling
paired training and enabling the domain-specific diffusion

models to remain applicable to other pairs. Specifically, we
build DECDM based on denoising diffusion implicit models
(DDIMs) [35], which create a deterministic and reversible
mapping between images and their latent representations,
solved using ordinary differential equation (ODE) that forms
the cornerstone. Translation with DECDM on a source-target
pair requires two different ODEs: the source ODE encodes
input images to the latent space, while the target ODE de-
codes images in the target domain, as shown in Fig. 2.

Since training diffusion models are specific to individual
domains and rely on no domain pair information, DECDM
makes it possible to save a trained model of a certain domain
for future use, when it arises as the source or target in a
new pair. Pairwise translation with DECDM requires only
a linear number of diffusion models, which can be further
reduced with conditional models [9]. Additionally, the train-
ing process focuses on one dataset at a time and does not
require scanning both datasets concurrently, preserving the
data privacy of the source or target domain.

To overcome the challenges in document-level translation,
we propose a simple data augmentation scheme to downscale
the resolution of training data, while significantly increasing
the dataset size. This approach reduces the diffusion train-
ing cost and improves the performance in learning character
distribution benefiting from large datasets. Experimentally,
we demonstrate the effectiveness of DECDM on a variety of



document enhancement tasks, such as document denoising
and document shadow removal, with qualitative and quanti-
tative results that establish DECDM as a scalable, efficient,
and reliable solution to the family of document enhancement
approaches. DECEM is also well-suited for few-shot sce-
narios by leveraging unpaired training and sample efficiency
in cycle-consistent diffusion models and data augmentation
strategies. Beyond the denoising and removal tasks shown
here, our proposed DECDM method can apply to broader
few-shot document enhancement tasks in Fig. 1.

2. DECDM Method

Our goal is to develop a cycle-consistent diffusion model
for document enhancement by solving the following three
core problems: (1) unpaired supervision, (2) enforcing cycle
consistency, and (3) data privacy protection. Then we intro-
duce the data augmentation strategies for dealing with the
challenges of document datasets while improving character
and word feature preservation.

2.1. Problem Formulation

We first define the unpaired document enhancement task
from a mathematical perspective as follows:

Problem 1 (Unpaired Document Enhancement). Given two
unpaired sets of documents, one set consisting of degraded
documents X (source domain), and the other a collection of
clean documents ) (target domain), our goal is to learn a
mapping F : X — Y such that the output § = F(x),x € X,
is indistinguishable from documents'y € Y to classify y
apart from'y.

The degraded documents include multiple types, e.g., noise,
blurring, watermark, etc, as shown in Fig. 1. The mapping F
should satisfy two conditions: content preservation and style
transfer. The content refers to the character, text, numbers,
tables, and figures in documents and the style transfer means
the translation from degraded documents (source domain
X) to clean documents (target domain )’). Our objective
is therefore to convert the degraded documents in X while
preserving their core contents in ). From the computer
vision perspective, enhancement tasks can be essentially
interpreted as document-level image-to-image translation.

Problem 2 (Cycle Consistency). Assuming we have a map-
ping F : X — Y and another mapping H : Y — X, then F
and H should be inverse of each other, and both mappings
should be bijective, i.e., satisfying

FH(x) =%, H(FY) =y (D)
A desirable feature of image translation algorithms is the
cycle consistency property [52], which transforms a sample
in the source domain to the target domain, and then back

to the source, will recover the original sample in the source
domain. This property is critical to the adaptability guaran-
tee, which empowers the domain-specific diffusion models
to stay applicable in other pairs. A rigorous formulation is
defined in Eq. (1).

Problem 3 (Data Privacy). In the training and translation
process, source model vés) and target model vét) are decou-
pled and trained independently, while both source datasets

x € X and target datasets y € Y are private to each other.

Most image-to-image translation approaches strongly rely on
joint training over data from both source domains and target
domains. This leads to a significant challenge in preserving
the privacy of domain data in a federated setting. An ideal
method is to train the models independently on separate
domain datasets such that data privacy is protected.

2.2. Cycle-Consistent Diffusion Models

Diffusion Models [13, 34, 36] aim at modeling a distri-
bution py(xp) to approximate the data distribution g(xg)
through diffusion and reversed generative processes. Song et
al. [38] proposed a unified framework by leveraging Stochas-
tic Differential Equations (SDEs) representation, which uses
a forward and backward SDE to mathematically describe
general diffusion processes:

dx = f(x,t) dt + g(t) dw (2)
and reversed generative processes:
dx = [f — ¢°Vy log p;(x)] dt + g(t) dw 3)

where f(x, t) is the vector-valued coefficient, w is the stan-
dard Wiener process, ¢(t) is the diffusion coefficient, and
Vx log p;(x) is the score function of the noise perturbed data
distribution. Any diffusion process can be represented by
a deterministic ODE [38], named the probability flow (PF)
ODE [38], which enables uniquely identifiable encodings of
data, and has the following form:

dx = |f(x,t) — %g(t)QVx log py(x)| dt 4)

which is equivalent to the forward SDE in Eq. (2). For con-
ciseness, we use ¢-parameterized score networks s; g =~
Vi« log pi(x) to approximate the score function and use
vg = dx/dt to denote the f-parameterized model and use
the symbol Sopg to denote the mapping from x(*0) to x(*1)
and implement ODE solver in DDIMs [35].

x(t1) = Sope(x(to); ve, to, t1)

— x(to) + / " ol x(t)) dt

to

®)
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Figure 3. Cycle consistency illustration. Translation from the source domain (CR) to the target domain (PR) and then back to the source
domain (CR) via the cycle-consistent diffusion models with reverse and direct sampling.

In this work, we implement an ODE solver in DDIMs
[35] where the generative sampling process is defined in a
deterministic non-Markovian manner, which can be used for
the reverse direction, deterministically noising an image to
obtain the initial noise vector. This property is central to
DECDM as we solve these ODEs for forward and reverse
conversion between data and their latents. More details are
provided in Appendix A.

Cycle-Consistent Diffusion Models. DECDM leverages
the cycle-consistent diffusion models to perform unpaired
document-level image translation, with two diffusion models
trained independently on two separate domains. DECDM
consists of two core steps, training, and translation, described
in Algorithms 1 and 2. For training, DECDM first collects
noisy data from the source domain x(*) ~ p,(x), and clean
data from the target domain x(*) ~ p,(x), then train two dif-
fusion models separately on the two domains and save them
as vés) and vét). For translation, DECDM first runs Sopg
in the source domain to obtain the latent encoding x(*) of
the image x(*) at the end time ¢; via Sopg (X(S); U(SS), to,t1)-
Then DECDM feds the source latent encoding x(%) to SobE

with the target model vét) to reconstruct the target image x(*)

via Sopg (x(#); v(gt), t1,10), as illustrated in Fig. 2.

One of the important advantages of DECDM is the exact
cycle consistency: transforms a sample in the domain S to
the domain 7, and then back to S, will recover the original
sample in S. As probability flow ODEs are used, the cy-
cle consistency property is guaranteed [38]. The following
proposition validates the cycle consistency of DECDM.

Proposition 4 (Exact Cycle Consistency). Given a specific
sample x*) from source domain X, with a trained source
model vés) and a target model vés), we define the forward

cycle consistency

x®) = Sopr(x®); 057 to, t1);

(6)
x = Sopr(x; U((f), t1,to);

and backward cycle consistency

)—'((z) = SODE(X(t); /Uét)? th tl)’ (7)
i(‘s) = SoDE(f((Z), ’UéS); t17 to)’

Assume zero discretization error, then we have x(8) = %),

In practice, we implement the ODE solver Sopg with DDIMs
[35] which has reasonably small discretization errors. Thus
DECDM incurs almost negligible cycle inconsistency. Ap-
pendix B provides more details of training objectives, as illus-
trated in Algorithm 1. Diffusion model training in DECDM
returns the trained source model and target model, which are
then employed for unpaired image translation as shown in
Algorithm 2.

2.3. Data Privacy Protection

The DECDM training process does not depend on knowl-
edge of the domain pair a priori, while only source and target
data are required. Both source and target diffusion models
are trained independently. The DECDM translation process
can be performed in a privacy-sensitive manner. For exam-
ple, user A is the owner of the source domain and user B is
the owner of the target domain. User A intends to translate
the source images to the target domain in a private manner
without releasing the source dataset. User B also wishes to
make the target dataset private. In such a case, user Acan
can simply train a diffusion model with the source data, en-
code the data to the latent space, and only transmit the latent
codes to user B. Then user B can use the pretrained diffusion
models (using the target data) to convert the received latent
code to a target image and send back to user A. The process
only requires shared latent code from user A and a pretrained
model from user B, which can be finished in a private plat-
form, and both source and target datasets are private to the
two parties. This is a significant advantage of DECDM over
alternate methods, as we enable strong privacy protection of
the datasets. More discussions can be found in Appendix D.



2.4. Data Augmentation

Many document benchmark datasets are not large enough
for diffusion model training such that data augmentation is
often necessary. However, typical image data augmentation
techniques, e.g., crop, rotate, flip, etc, may negatively af-
fect the recognition (difficult to read) of character and word
contents. In this work, we implement two simple strategies
for document-level data augmentation, while mitigating the
high-resolution challenges such as computational scalability
issues in training diffusion models, as shown in Fig.4.
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Figure 4. Data argumentation for document-level high-resolution
images: (a) sub-window strategy and (b) slide-window strategy.

The sub-window strategy divides the high-resolution im-
ages into several smaller domains, e.g., 1024x1024 images
will be divided into 16 sub-images (256x256) or 64 sub-
images (128 x128). Using this way, we reduce the image
resolution but upscale the dataset size fed to the diffusion
models for better performance at a lower training cost. If
the data is very sparse, we can consider the slide-window
strategy, which is inspired by convolution operation in CNN,
moving the sub-window with a specific stride. This strategy
will significantly increase the amount of data which allows
diffusion models to accurately capture the distribution of
characters and words. For translation, we perform the same
strategy for the source (noisy) data and obtain the corre-
sponding target sub-images, and finally we ensemble all of
them to obtain the whole cleaned images.

Algorithm 1 Diffusion model training in DECDM

1: Requirement: noise data from source domain, x*) ~ p(x),
clean data from target domain, x®) ~ p; (x).

2: Perform data augmentation for x(*) and x(*)

3: Train source diffusion model v(gs) (x*)) ~ ps(x) and target
diffusion model Uét) (x®) ~ py(x) separately

4: Return trained source model vés) and target model vét)

3. Experiments

A set of experiments are provided to demonstrate the
effectiveness of our DECDM. We first use a 2D synthetic ex-
ample to show the cycle-consistent property and then demon-

Algorithm 2 Unpaired image translation in DECDM

1: Requirement: data sample from source domain x®) ~ p (%),
source model vé”, target model, vét), to, t1

2: Encoding: obtain latent embedding from source domain data
via x*) = Sopr(x*; vés)7 to, t1);

3: Decoding: obtain target domain data reconstructed from latent
code via x¥ = Sopg(x*; vét) ,t1,t0)

4: Return: x*)

strate DECDM on various document enhancement tasks,
including dirty document denoising and shadow removal.

3.1. 2D Synthesis Examples

We perform domain distribution translation on two-
dimensional synthetic datasets with complex shapes and
configurations, as shown in Fig. 5. In this example, we use
six 2D datasets (normalized to zero mean and identify covari-
ance): Two Moons (TM); Checkerboards (CB); Concentric
Rings (CR); Concentric Squares (CS); Parallel Rings (PR);
and Parallel Squares (PS). The colors in Fig. 5 are signed
based on the point identities that can help check if a point in
the source domain is blue, then its corresponding point in the
target domain is also colored blue. To this end, we observed
a smooth translation between the source and target domain
with point identity preservation. For instance, on the second
row in Fig. 5, the red points in the CR dataset are mapped to
similar coordinates (relative location) in the target domain
of the CS dataset. The latent space provides a disentangled
representation of this domain translation.

Source Latent Target Source Latent Target

Figure 5. Distribution translation of synthetic datasets: from source
datasets to latent representation via encoding, then from latent
representation to target datasets via decoding. (Left three) heatmap
results and (Right three) scatter results with color configurations.

Cycle Consistency Validation. We demonstrate the cycle
consistency using an example of domain translation from CR
to PR, as shown in Fig. 3. We first train the cycle-consistent



diffusion models for each domain (CR and PR) indepen-
dently. Then starting from the CR dataset x(*), we obtain the
latent points x(*) using reverse sampling and construct the
target PR points x(*) via direct sampling. The next step is
the reverse direction, i.e., transforming the target PR points
back to the latent and the source CR domain. Similarly, we
transfer x(*) to the latent points %(*) using reverse sampling
and then reconstruct the source CR domain %(*) via direct
sampling. After this multi-step trip, the source points are
approximately mapped back to their original positions. From
Fig. 3, we observed a similar color topology both in the latent
and source domain. The reconstructed source points %(*)
are highly consistent with the original source points x(*). To
further compare the difference, Table 2 shows quantitative
evaluation results on cycle consistency among various cases.
We use averaged L2 distance to measure the difference be-
tween the original points and the reconstructed points after
cycle translation, e.g., "TM-CB" means TM — CB — TM.
The results in Table 2 are negligibly small in terms of both
the latent and source domains such that the cycle consistency
is valid even without adding cycle-consistent loss [52].

Distance TM-CB CR-TB CR-CS CR-PR PR-PS PS-CS
Latent 0.0128 0.0087  0.0101  0.0120 0.0092  0.0100
Source 0.0122 0.0106  0.0082  0.0108 0.0143  0.0065

Table 2. Cycle consistency validation. Averaged L2 distance is used
to measure the difference between original points and after-cycle
translation on both latent and source domains.
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3.2. Dirty Document Denoising

Datasets. In this case, we apply our DECDM for denois-
ing dirty documents by leveraging the benchmark datasets
denoising-dirty-document', which consists of printed En-
glish words in 18 different fonts. The original datasets in-

Uhttps://www.kaggle.com/competitions/denoising-dirty-documents

clude noisy raw document-level images with uneven back-
grounds, e.g., watermarks, messy artifacts, etc. We name the
original datasets as DatasetA: Dirty Document. There are
144 data for training and 72 data for testing in the original
setting. We use this setting for evaluating all the methods.
To increase the complexity, we also create DatasetB: Noisy
Document by adding speckle noise and Gaussian noise on
the ground truth. The noise means y is 0 and variance o is
5, which follows the setting in [33]. Fig. 6 shows one of
the raw document-level images and the corresponding clean
image in DatasetA. Fig. 7 shows the noisy document-level
image in DatasetB.

Baselines. We compare our DECDM with multiple compet-
itive baseline methods, including GAN/CNN-based meth-
ods, CIDG [47], InvDN [22], CycleGAN [32], and some
Transformer-based methods, i.e., UFormer [43], IPT [5],
TransUNet [6] and CharFormer [33]. Note that most of
these state-of-the-art methods are proposed for general im-
age denoising or restoration, not specifically designed for
document denoising. Thus, we use the same training environ-
ment and datasets for all the methods and report the results if
they have already been provided in their work [33]. We per-
form a slide-window strategy for data augmentation in this
case and all the experiments and comparisons are done on
one NIVIDA Tesla V100 GPU. Appendix C presents some
synthesized samples drawn from the trained source (noisy
datasets) and target models (clean datasets).

Method | DatasetA | DatasetB
| PSNRT  SSIM? ACT | PSNRT  SSIMT ACT
Raw Data 16.33 0.7978  0.6931 13.03 0.2852 -
CIDG [47] 21.88 0.8871  0.7559 20.65 0.8623  0.2471
InvDN [22] 22.40 0.8807  0.8374 20.49 0.8077  0.5917
CycleGAN [32] 23.66 0.8857  0.8319 20.97 0.8470  0.6409
UFormer [43] 23.86 0.8970  0.8326 21.01 0.8221  0.6693
IPT [5] 23.72 0.9027  0.856 21.94 0.8293  0.6854

TransUNet [6] 23.92 0.8998  0.8621 20.83 0.8592  0.5579
CharFormer [33] 24.08 0.8985  0.8553 21.07 0.8637  0.7259

DECDM | 2430 09058  0.8714 | 21.12 0.8631  0.7438

Table 3. Quantitative evaluation results on average PSNR, SSIM
and OCR accuracy (AC). The best two results are highlighted in
bold black.

Metrics. We introduce two commonly used metrics to eval-
uate the document-level denoising performance, i.e., peak
signal-to-noise ratio (PSNR) and the structural similarity in-
dex measure (SSIM). Note that “1” represents the higher the
metric the higher image quality. Additionally, we introduce
a metric for evaluating the character-level quality, i.e., opti-
cal character recognition (OCR) accuracy (AC). This metric
allows us to validate if the denoising algorithms improve the
OCR? performance compared to dirty documents.

Qualitative Evaluation. We first visualize the denoising
results by using DECDM and compare it with other baseline

2The public OCR tools can be accessed via https://www.ocr2edit.com
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Figure 8. Qualitative evaluations and comparisons on DatasetA which is dirty document denoising.
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Figure 9. Qualitative evaluations and comparisons on DatasetB which is dirty document denoising.
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Figure 10. Qualitative evaluation and visual comparison of competing baseline methods on document shadow removal task.

Ground Truth

DECDM

BEDSR-Net

DEVD

Shadow Map

ST-CGAN

Method |

SDSRD [21]

RDSRD [21]

SM Datasets [2]

DVED Datasets [17]

WF Datasets [ 14]

| PSNR 1

SSIM+ | PSNR{1  SSIM 1

PSNR+ SSIM{ | PSNR

SSIM{ | PSNR{  SSIM

22.80
31.55
22.03
17.06
39.38
43.59

Raw Shadow Images
Shadow Map [2]
DVED [17]
Water Filling [14]
ST-CGAN [42]
BEDSR-Net [21]

21.73 0.8093
28.24 0.8664
22.53 0.7056
14.45 0.7054
30.31 0.9016
33.48 0.9084

0.9658
0.8435
0.8226
0.9834
0.9935

19.31
29.66
26.45
19.21
25.92
32.90

35.22 0.9823
26.50 0.8381
13.88 0.8059
29.12 0.9600
35.07 0.9809

20.35 0.8850
23.70 0.9015
24.45 0.8332
28.49 0.9108
23.71 0.9046
27.23 0.9115

0.9051
0.8481
0.8724
0.9062
0.9354

DECDM | 45.73

|
\
0.8992
| 3721

34.95

|
\
28.45 0.9742
| 35.01

0.9521

|
\
0.8429
| 29.87 0.9112

Table 4. Quantitative evaluation results on PSNR and SSIM. We compare our DECDM with BEDSR-Net [21], ST-CGAN [42], Water
Filling [14], DVED [17], and Shadow Map [2] methods. The best two results are highlighted in black bold.

methods. Fig. 8 and Fig. 9 show the qualitative performance
on DatasetA and DatasetB respectively. DECDM can ef-
fectively remove messy dirties and even backgrounds and
perform high-quality document-level image denoising. Un-
like some methods, e.g., CycleGAN, InvDN, and TransUNet

with character-level damages, DECDM well recognizes the
character style and topology, which can be clearly seen in
the zoom-in sub-figures in Fig. 8. As an unpaired method,
DECDM shows competitive performance compared to the
transformer-based methods, e.g., CharFormer and UFormer,



which strongly rely on paired supervision. More ablation
studies are provided in Appendix E.

Quantitative Evaluation. Table 3 shows the quantitative
comparisons between DECDM and state-of-the-art baseline
methods on both datasets. Clearly, DECDM shows outper-
formed results, specifically the AC metric, in both datasets.
Compared with GAN/INN models, transformer-based mod-
els perform competitively, e.g., CharFormer in DatasetB but
it will fail in the unsupervised setting.

3.3. Document Shadow Removal

Datasets. Although there exist a few datasets for document
image shadow removal, they are only used for evaluation on
a small scale. In this example, we consider the following
five datasets ranging from small-scale to large-scale such
that we can provide a comprehensive validation.

* SDSRD datasets [8,21]: 8309 paired images from 970 doc-
uments, including synthetic, diverse contexts and lighting.
7533 for training and 776 for testing.

* RDSRD datasets [21]: 540 paired images of 25 documents,

including newspaper, slides, and paper, under different

lighting conditions.

Shadow Map (SM) datasets [2]: 81 paired images with

light shadows/text only.

* DEVD datasets [17]: 300 paired document-level images,

including dark shadows and colorful symbols.

Water-Filling datasets [14]: 87 high-quality paired images

including multi-cast shadows.

Baselines. We compared our DECDM with five state-of-the-
art methods, including BEDSR-Net [21], ST-CGAN [42],
Water Filling [14], DVED [17], and Shadow Map [2] meth-
ods. For a fair comparison, we used the publicly available
source codes or reported results provided by the authors. We
evaluate the compared methods from visual quality using the
PSNR and SSIM metrics, as suggested by [21].

Qualitative and Quantitative Evaluation. For visual com-
parison, Fig. 10 shows several shadow removal results of the
compared methods. DEVD [17] and ST-CGAN [42] exhibit
remaining shadow edges and Shadow Map [2] performs bet-
ter than those two but still shows the shadow. DECDM close
to BEDSR-Net [21] shows ideal performance without seeing
shadow edges. Quantitatively, DECDM outperforms other
baselines on most datasets as shown in Table 4. For SM
datasets, Shadow Map performs best but its result is worse
than the other baselines in the other four datasets. BEDSR-
Net is a competitive method that achieves promising results
but it strongly relies on the pair datasets. On the contrary,
DECDM is more flexible and robust without the assumption
of pair knowledge such that we can easily deploy it in more
real-world scenarios. We also provide a detailed analysis of
the effect of data augmentation strategies in Appendix E.

4. Related Work

Document Enhancement. Deep learning has enabled
many approaches for enhancing the quality of document-
level images [1]. Recent state-of-the-art methods in docu-
ment enhancement are summarized in Table 1, categorized
by their supervision mechanism (paired or unpaired), back-
bone models (CNNs [4,20,50], GANs [11,21,32,40,46], and
Transformers [33,39]), and enhancement tasks (denoising,
shadow removal, binarization, watermark removal, deblur,
and defade). Although most methods perform well in one or
multiple tasks, no single model can handle all types. Addi-
tionally, paired supervision is required, which is rarely met
in real settings. While Cycle-GAN [I 1, 32] methods can
mitigate this limitation, they still need to optimize for cycle
consistency over two domains, leading to instability issues
and potential data privacy leakage. Our proposed DECDM
addresses these challenges by enabling unpaired translation,
cycle consistency, and data privacy protection.

Diffusion Models. Diffusion models are a family of gen-
erative models that have gained much attention recently due
to their superior performance in text-guided image synthe-
sis [3, 10, 28], e.g., Stable Diffusion [27], DALL-E 2 [26],
and Imagen [29]. These works are built upon the foundation
of diffusion models, including score-based methods [36, 38]
that match with Langevin dynamics, denoising diffusion
probabilistic models (DDPMs) [ 13, 34] that parameterize the
ELBO objective with Gaussian, and denoising diffusion im-
plicit models (DDIMs) [35] that accelerate DDPM inference
via non-Markovian processes. Recent works have leveraged
diffusion models for image editing [7, 18,30,44], composi-
tion [24,51], and restoration tasks [16,29] with promising
performance. However, these methods mostly relied on joint
training by leveraging both datasets directly. Our DECDM
performs a decoupled mechanism by applying separate, pre-
trained diffusion models and leveraging the geometry of the
shared space for document image translation. To the best
of our knowledge, DECDM is the first work to apply diffu-
sion models for document enhancement via unpaired image
translation, inspired by these studies.

5. Conclusions

DECDM provides an unsupervised end-to-end solution
for document image enhancement that offers several ad-
vantages over existing state-of-the-art methods, including
adaptability to new domain pairs and data privacy protection.
These unique capabilities make DECDM a more robust, safe,
and scalable solution for improving OCR performance in a
wide range of document enhancement tasks. Future works
aim to address the current limitations caused by data sparsity,
augmentation, and character/word context recognition. We
will also integrate OCR into the training pipeline to pursue
better character and word recognition.
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A. Details of DDIM ODE Solver
A.1. Diffusion Models

Diffusion Denoising Probabilistic Models (DDPM) [ 13,

] aim at modeling a distribution py(xg) to approximate
the data distribution g(xg). The forward process performs
a progressing procedure from x to x via a Markov chain,
where we generate the latent variables x1, ..., x7 by gradu-
ally adding noise to the data via Gaussian transition. When
T is large enough, the last noise vector x7 nearly follows an
isotropic Gaussian distribution.

The forward process has a simple closed-form solution
that expresses the latent variable x;,t € {0, ..., T'} as alinear
combination of noise and xq [13]:

Xy = VX + V1 — ey,

where o is referred to as the noising schedule which defines
the amount of noise present at each intermediate timestep,
0=ar <ar_q < .., < a; < ay = 1. Each refinement
step consists of an application of a neural network fy(x,t)
on the current sample x;, followed by a random Gaussian
noise perturbation, obtaining x;_;. The network is trained
for a simple denoising objective, aiming for fy(x;,t) =
Eét) (Xt) ~ €¢.

Sampling from distribution ¢(x¢) is defined by a reverse
process, from isotropic Gaussian noise x to data, which is
refined iteratively through ¢ < T passes through the network.
There are various sampling strategies [25, 35] that define the
process of merging the noise prediction eét) (x¢) and current
sample x; to produce the previous sample x;_;. The final
X sample is the resultant generated image.

er ~ N(0,1), (®)

A.2. DDIM Inversion

Unlike the commonly used DDPM, the generative sam-
pling process in DDIMs is defined in a non-Markovian man-

ner,
_ 1—oy— 1-—
[t 1Xt+< / Q-1 at) E(St)(Xt)
t Q-1 a
€))

which can be used for inversion, based on the assumption
that the ordinary differential equation (ODE) process can be
reversed in small steps:

Oét+1 1- A1 /1 (t)
Q41
(10

Thus, the diffusion process is performed in the reverse di-
rection, deterministically noising an image to obtain the ini-
tial noise vector. In other words, DDIM inversion achieves
X9 — X7 instead of x7 — xq.

Xt—1 =

Xt41 =

Empirically, the error of DDIM inversion is reasonably
small since Eq. 10 can be treated as an Euler method over
the following ODE, which is up to discretization errors of
the ODE solvers:

dx(t) = i) (%

where X = x/y/a and o = /1 — a//a. However, in prac-
tice, a slight error is incorporated in every step, and eventu-
ally, the accumulated error might be non-negligible. In some
cases, the obtained noise vector might be out of the Gaus-
sian assumption. Importantly, the ODE in Eq. (11) with the

) do(t) (11)

optimal model e( ) has an equivalent probability flow ODE
corresponding to the variance exploding SDE [38]. Although
the ODE solver has a reasonably small error, we can leverage
recent developments in higher-order ODE solvers, such as
the DPM-solver [23], the Exponential Integrator [49], and
the second-order Heun Solver [15] that generalize DDIMs
can also be used in our case.

A.3. DDIM Cycle-Consistency

DDIMs invent a particular parameterization of the dif-
fusion process, that creates a smooth, deterministic, and
reversible mapping between images and their latent repre-
sentations. This mapping is captured using the solution to
a so-called probability flow (PF) [38], ordinary differential
equation (ODE). Translation with DECDM on a source-
target pair requires two different PF ODEs: the source PF
ODE converts input images to the latent space; while the
target ODE then synthesizes images in the target domain. As
PF ODEs are used, the cycle consistency property is guar-
anteed as validated in Proposition 4. In practice, even with
discretization error, DECDM incurs almost negligible cycle
inconsistency, as shown in our empirical experiments on 2D
synthesis examples (see Table 2).

B. Details of Training Objectives

The DECDM training is equivalent to training a score-
based model [36,38]. Given samples from a data distribution
q(xo), diffusion models attempt to learn a model distribution
po(Xo) that approximates ¢(x¢) and is easy to sample from.
Specifically, diffusion models are latent variable models of
the form:

po(x0) = /pe(xo:T)dX1;T (12)
where
T
Po(xo.7) = po(xr H (xi-1]x1) (13)
where Xi, ..., X are latent variables in the same sample

space as xo. The parameters 6 are trained to approximate the



data distribution ¢(x() by maximizing a variational lower
bound:

max By ) [log po(x0)] < maxEy(xy,...xr) 108 Po (Xo7)

—log q(x1.7[x0)]

(14)
where ¢(x1.7|X0) is some inference distribution over the
latent variables. The training objective can be reformulated
when the conditional distributions are modeled as Gaussian
with trained mean functions and fixed variances:

T
L) = D Exymaixocmno.nllles” (vVarxo
t=1

+ \Y% 1-— Oltﬁt) — 6,5”3]

From the above formulation, we know that the resulting

. P . t .
noise prediction function eé ), are equivalent to the score

networks s; ¢ in [13,38].

15)

C. Synthesized Samples

DECDM consists of two trained models: the source
model and the target model. Both models can also be used for
synthesized data generation. Since both models are trained
independently we can use them to generate noisy samples
and clean samples separately, as shown in Fig.11 and 12. In
these two cases, the data augmentation strategy allows the ro-
tation and flip such that the generated character is not shown
as normal. We can clearly see the character feature without
obvious damage and also capture some specific font styles.
The
distributions, which may be used for building noisy-clean
pairs. On the contrary, the clean samples drawn from the
target models show clear character without any degradation.

D. Discussion of Data Privacy

Our method solves the data privacy issue by unpaired
individual training and transferring encoded latent variables
between two parties. Since both source and target diffusion
models are trained independently, noise or clean images
are only visible to the individual user. During translation,
only latent variables are shared instead of noisy images,
thus both noise and clean images are private to the two
parties. For example, user A is the owner of the source
domain and user B is the owner of the target domain. User A
intends to translate the source images to the target domain in
a private manner without releasing the source dataset. User
B also wishes to make the target dataset private. In such a
case, user Acan can simply train a diffusion model with the
source data, encode the data to the latent space, and only
transmit the latent codes to user B. Then user B can use the
pretrained diffusion models (using the target data) to convert
the received latent code to a target image and send back to
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Figure 11. Synthesized noisy samples from dirty document datasets
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Figure 12. Synthesized clean samples from dirty document datasets

user A. The process only requires shared latent code from
user A and a pretrained model from user B, which can be
finished in a private platform, and both source and target
datasets are private to the two parties. This is a significant
advantage of DECDM over alternate methods, as we enable
strong privacy protection of the datasets.



Method ‘ DatasetA ‘ DatasetB
| PSNRT  SSIM  ACtT | PSNRT  SSIMf  ACt
DECDM without data augmentation 23.71 0.8902  0.8501 2049  0.8390 0.6876
DECDM with slide-window (64x64) 23.95 0.8953 0.8692 | 20.87  0.8481 0.6943
DECDM with slide-window (128x128) 2430 09058 0.8714 | 21.12  0.8631 0.7438
DECDM with slide-window (256x256) 24.11 0.9027  0.8689 20.96  0.8607 0.7302

Table 5. Effect of slide-window strategy with DECDM on dirty document denoising datasets.

E. More Details about Experiments
E.1. Ablation Study on Denoising

Table 5 shows the ablation experiments to explore the
effect of data augmentation strategy, such as the sub-window
method on dirty document denoising datasets. In this case,
we consider four cases: original DECEM without data aug-
mentation, DECEM with slide-window with various window
sizes ranging from 64x64, 128x128 to 256x256. As the
window size increases, the total amount of augmented data
decreases. The results show that the sliding window im-
proves the performance of the original DECDM in terms of
all evaluation metrics on both datasets. Smaller window size
with larger datasets does not show the best performance. In
contrast, a moderate window size (128x128) outperforms
the other two options in these cases.

Method ‘ M

| PSNRT  SSIM t

DECDM without data augmentation 43.32 0.9906
DECDM with sub-window (64x64) 43.51 0.9912
DECDM with sub-window (128x128) 45.73 0.9932
DECDM with sub-window (256x256) 44.05 0.9917

Table 6. Effect of sub-window data augmentation strategy on
document shadow removal.

E.2. Ablation Study on Shadow Removal

We also evaluate the performance of the data augmen-
tation strategy on document shadow removal tasks. In this
case, we choose the SDSRD [21] datasets for demonstration
since there are relatively large dataset sizes (8309 paired im-
ages, 7533 for training, and 776 for testing). As mentioned
in Section 3.4, we may prefer to use the sub-window strategy
if the original data is not very sparse. Compared to the slide-
window strategy, the sub-window strategy is easier and more
efficient without additional ensembling steps. As shown in
Table 6, we provide a comparison of various window sizes,
such as 64x64, 128x128, and 256x256 to study the effect
of sub-window strategy on shadow removal performance.
Note that, DECDM with the 128x128 window size shows
superior performance compared with the other two sizes,

but the original DECDM also performs competitively since
the original data size is already large enough to learn the
potential source and target distribution. The improvement
resulting from data strategy is not as significant as the case
in dirty document denoising where the dataset size is small.
Hence the slide-window strategy is recommended when the
original dataset is sparse.
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