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Abstract

Spatial scene understanding, including monocular depth
estimation, is an important problem in various applications
such as robotics and autonomous driving. While improve-
ments in unsupervised monocular depth estimation have po-
tentially allowed models to be trained on diverse crowd-
sourced videos, this remains underexplored as most meth-
ods utilize the standard training protocol wherein the mod-
els are trained from scratch on all data after new data is
collected. Instead, continual training of models on sequen-
tially collected data would significantly reduce computa-
tional and memory costs. Nevertheless, naive continual
training leads to catastrophic forgetting, where the model
performance deteriorates on older domains as it learns on
newer domains, highlighting the trade-off between model
stability and plasticity. While several techniques have been
proposed to address this issue in image classification, the
high-dimensional and spatiotemporally correlated outputs
of depth estimation make it a distinct challenge. To the
best of our knowledge, no framework or method currently
exists focusing on the problem of continual learning in
depth estimation. Thus, we introduce a framework that cap-
tures the challenges of continual unsupervised depth esti-
mation (CUDE), and define the necessary metrics to eval-
uate model performance. We propose a rehearsal-based
dual-memory method MonoDepthCL, which utilizes spa-
tiotemporal consistency for continual learning in depth es-
timation, even when the camera intrinsics are unknown.§

1. Introduction
Vision-based systems have improved tremendously over

the years with better semantic and spatial scene understand-
ing capabilities [26]. Particularly, the capability to esti-
mate scene depth has found applications in augmented real-
ity, autonomous navigation, object-grasping, robot-assisted
surgery, and more [22, 29, 39, 58]. With the increasing de-
mand for cost-effective, lightweight, and flexible depth es-
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Figure 1. (Top) Standard Training Protocol involves repeatedly
training the model from scratch as new data is collected. All col-
lected data is required for future training. The Continual Training
Protocol sequentially trains the model as new data is collected.
Only a limited amount of data is generally stored when training
continually. (Bottom) Naive continual training on the introduced
CUDE framework leads to catastrophic forgetting where the depth
estimation accuracy [33] on a task is highest after training on that
task but is significantly reduced after training on future tasks.

timation solutions, monocular camera-based methods have
emerged as a promising alternative to the use of LIDARs
or time-of-flight sensors. Moreover, unlike traditional ap-
proaches that rely on hand-crafted features from multiple
views [47], deep learning has enabled depth estimation
from single images [23, 34, 41]. Among these, unsuper-
vised methods that do not require ground-truth labels are
often preferred over supervised methods given the associ-
ated data-collection costs. These unsupervised methods po-
tentially allow the training of depth estimation models on
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crowdsourced videos with unknown camera intrinsics [20].
Nevertheless, it remains an underexplored problem due to
the challenges associated with the standard training proto-
col as shown in Figure 1. Within the standard protocol, the
models are retrained from scratch on all the available data
after new data is collected, thus incurring high computa-
tional time and energy costs. Furthermore, to ensure that
the models can be updated in the future, it is necessary to
continue storing all the collected data post-training.

Instead, the continual training protocol involves incre-
mental training of the model in sequential or stream data
from different domains [35]. Continual Learning (CL) is
also necessitated for practical deployments of depth estima-
tion networks, such as in the case of a self-driving car or
robot navigating through various locations, or when adapt-
ing models pre-trained on simulated data to real environ-
ments [46]. Additionally, privacy concerns may be neces-
sary in scenarios where the robot does not have permission
to store data on a server to train and update its models [7],
and has limited on-board memory. However, adapting the
model for the new domain is not sufficient, as it must main-
tain its depth estimation capability on earlier domains as
well. Therefore, there is a fundamental dilemma between
maintaining the stability of the old information and the plas-
ticity to adapt to new information for CL [1, 35]. Naive
CL without a strategy to handle this dilemma will result in
catastrophic forgetting [38], as can be seen in Figure 1.

CL methods such as regularization [31,48,60], parameter
isolation [2, 30, 59], and rehearsal [6, 8, 45] have been uti-
lized to address this dilemma for image classification. How-
ever, depth estimation is a distinct challenge because of its
high-dimensional output space. Additionally, it is typically
required to make highly correlated predictions through the
use of local spatial relations within images and temporal re-
lations within videos, where the depth at one pixel may de-
pend on the depth at other pixels. Thus, there is a need for
a framework that includes a set of sequential tasks that rep-
resent these challenges, as well as suitable metrics for eval-
uating the performance of the models. Thereafter, methods
can be designed to consider spatiotemporal relations while
addressing the stability-plasticity dilemma specifically for
CL in unsupervised monocular depth estimation.

Hence, we introduce a framework for continual unsuper-
vised depth estimation (CUDE) to overcome the aforemen-
tioned gap. It consists of a setup of four tasks, each on a dif-
ferent dataset with unique characteristics representative of
the challenges of domain and depth range shifts across sim-
ulated or real and indoor or outdoor scenes. Additionally,
we provide the appropriate error and accuracy metrics that
can be used to evaluate the performance of depth estima-
tion trained within the continual training protocol. Finally,
we propose a dual-memory rehearsal-based method Mon-
oDepthCL with a spatiotemporal consistency loss for CL

in depth estimation. We showcase how sequential unsuper-
vised learning of monocular depth across multiple tasks en-
ables the development of spatial scene understanding, even
when the camera intrinsics may be unknown. Our contribu-
tions are as follows:

• We develop a framework for benchmarking of contin-
ual learning methods for unsupervised depth estima-
tion under real-world ever-changing scenarios such as
different cameras, diverse weather and lighting condi-
tions, disparate depth ranges, and sim-to-real, indoor-
to-outdoor, and outdoor-to-indoor domain shifts.

• We define metrics to evaluate the continual learning
methods in the framework such that they capture vari-
ous aspects of continual learning performance such as
final performance, performance across the learning tra-
jectory, and stability-plasticity trade-off.

• We propose a method - MonoDepthCL, for contin-
ual learning of unsupervised monocular depth estima-
tion using multiple models to explicitly capture stabil-
ity and plasticity separately. Aided by a novel spa-
tiotemporal consistency loss, MonoDepthCL proves to
be effective for continual learning and dealing with
the stability-plasticity trade-off. MonoDepthCL is also
shown to be effective even when the camera intrinsics
are unknown.

2. Related Works
2.1. Monocular Unsupervised Depth Estimation

Monocular depth estimation is considered an important
computer vision task for many applications. With the ad-
vent of deep learning, several supervised [15,44], as well as
unsupervised [5, 19] approaches for depth estimation have
been proposed. Further research has improved the depth es-
timation results in independent and identically distributed
(i.i.d.) training using multiple modalities [12,23], newer ar-
chitectures [24, 52], advances in feature extraction [36, 49],
and 3D geometry [4, 56]. Nevertheless, estimating dense
depths from monocular images for continually shifting dis-
tributions, where the previous data become unavailable as
in the real world, remains an understudied problem.

2.2. Continual Learning for Dense Prediction

Most of the CL research has focused on classification
tasks, with limited attention to dense prediction tasks. Early
works on CL in image classification focused on regulariz-
ing important parameters for previous tasks [31, 48, 60], or
complete or partial isolation of parameters relevant to each
task [2, 30, 59]. However, these approaches generally un-
dergo catastrophic forgetting without task identification at
test time [16]. Rehearsal-based methods, such as experi-
ence replay (ER) [45] resolve this issue by retraining on
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Figure 2. Continual Unsupervised Depth Estimation (CUDE) framework with four sequential tasks operating in diverse environments,
weather and lighting conditions, and depth ranges.

old data stored in a small memory buffer updated with re-
placement [3, 6, 8, 42]. Nevertheless, it is non-trivial to ex-
tend these methods to continual learning for dense predic-
tion tasks. Although some methods have been developed
that focus on continual semantic segmentation [14,37], they
continue to address the challenge posed by the addition of
newer class labels. Recently, some works have focused on
related issues of domain adaptation for the spatial task of
depth estimation [32,61]. These methods rarely focus on the
issue of catastrophic forgetting or are limited to a one-step
transfer of learned knowledge to a single new environment.
Voedisch et al. [54] focuses on the related task of odome-
try. However, it uses an infinite buffer, giving it access to all
previously seen data at all times, additionally causing high
memory expense and privacy concerns. To the best of our
knowledge, no existing work deals with the challenges of
CL in dense unsupervised depth estimation. Therefore, we
introduce a framework for comprehensive evaluation of CL
methods for unsupervised depth estimation, and develop a
rehearsal-based method for the same.

3. Framework

Since depth estimation is a regression method with no
distinct classes, CL for depth estimation is akin to a domain-
incremental learning scenario, in which the input distribu-
tion changes as training progresses. This is reflected in Fig-
ure 1 where the continual training protocol is different from
standard training, where the model is trained on all avail-
able datasets simultaneously. We, thus, define the CUDE
framework with four tasks, each corresponding to an indi-
vidual dataset as shown in Figure 2. Each task corresponds
to training the depth on a unique set of videos captured
in varying environments from different cameras, under di-
verse weather and lighting conditions, and capturing dis-
parate depth ranges to mimic real-world ever-changing sce-
narios. The task sequence is VKITTI2 [10] → KITTI [17]
→ NYUv2 [50] → Cityscapes [13]. Here, VKITTI2 is a vir-
tual photo-realistic dataset generated using the Unity game
engine for the simulated urban setting of Karlsruhe, Ger-
many in various imaging and weather conditions. KITTI

is an outdoor scenario dataset captured in Karlsruhe, Ger-
many, consisting of challenging scenes from both urban and
highway scenarios with ground truth depth measured from
a LiDAR. NYUv2 is an indoor dataset consisting of images
and the corresponding ground truth depth captured from a
Kinect RGBD camera. Cityscapes is another outdoor vision
dataset captured in multiple locations in Germany, France,
and Switzerland with ground truth depth measured using
stereo vision.

This task order also spans complex domain shifts such
as indoor-to-outdoor, outdoor-to-indoor, and sim-to-real.
Though there could have been 24 possible task orders,
we eliminate those sequences where the simulated dataset
would be in the middle or end of the sequence, as they are
not applicable to real-world scenarios, which typically have
deployment in the real-world as the target. Additionally, 4
of the remaining 6 permutations lack either the indoor-to-
outdoor or outdoor-to-indoor domain shift. Finally, from
the remaining 2 sequences, the selected sequence allows us
to demonstrate the impact of transitioning from sim-to-real
for the same scene and camera setup, which is more real-
istic as robots are often trained first on the closest possible
simulated version of the targeted environment before ob-
taining data for the real-world environment. Such a training
sequence could be utilized to train perception systems for
robots that operate both indoors and outdoors, such as secu-
rity robots, hygiene robots, assistance robots, etc. By cap-
turing domain shifts from simulated to real environments,
outdoor to indoor environments, and vice versa, our setup
aims to examine both the forgetfulness and adaptability of
the CL models across different camera setups, scene distri-
butions, and depth ranges.

Generally, multiple error and accuracy metrics are used
to evaluate depth estimation performance [11]. However,
these metrics are not directly suitable for quantifying CL
methods for depth estimation. Instead, by measuring the
error and accuracy of depth estimation on each task af-
ter training a specific task, we generate a task-wise perfor-
mance matrix A ∈ Rnt×nt , where nt is the total number of
tasks. Consequently, we use the following metrics to eval-
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Figure 3. Schematic of our MonoDepthCL: The context model consolidates the working model using an exponential moving average.
The working model learns a view synthesis (See Section 4) of the target image from the source images. A consistency module contrasts
synthesized target images from both models to generate a spatiotemporal consistency map, which is cropped to a random ratio sampled
from a Gaussian distribution to get a spatiotemporal consistency loss (See Algorithm 1). Note that the depth estimation and associated
operations are done at 4 resolutions.

uate CL models for depth estimation. Note that depending
upon whether the metric is computed for the depth errors
or the depth accuracy, the lower values or the higher values
indicate better performance, respectively.

Final Average (µfinal) measures the mean performance
on all tasks after training the model on the final task. Hence,
µfinal =

1
nt

∑nt

j=1 Ant,j .
Overall Average (µoverall) measures the µfinal over all the

seen tasks after training the model on each task. Hence,
µoverall = 2

nt(nt+1)

∑nt

i≥j Ai,j . It indicates the improve-
ments and degradations of model performance as the model
is trained on different tasks.

Stability-Plasticity Trade-off (SPTO) measures how
well the model tackles the dilemma between retaining per-
formance on the previously seen tasks and the capability to
learn new tasks. Hence, SPTO = 2×AS×AP

AS+AP
; where stabil-

ity AS = 1
nt

∑nt−1
j=1 Ant,j is the average performance on

all previously seen tasks after training the model on the fi-
nal task, and plasticity AP = 1

nt

∑nt

i=1 Ai,i is the average
performance of the tasks after the model is trained on them
for the first time.

4. Method

Here, we provide an overview of unsupervised monocu-
lar depth estimation, followed by our method for continual
learning in depth estimation.

4.1. Unsupervised Monocular Depth Estimation

Unsupervised monocular depth estimation is a technique
used to determine the pixelwise distance of objects in a
scene from a single unlabeled image. At any given training
step, the input to the models is a set of temporally consec-
utive images, consisting of a target image It ∈ RH×W×3,
and ns source images {Ijs ∈ RH×W×3 : j = 1, 2, ...ns},
where H and W are the height and width, respectively, of
the images. The depth network parameterized by θD pre-
dicts inverse depths at four resolutions, which are then bi-
linearly upsampled to the input resolution to reduce texture
copy artifacts [19]. Meanwhile, the ego-motion network pa-
rameterized by θE predicts the relative pose between each
source-target image pair concatenated along the channel di-
mension. Combining this relative pose with the camera in-
trinsics matrix, each source image Ijs is warped to the target
image using the perspective projection equation [28]. This
process, called view synthesis, is performed for each up-
sampled target depth prediction indexed by i = 1, 2, 3, 4
to obtain a synthesized target image Îji,t. An appearance-
based photometric error is then formed between each syn-
thesized target image and the original target image It. The
photometric loss connects the predictions of the depth and
ego-motion networks, forming the basis for unsupervised
learning of depth. Additionally, to counteract the impact of
temporally stationary pixels (e.g. when there is object mo-
tion but no ego-motion), the photometric loss is only con-



Algorithm 1 Algorithm for computing spatiotemporal consistency loss LSTC.

Input: Per-pixel spatiotemporal consistencies from consistency module on XM for each source j and prediction i, STCj
i ∈ R

H×W

Initialize: LSTC(XM ) = 0.0
1: for j ← 1 to ns do
2: STCj ← 0.0
3: for i← 1 to 4 do
4: r ∼ N (0.5, 0.1) ▷ Sample ratio for cropping
5: r ← Clip(r,min = 0.1,max = 1.0) ▷ Clip ratio between 0.1 and 1
6: H

′
,W

′
← rH, rW ▷ Height and width for cropping

7: top← randint(1, H
′
−H + 1) ▷ Sample start row for cropping

8: left← randint(1,W
′
−W + 1) ▷ Sample start column for cropping

9: p
′
t ← {(x, y) ∀ (x, y) ∈ [top, top +H

′
− 1]× [left, left +W

′
− 1] ∩ Z} ▷ Set of cropped pixels

10: STCj ← STCj + 1

|p′t|

∑
p
′
t
STCj

i [p
′
t] ▷ Add average of cropped losses

11: LSTC(XM )← LSTC(XM ) + STCj/4 ▷ Add average across predictions
12: LSTC(XM )← LSTC(XM )/ns ▷ Average across source images

return LSTC(XM )

sidered at pixel locations where it is lower than the photo-
metric loss between the unwarped source and target image
at each scale. This procedure is known as automasking [19].
Finally, a per-pixel edge-aware smoothness loss is used to
regularize the depth predictions [18]. The masked photo-
metric loss and the smoothness loss together form the total
training loss for unsupervised depth estimation, denoted by
Ldepth (see Supplementary Material for more details).

4.2. Continual Learning for Unsupervised Monoc-
ular Depth Estimation

Humans continually learn from new experiences without
catastrophically forgetting previous experiences [25]. The
complementary learning systems (CLS) theory postulates
that human learning involves complex interactions between
complementary learning systems that are learning at differ-
ent rates [40]. This includes a fast working system adapting
quickly to new experiences and a slow context system con-
solidating knowledge from the fast systems. One such inter-
action could be the replay of sequences from memory such
that the fast system works in the context of consolidated rep-
resentations of the slow system [21]. The fast and slow sys-
tems help model plasticity and stability, respectively. Thus,
we formulate a continual learning method for unsupervised
monocular depth estimation with dual-memories and replay,
which we call MonoDepthCL.

Concretely, consider working depth and ego-motion
model WM parameterized by θWM = θWMD ∪ θWME and
context depth and ego-motion model CM parameterized by
θCM = θCMD ∪θCME . The working model is learnable, while
the context model is maintained as an exponential moving
average (EMA) of the working model [3]. For replay, we
employ a bounded memory buffer M , updated by reservoir
sampling [53], which allows the buffer to approximate the
distribution of samples seen by the models [27]. For an

update coefficient α and update frequency ν ∈ (0, 1), we
update the context models in the training iteration n to get,

θCM = αnθ
CM + (1− αn)θ

WM, (1)

where αn = min(1− 1/(n+ 1), α).
However, this only helps with addressing forgetting in

the context model. Ideally, the working model should have
a mechanism to retain prior knowledge, which is learning
in the context of consolidated representations [21]. Further-
more, if the working model experiences catastrophic for-
getting, it would also negatively affect the context model
(Eq. 1), which underscores the need for such a mechanism.
Therefore, we distill the knowledge of consolidated rep-
resentations of memory samples from the context model
back to the working model. Since depth estimation involves
training via view synthesis, we ensure consistency in the
synthesized targets between the context and working mod-
els. This guarantees spatial consistency in the consolidated
depth maps of the target images and temporal consistency
in the poses between the target and nearby source images.
We refer to this as spatiotemporal consistency.

Specifically, at each training step, we sample a batch
XB from the current task stream and a batch XM from
the memory buffer. On each memory sample, we warp
the source images to the target image using both the work-
ing and context models. Let Îj,CMi,t and Îj,WMi,t represent
the synthesized targets for the jth source image and the ith

depth prediction using context and working models, respec-
tively. Then, a consistency module computes a per-pixel
spatiotemporal consistency between these synthesized tar-
gets as follows:

STCj
i =

ρ

2
[1− SSIM(Îj,CMi,t , Îj,WMi,t )]

+ (1− ρ)
∣∣∣Îj,CMi,t − Îj,WMi,t

∣∣∣ , (2)
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where SSIM refers to the Structural Similarity Index be-
tween two images [57]. Each per-pixel consistency STCj

i

is an image-shaped loss of shape H×W . To reduce
the overfitting to buffer samples [9], improve invariance
through augmentation [43], and improve efficiency, we ran-
domly crop these per-pixel consistencies before evaluating
the final spatiotemporal consistency loss LSTC. We sample
the ratios to be cropped for each consistency from a Gaus-
sian distribution with 0.5 mean and 0.1 standard deviation.
This would retain half the H×W consistency term on aver-
age, and retain 20-80% of the term ∼99.7% of the times (i.e.
within 3 standard deviations). These cropped losses are then
averaged across all predictions, source images, and cropped
pixels to get LSTC. Algorithm 1 shows the process to com-
pute the cropped spatiotemporal consistency loss. Note that
we use a warmup for the spatiotemporal consistency loss,
such that it is only applied after the first task is learned. This
allows the view synthesis to be learned well before it is used
as a constraint between the context and working models.

Finally, the working model needs to learn the new task
and is thus trained with a task loss LTask, which is the depth
loss Ldepth discussed earlier, on the union of current and
memory batches. Putting everything together, the total loss
for continual unsupervised monocular depth estimation is:

Ltotal = LTask(XB ∪XM ) + βLSTC(XM ). (3)

We dub our method as Monocular Depth estimation
with Continual Learning or MonoDepthCL. The complete
schematic of our method can be seen in Figure 3.

5. Results
We demonstrate CL challenges in unsupervised monocu-

lar depth estimation on the CUDE framework and the effec-
tiveness of MonoDepthCL for mitigating catastrophic for-
getting. The architecture details and hyperparameters used
can be found in the Supplementary Material. We com-
pare against naive continual training (NCT), and training on
the whole dataset, i.e. its joint distribution after collecting

data from all tasks, dubbed Joint, following standard prac-
tice in the CL literature [8, 45]. NCT and Joint form the
lower and upper bounds for CL, respectively. Our method
has two models connected by a spatiotemporal consistency
loss. Consequently, we consider two additional CL methods
stemming from these models in the absence of the proposed
spatiotemporal consistency loss. The fast-learning work-
ing model, if trained in isolation, would learn merely on
the task loss with rehearsal, and should be capable of mit-
igating forgetting to some extent. This is equivalent to ER
(which has already been shown to outperform most other
rehearsal-based methods for classification [51]). Similarly,
the context model, which maintains an exponential moving
average of the working model, should also be capable of
mitigating forgetting to some extent. We call this method
ContextDepth.

Figure 4 shows a significant drop in the performance of
NCT on each task as newer tasks are encountered, undergo-
ing catastrophic forgetting as seen earlier in Figure 1. This
is in contrast to MonoDepthCL, which improves over NCT,
undergoing far less forgetting across tasks. Table 1 addi-
tionally shows that MonoDepthCL outperforms other CL
methods in all buffer sizes across all metrics, demonstrating
the effectiveness of the spatiotemporal consistency loss.

Increasing the buffer size leads to a general improve-
ment across metrics for all CL methods, including Mon-
oDepthCL. However, at low buffer size (50), ER and Con-
textDepth fall behind even NCT on some SPTO and µfinal
metrics. Nevertheless, they outperform NCT on µoverall.
This is because µoverall measures the improvements and
degradations of model performance across the task trajec-
tory, and not just the mean accuracy after learning the fi-
nal task. When rehearsal and dual model approach are
combined with our spatiotemporal consistency loss, Mon-
oDepthCL performs well on all metrics for the low buffer
size as well. Consequently, we hypothesize that the higher
performance of MonoDepthCL on the µoverall metrics in-
dicates its ability to learn on additional tasks. The per-



Buffer Method µfinal µoverall SPTO
abs rel↓ RMSE↓ a1↑ abs rel↓ RMSE↓ a1↑ abs rel↓ RMSE↓ a1↑

–
Joint 0.177 5.408 0.759 – –
NCT 0.272 7.397 0.639 0.315 8.253 0.580 0.238 6.313 0.648

50
ER 0.289 7.421 0.619 0.310 7.770 0.580 0.266 6.422 0.625

ContextDepth 0.274 7.310 0.631 0.290 7.669 0.594 0.242 6.287 0.644
MonoDepthCL 0.249 6.774 0.647 0.265 7.168 0.618 0.237 5.987 0.652

200
ER 0.248 6.995 0.666 0.238 6.852 0.679 0.228 6.047 0.673

ContextDepth 0.286 7.177 0.644 0.296 7.368 0.621 0.265 6.271 0.644
MonoDepthCL 0.228 6.583 0.673 0.237 6.753 0.663 0.223 5.832 0.676

500
ER 0.261 6.879 0.680 0.236 6.586 0.691 0.242 6.033 0.678

ContextDepth 0.252 6.695 0.677 0.239 6.585 0.677 0.242 5.932 0.672
MonoDepthCL 0.228 6.278 0.693 0.219 6.239 0.701 0.222 5.573 0.693

Table 1. Performance of different methods on the CUDE framework for multiple buffer sizes. The best results for each buffer size are
shown in bold.
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Figure 5. Taskwise errors after training on each task for buffer
size 200. A more uniform distribution of color in a row indicates a
lower task-task recency bias after learning the task corresponding
to that row. ER shows a higher bias towards recent tasks.

formance of MonoDepthCL on the SPTO metrics further
confirms that it is better equipped to handle the stability-
plasticity trade-off compared to rehearsal-based ER. The
stronger SPTO performance of MonoDepthCL also trans-
lates to lower task-recency bias as seen in Figure 5. The dis-
tribution of performance across previous tasks after learning
each task is more uniform for our method than for ER. This
is in line with recent findings in image classification [3].

Hence, benchmarking the methods on our CUDE frame-
work demonstrates the challenge of CL for unsupervised
monocular depth estimation. Our experiments additionally
show that the metrics defined in CUDE capture different as-
pects of CL. We contend that our method with its spatiotem-
poral consistency loss is an effective strategy for handling
the stability-plasticity trade-off in CL.

With Learned Intrinsics: Now, unsupervised monocu-
lar depth estimation requires knowledge of the camera in-
trinsics for the perspective projection (Section 4). This
forms a roadblock for training on crowdsourced video se-
quences where this information is not available. While

Method µfinal

abs rel↓ RMSE↓ a1↑
Joint 0.180 5.455 0.752
NCT 0.264 7.280 0.640

MonoDepthCL 0.252 7.237 0.663

Table 2. Camera intrinsics K are learned during training with a
buffer size 200. MonoDepthCL reduces catastrophic forgetting
even without prior knowledge of camera intrinsics.

recent research has demonstrated unsupervised monocu-
lar depth estimation with learned camera intrinsics in joint
training, it has not been explored in the CL setting. We
train our proposed MonoDepthCL with learned intrinsics
and benchmark it on the CUDE framework. The results in
Table 2 demonstrate that MonoDepthCL outperforms NCT
across all µfinal metrics. Although a considerable gap still
exists between Joint and MonoDepthCL, our study repre-
sents the pioneering effort towards crowdsourced CL for
unsupervised monocular depth estimation.

5.1. Ablation Study

Our spatiotemporal consistency loss has two major de-
sign components - warmup during the first task to allow
the view synthesis to be learned properly before it is ap-
plied as a constraint between the working and context mod-
els; and random cropping of the spatiotemporal consistency
map to introduce invariance through augmentation and im-
prove efficiency. Table 3 details the impact of both of these
design components on the continual learning metrics. It
can be seen that warmup contributes to a great improve-
ment in continual learning performance, and adding ran-
dom cropping leads to a further improvement over warmup.
Therefore, both the design components of our spatiotempo-
ral consistency loss have a significant impact on the contin-
ual learning performance.



Random cropping Warmup µfinal µoverall SPTO
abs rel↓ RMSE↓ a1↑ abs rel↓ RMSE↓ a1↑ abs rel↓ RMSE↓ a1↑

✗ ✗ 0.306 7.679 0.625 0.333 8.187 0.597 0.290 6.837 0.621
✗ ✓ 0.237 6.623 0.669 0.239 6.707 0.663 0.231 5.869 0.669
✓ ✓ 0.228 6.583 0.673 0.237 6.753 0.663 0.223 5.832 0.676

Table 3. Ablation of design components of the spatiotemporal consistency loss on the CUDE framework for buffer size 200. The best
results are shown in bold.

Method µfinal µoverall SPTO
abs rel↓ RMSE↓ a1↑ abs rel↓ RMSE↓ a1↑ abs rel↓ RMSE↓ a1↑

Joint 0.182 7.413 0.755 – –
NCT 0.316 9.966 0.631 0.317 8.788 0.597 0.255 7.571 0.64

ER 0.289 9.618 0.637 0.264 7.782 0.649 0.255 7.388 0.637
ContextDepth 0.293 9.666 0.635 0.282 8.026 0.631 0.264 7.439 0.631

MonoDepthCL 0.246 8.626 0.664 0.242 7.353 0.656 0.237 6.773 0.655

Table 4. Performance of different methods on the CUDE-5 framework for buffer-size 200. The best results are shown in bold.

5.2. Longer Task Sequence (CUDE-5)

In Section 5, we noted that MonoDepthCL is expected
to perform well on longer task sequences as well. Accord-
ingly, we extend the framework CUDE to 5 tasks with an
additional task from dataset DDAD [23] as shown in the
Supplementary Material (Figure S1). Since DDAD con-
tains videos from USA and Japan, and captures the domain
shifts from one country to another. Additionally, the ground
truth depth range for DDAD is 200m which is double than
that of Cityscapes. We report the performance on CUDE-
5 for buffer size 200 in Table 4. We observe that Mon-
oDepthCL continues to mitigate forgetting and improve per-
formance through spatiotemporal consistency.

With Learned Intrinsics: Similar to CUDE with 4
tasks, we also evaluate the performance of MonoDepthCL
when the camera intrinsics of all 5 tasks are learned to-
gether with the depth in Table 5. The ability to contin-
ually learn depth estimation from additional data, without
prior knowledge of camera intrinsics paves the way towards
crowdsourced depth estimation.

6. Conclusion

We introduce CUDE, a framework for benchmarking
CL methods for unsupervised monocular depth estimation,
along with our MonoDepthCL method. CUDE consists of
four sequential tasks that span different weather and light-
ing conditions, depth ranges, and navigation scenarios for
indoor and outdoor scenes. It also defines metrics that mea-
sure the final average performance after learning the final
task, the overall average performance throughout the learn-
ing trajectory, and the stability-plasticity trade-off. Mean-
while, our proposed method follows a dual-model approach
with a memory buffer for storing previously seen informa-

Method µfinal

abs rel↓ RMSE↓ a1↑
Joint 0.185 7.699 0.751
NCT 0.315 9.868 0.614

MonoDepthCL 0.252 7.237 0.663

Table 5. µfinal performance on the CUDE-5 framework when the
camera intrinsics K are learned during training. MonoDepthCL
reduces catastrophic forgetting even without prior knowledge of
camera intrinsics on the longer task sequence as well.

tion. Specifically, a working model learns the task on sam-
ples from memory and data stream, while a context model is
maintained as an exponential moving average of the work-
ing model. A novel spatiotemporal consistency loss ef-
ficiently enforces the view synthesis consistency between
the two models. The benchmarking of MonoDepthCL on
CUDE shows the effectiveness of our method and the spa-
tiotemporal consistency loss for CL, and in dealing with
the stability-plasticity trade-off. It also demonstrates the
value of the framework itself, including the defined metrics
that capture various aspects of CL performance. Finally,
we show the applicability of MonoDepthCL for a scenario
where the camera intrinsics also need to be learned.

We put forward our CUDE framework as a first step to-
wards comprehensive benchmarking of CL methods for un-
supervised monocular depth estimation. We further con-
tend that our method, MonoDepthCL provides a promising
approach towards addressing the performance gap between
continual training and joint training.

Acknowledgement: The work was conducted while all
the authors were affiliated with NavInfo Europe, Eind-
hoven, The Netherlands.
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Supplementary Material

A. Architecture and Hyperparameters

We train the baseline depth estimation model as de-
scribed in Section 4 with a ResNet-18 backbone. The net-
works are implemented in PyTorch and trained on a Tesla
V100 GPU with a batch size of 8 and a rehearsal batch size
of 8. To control for factors such as dataset size and image
size, we fix the training set size to 12,000 images and the
test set size to 600 images for each task. The images are
center-cropped to maintain the same aspect ratio as in the
KITTI dataset and resized to a common width and height
of 640 and 192 pixels, respectively. Thus, a total of 48000
samples are used for training with task identities assumed to
be known and 2400 samples for testing with task identities
assumed to be unknown. We establish a baseline where the
four tasks are trained sequentially for 20 epochs each with
an Adam optimizer and an initial learning rate of 1e−4 for
each task. The learning rate is decayed by a factor of 10 af-
ter 15 epochs for the respective task. Additionally, we train
the four tasks jointly for a total of 20 epochs and an initial
learning rate of 1e−4 which is decayed by a factor of 10 af-
ter 15 epochs. Finally, we apply a weight of β = 0.1 for
the spatiotemporal consistency loss with ρ = 0.85 (Equa-
tion 2), and update the context model at a frequency of 0.05
with α = 0.999. The results of MonoDepthCL are shown
for the working model.

B. Impact of task order on depth ranges

We pick our task order of VKITTI→ KITTI→
NYUv2→ Cityscapes from the 24 possible combinations
for reasons outlined in Section 3 including covering all do-
main shifts such as indoor-to-outdoor, outdoor-to-indoor,
and real-to-sim. However, NYUv2 has a short range depth
(10m), whereas the remaining tasks, i.e. datasets have
longer (80m-100m) range depths. This raises an interesting
question - if NYUv2, i.e. short range depth estimation is the
last task performed with no return to a longer depth range
task such as Cityscapes, does our method still remember to
perform a long range depth estimation?

To test this, we swap the order of appearance of NYUv2
and Cityscapes in our CUDE framework, and train Mon-
oDepthCL on this swapped sequence. Table S1 shows
that MonoDepthCL still outperforms NCT on all metrics
at different buffer sizes by a large margin on this sequence.
Therefore, MonoDepthCL still remembers to perform long
range depth estimation right after learning a short range
depth estimation task, compared to NCT which undergoes
catastrophic forgetting of long range depth estimation.

C. Unsupervised Depth Estimation

Here, we provide some of the details of the unsupervised
monocular depth estimation method (see Section 4).

Depth network: The depth network fD parameterized by
θD predicts inverse depths at four resolutions as follows:

D−11 , D−12 , D−13 , D−14 = fD(It; θD). (4)

Ego-motion network: The ego-motion network fE pa-
rameterized by θE predicts the relative rotation Rs←t and
translation Ts←t between each source-target image pair
concatenated along the channel dimension as follows:

Rj
s←t, T

j
s←t = fE(I

j
s , It; θE), (5)

Perspective projection: For each source image Ijs when
warping to the ith upsampled target image using the ith

depth prediction;

pjs ∼ KRj
s←tDi[pi,t]K

−1pi,t +KT j
s←t, (6)

where K is the camera intrinsics matrix, and pjs and pi,t
refer to the pixel locations in jth source and target images,
respectively. Then, we use bilinear interpolation to obtain
the value of the warped image Ijs at each location pi,t.

Photometric error: The appearance based per-pixel pho-
tometric error between the original target image and the
synthesized target images from ns source images for the
ith prediction (Equation 4) is defined as follows:

Pj
i =

ρ

2
(1− SSIM(It, Î

j
i,t)) + (1− ρ)∥It − Îji,t∥1,

Pi = min
j

Pj
i , j = 1, 2, ...ns.

(7)

This per-pixel minimum serves to deal with out-of-view
pixels and occlusion, such that only the source for which
the synthesis is most accurate contributes to the error term.
As discussed earlier in Section 4, the loss is masked to coun-
teract the impact of temporally stationary pixels.

Smoothness loss: The per-pixel edge-aware smoothness
loss for the ith prediction (Equation 4) is defined as follows:

Si =

∣∣∣∣∂x D−1i

Ept [D
−1
i ]

∣∣∣∣ e−|∂xIt| +

∣∣∣∣∂y D−1i

Ept [D
−1
i ]

∣∣∣∣ e−|∂yIt|,

(8)
where the expectation E of inverse depth predictions are
computed across all target pixels [55].



Method Buffer Size µfinal µoverall SPTO
abs rel↓ RMSE↓ a1↑ abs rel↓ RMSE↓ a1↑ abs rel↓ RMSE↓ a1↑

NCT – 0.512 12.930 0.318 0.364 11.008 0.525 0.328 9.542 0.350
50 0.303 8.595 0.543 0.255 8.618 0.637 0.255 8.266 0.604

MonoDepthCL 200 0.260 7.544 0.633 0.268 8.561 0.655 0.255 8.160 0.664
500 0.225 6.795 0.672 0.209 7.592 0.704 0.208 7.419 0.704

Table S1. Performance on the CUDE framework for multiple sizes of the memory buffer, when the only short depth range task is learned
last.

Real (Outdoor)
Germany, Switzerland, France
Daylight
Depth Range: 100 m

Real (Indoor)
Home, Cafe, Office, etc.
Natural and Artificial Light
Depth Range: 10 m

Simulated (Outdoor)
Synthetic Karlsruhe, Germany
Varying weather conditions
Depth Range: 80 m

Real (Outdoor)
Karlsruhe, Germany
Daylight
Depth Range: 80 m

Task 1: VKITTI2 Task 2: KITTI Task 3: NYUv2 Task 4: CITYSCAPES

Real (Outdoor)
USA, Japan
Daylight
Depth Range: 200 m

Task 5: DDAD

Figure S1. Extended Continual Unsupervised Depth Estimation (CUDE) framework for 5 tasks.

Total task loss : The total combined training loss across
all 4 predictions for unsupervised depth estimation is:

Ldepth =
1

4HW

4∑
i=1

∑
pt∈It

Pi[pt] +
λ

2i−1
Si[pt]. (9)
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