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Learning landmark guided embeddings for animal
re-identification

Olga Moskvyak, Frederic Maire, Feras Dayoub and Mahsa Baktashmotlagh

Abstract—Re-identification of individual animals in images
can be ambiguous due to subtle variations in body markings
between different individuals and no constraints on the poses
of animals in the wild. Person re-identification is a similar
task and it has been approached with a deep convolutional
neural network (CNN) that learns discriminative embeddings for
images of people. However, learning discriminative features for
an individual animal is more challenging than for a person’s
appearance due to the relatively small size of ecological datasets
compared to labelled datasets of person’s identities. We propose
to improve embedding learning by exploiting body landmarks
information explicitly. Body landmarks are provided to the input
of a CNN as confidence heatmaps that can be obtained from a
separate body landmark predictor. The model is encouraged to
use heatmaps by learning an auxiliary task of reconstructing
input heatmaps. Body landmarks guide a feature extraction
network to learn the representation of a distinctive pattern and
its position on the body. We evaluate the proposed method on
a large synthetic dataset and a small real dataset. Our method
outperforms the same model without body landmarks input by
26% and 18% on the synthetic and the real datasets respectively.
The method is robust to noise in input coordinates and can
tolerate an error in coordinates up to 10% of the image size.

I. INTRODUCTION

Animal re-identification in images is an instance level
recognition and retrieval problem which aims to distinguish
between individual animals and find matching examples in
an image database. Individual animals can be told apart by
subtle variations in natural markings on their body such as
belly patterns on manta rays, stripes on tigers and zebras.

Automatic re-identification of animals in photos is of high
importance for wildlife monitoring and conservation because
it is less time consuming than manual visual inspection and
more efficient than collecting biology samples or attaching and
tracking microchips [14].

The task is similar to person recognition that has been
approached with deep convolutional neural networks [8]. A
network learns embeddings for images of people’s appearances
in such a way that the distance between embeddings of the
same person is smaller than the distance between embeddings
of different people. However, visual animal re-identification is
mainly based on body markings which are more ambiguous
than a persons appearance because of the similarities among
different individuals. For example, different manta rays can
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Fig. 1. (a) The spot pattern on these two different manta rays is the same
(consists of one black dot). (b) Localised images of the spot pattern are
ambiguous. (c) To distinguish between individuals like these we propose
to exploit body landmark coordinates (e.g., eyes, gills, a tail) in the re-
identification system. Photo credit: David Biddulph, John Gransbury.

have a very similar spot pattern but located at different
positions on the belly. Figure 1 shows two manta rays with
only one black dot on the belly and the only difference is the
location of the spot with respect to the landmarks (e.g., eyes,
a base of the tail and gills).

There are limitations in transferring face and person re-
identification methods to images of animals:

• faces are usually normalised to an upright frontal pose
thanks to robust methods to detect facial landmarks and
body postures are aligned vertically;

• warping to a canonical position or alignment is not
always possible for animals due to the sensitivity of these
methods to errors in coordinates of body landmarks;

• wildlife datasets have limited data compared to large
public datasets for face and person re-identification so
there is less chance to learn the relation between the body
landmarks and unique markings from the data itself.

Previous work on the manta ray re-identification system [15]
uses cropped images of spot patterns to focus the model’s
attention on the pattern itself and avoid distraction from the
background. However, the cropped patch of a sport pattern
loses information about its relative position on the body so
it is not likely to correctly identify individuals with similar
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Fig. 2. Architecture of our Landmark-Id model. The novel features are additional heatmap input and heatmap reconstruction block. GAP is global average
pooling of feature maps.

patterns that differ only in a position like in Figure 1.
We build on a strong model for person re-identification [13]

and propose to improve embedding learning for animal re-
identification by adding locations of body landmarks to the
model input. The new model explicitly receives information
about the position of distinctive features with respect to the
body. The motivation of using body landmarks is the scarcity
of annotated datasets with animal identities compared to large
labelled datasets for person re-identification. Identification
based only on the pattern itself without the knowledge about
the position of a specific mark can be error prone. We favor
heatmaps over exact coordinates to encode the estimated body
landmark location because heatmaps can represent uncertainty.

The key contributions of this paper are:
• a novel method to exploit body landmark locations to

improve the performance of re-identification system;
• a novel heatmap augmentation method to train the model

to handle missing or not visible landmarks;
• robustness to uncertainty in body landmark coordinates

up to 10% of the image size.

II. RELATED WORK

There are multiple approaches to re-identification and some
of them use only pixel intensities and some leverage additional
information such as the semantic structure of the object
(e.g., body parts of a person). We discuss re-identification
methods that include some degree of pose or body landmark
information. Pose information can be exploited to align the
object of interest to a standard pose or crop patches from the
image to obtain local features.

The body and face alignment based on keypoints is used to
eliminate pose variance and improve recognition performance.
Zheng et al. [25] introduce the PoseBox structure to align
pedestrians to a standard pose. The alignment is used exten-
sively for face recognition [16], [18], [20]. Normalizing the
head orientation of right whales improves the re-identification
performance [1]. However, accurate body landmark informa-
tion is hard to obtain and alignment methods are sensitive to
precise coordinates [3]. It is not feasible to transfer alignment
methods directly from person to animal re-identification.

Landmark coordinates are used to extract local features from
various patches cropped from the image. Recognition and fine-
grained classification methods use these local features to com-
plement a global representation. Guo and Farrell [2] construct

object representation as the concatenation of hierarchical pose-
aligned regions features extracted from patches around pairs
of body landmarks. Tiger re-identification has been improved
by concatenating global features extracted from the whole
image with local features from limb’s patches [10]. Su et. al
[19] explicitly leverage human body part cues to detect and
normalize body parts to extract local features and combine
them in a pose driven feature weighting subnetwork.

Pose information has also been used to enhance re-
identification by generating new data samples in a pose-
transferable person re-id framework [11]. However, training
image generation models requires a large amount of data so
it cannot be transferred directly to smaller datasets of animal
identities.

Several works include pose information to guide feature
extraction. Sarfraz et. al [17] improve person re-identification
by incorporating both fine and coarse pose information into
learning discriminative embeddings. Fine pose information is
confidence maps from off-the-shelf body landmark predictor.
Coarse pose information is the quantization (front, back, side)
of a persons orientation to the camera. Liu et. al [12] simplifies
the tiger body pose into two categories according to the
heading direction of the tigers to reduce pose variations.
However, these approaches are not transferable to other objects
due to coarse pose labels are specific to the task. In this paper,
we introduce a generic method of exploiting body landmark
information to improve learning of discriminative embeddings.

III. LEARNING LANDMARK GUIDED EMBEDDINGS

A pose of an animal’s body with respect to the camera
greatly affects the appearance of natural markings and the
visibility of body landmarks in the photo. It is hard to obtain
accurate locations of body landmarks because images are taken
in the wild environment with an unknown pose of the animal
in front of the camera, complex natural backgrounds and
changing lighting conditions. Information about the pose has
the potential to improve re-identification performance.

A. Baseline re-identification model
As a baseline re-identification model, we use the second

best model developed for person re-identification [13] that is
generic enough to be transferred from people to animals. The
state-of-the-art for person re-identification requires spatial-
temporal information [23] and cannot be transferred to our
task.
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Fig. 3. Example of heatmaps for two images. One grayscale channel per a landmark. If the landmark is not visible, the heatmap is black. These heatmaps
have the bright blob with the radius of 5% of the image size.

The backbone of the baseline model is ResNet50 [4] that
is initialized with pre-trained parameters on ImageNet. The
model outputs ReID features f and ID prediction logits p.
ReID features f are used to calculate a triplet loss [5] and a
center loss [24]. Triplet loss pulls embeddings of images from
the same individual closer together while pushing embeddings
of images of different individuals above a specified margin.
Center loss penalizes the distance between embeddings and
their corresponding class centers where each individual is a
class. ID prediction logits p are used to calculated a smoothed
cross entropy loss [21] over training classes to facilitate learn-
ing of discriminative features and are discarded at inference.
The training process and all hyperparameters are inherited
from the original work [13]. The baseline model is optimized
with a weighted combination of three losses: the smoothed
cross-entropy LID over training classes, the triplet loss LTriplet
and the center loss LCenter:

LReId = LID + LTriplet + βLCenter (1)

where β = 0.0005 as in [13].

B. Landmark aware re-identification model

We add the body landmark information to the model input
by concatenating k extra channels with three RGB image
channels (k is a number of landmarks). Each channel is a
grayscale heatmap representing the likelihood of a landmark
location. Figure 3 shows two images of manta rays and cor-
responding heatmaps. These additional channels guide feature
extraction to learn embeddings that are aware of the location
of distinctive features with respect to body parts.

Information about landmarks can be obtained from another
model that predicts landmarks based on the image (this task
is out of the scope of the current work). Landmarks can also
be annotated manually.

The model is encouraged to use landmark information by
learning the auxiliary reconstruction task of input heatmaps
from embeddings, see Figure 2. We also experimented with
the heatmap reconstruction block branched off after the third
dimensionality reduction step and the results were similar to

the reconstruction from the final features. We call this model
a Landmark-Id model.

The Landmark-Id model is optimised with the following
loss:

L = LReId + αLHR (2)

where heatmap reconstruction loss LHR is a binary cross-
entropy. We experimented with α equal to 0.1, 1 and 10 and
observed no difference in accuracy so we set α = 1.

The Landmark-Id model is trained in two stages. At the first
stage only randomly initialised weights in the first layer and in
the final classification layer are trained while all other weights
remain fixed. Once these layers are adapted to the rest of the
network, the whole network is fine-tuned. The parameters in
the first layer of ResNet50 are initialized randomly because
the number of input channels differs from the number of
channels in ImageNet due to the additional heatmap input. The
rest of the parameters in ResNet50 model are initialized with
ImageNet pretrained weights. Heatmap reconstruction block is
not trained at this stage.

At the second stage, the heatmap reconstruction branch is
added with randomly initialised weights. Only the heatmap
reconstruction block is trained for the first ten epochs to tune
random weights. Then the whole model is fine-tuned with a
ten times smaller learning rate than in the first stage.

C. Heatmap augmentation

We introduce two augmentation techniques for heatmaps to
improve the generalization ability of the Landmark-Id: noisy
landmark augmentation (NLA) and missing landmark augmen-
tation (MLA). Locations of body landmarks cannot always be
annotated correctly especially when these are obtained from an
automated landmark detection method. Due to large variations
in animal poses some landmarks may not be visible in the
image. NLA and MLA address these two problems.

NLA randomly shifts the blob in each heatmap (by default
the center of the blob is the landmark) by a number of pixels
less or equal than the radius of the blob, see Figure 4. This
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Fig. 4. Noisy landmark augmentation (NLA) on heatmaps with different
levels of uncertainty about landmark locations. The true coordinate is located
inside the bright blob but not necessary in the middle.

way the landmark location is still contained within a blob but
not always in the middle.

MLA has two parameters: a minimum number M of visible
landmarks (specific to the dataset) and a probability pmla. If
there are more than M landmarks visible in the image, than
some of them may be set to missing with probability pmla.
In practice, a missing landmark means that the corresponding
heatmap is set to all zeros. The motivation for this augmenta-
tion is imbalanced data when there are not enough examples
for the model to learn to reconstruct black heatmaps for not
visible landmarks. We list the hyperparameters used for MLA
in the Experiments section.

IV. EXPERIMENTS

A. Datasets

1) Synthetic dataset: We verify ideas on a synthetic dataset
first as it gives the ability to control the number and variety of
examples. The design of synthetic images is inspired by manta
rays belly patterns but does not aim to replicate it. Consider
a collection of seed patterns P = {P1, . . . , Pn} where each
pattern Pi is a unique pattern of black filled ellipses on a white
background inside at triangle area in the center as illustrated
in Figure 5 (first column). The corners of the triangle play the
role of body landmarks. The image itself does not have any
information about landmark locations. Landmark coordinates
are recorded in a separate array.

Seed patterns represent a canonical view from a camera
placed directly in front of it. When the camera moves, the
projection of the pattern on the camera plane will be related
to the canonical view by a homography. We call an identity
Ii a unique pattern of ellipses where examples belonging
to this identity are generated by applying random projective
transformations to the canonical pattern Pi and adding a
random background (see examples in Figure 5). To randomise
textures of a background and a pattern we use patches from
images showing underwater scenes without any salient objects
[22]. The pixel intensities in a background image are rescaled
to be lighter than pixel intensities of a pattern texture to
avoid merging of the pattern with the background. Finally,
images are converted to grayscale and Gaussian noise is added.
Landmark coordinates are warped the same way as a pattern
and are recorded in a corresponding array.

The dataset consists of 3 subsets: a train, a gallery and
a query. Each subset has images for 750 identities with the
resolution 128 × 128. The gallery and the query subsets

Fig. 5. Example of three identities from the synthetic dataset. Each row
shows a seed pattern and three generated examples for one identity. Coloured
points represent locations of three landmarks and are plotted over images for
illustration only and do not appear on images in the generated dataset.

share the same identities while having disjoint identities with
the training set. The training and the gallery sets have only
3 examples for each individual to simulate a limited data
scenario. More examples per individual would make the re-
identification task easier. The query set has 5 images per
individual.

2) Dataset of real images: As a real dataset, we use images
of manta rays collected by Project Manta (a multidisciplinary
research program based at the University of Queensland,
Brisbane, Australia). The dataset is challenging as images are
captured underwater at oblique angles in different illumination
conditions and with small occlusions (fish, water bubbles).
Each image has been manually annotated with five most
distinctive landmarks: right eye, left eye, outer corner of the
fifth right gill, outer corner of the fifth left gill, tail (see
examples in Figure 6). We select eyes and a tail as landmarks
as these are easy to identify in images. Bottom gill slits on both
sides have distal black marks that are salient and visible most
times [6]. Only around half of the images have all 5 landmarks
visible, 30% of the images have 4 visible landmarks and the
rest have 3 and less visible landmarks.

The training set has 110 identities with 1422 images in
total. The test set consists of 18 identities (different from the
training) with 321 examples in total. Images are taken by a
large number of researchers and photographers so we assume
that each image comes from a different camera. Due to the
limited size of the data we use one test set instead of a separate
gallery and query sets. The gallery set is created by combining
the training set with two random images of each individual
from the test set. The rest of the images from the test set
are used as a query set. This way each query image has two
matching examples in the gallery.

B. Landmarks input as heatmaps

Landmark coordinates are converted to heatmaps with one
grayscale channel per a landmark, see Figure 3. The heatmap
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Fig. 6. Example of three identities from a manta rays dataset (real images).
Each row shows four examples of one identity. Coloured points are landmark
locations and are plotted over images for illustration only and do not appear
on images in the dataset.

is created by running a Gaussian filter over a white disk on
a black background to smooth the edges. The center of the
heatmap has equal intensity so there is no additional clue
where the landmark is located. Heatmaps are used as an input
to the model instead of exact coordinates to accommodate
different levels of uncertainty in landmark locations. If the
landmark is not visible the heatmap is all zeros.

Heatmaps for the synthetic dataset are generated with three
settings for the radius of the blob (5%, 10% and 20% of the
image size) to evaluate the sensitivity of the model to the
uncertainty in landmark locations. Heatmaps for the manta
ray dataset have the radius 5% of the image size.

C. Model architecture

We use ResNet50 model as a core feature extractor with
the output feature maps pooled globally to produce a vector
of size 2048. Then one fully connected layer is used to reduce
the dimension to 256.

The heatmap reconstruction block decodes heatmaps from
an embedding using three blocks consisting of bi-linear up-
sampling with a factor of 2, a convolutional layer with the
kernel 3× 3, a batch normalization layer and a relu activation
function. Reconstructed heatmaps have resolution 64× 64 for
any input size. This does not affect the networks ability to
reconstruct locations of body landmarks and allows us to min-
imise the number of parameters in the heatmap reconstruction
branch.

D. Training and evaluation

Data augmentation is applied on the fly to images and
corresponding heatmaps in the same way. We use rotations
up to 360 degrees, zooming up to 20% of image size and
translations up to 20%. The same augmentation is applied
when training the baseline model. Heatmap augmentation
NLA shifts the blob in heatmaps to imitate noise in landmark

Fig. 7. Progress of top-1 accuracy on the test set during training evaluated
each 10 epochs on the synthetic dataset. Landmark-Id Stage 2 continues
training from Stage 1. Models are trained until convergence of the loss.

TABLE I
Landmark-Id OUTPERFORMS THE BASELINE RE-IDENTIFICATION MODEL

ON THE SYNTHETIC DATASET. STAGE 1 IS THE MODEL TRAINED WITH
ADDITIONAL HEATMAP INPUT AND STAGE 2 IS THE MODEL WITH THE

HEATMAP RECONSTRUCTION BLOCK.

Model Top-1 Top-5 Top-10
Baseline Reid 63.81% 85.35% 90.94%
Landmark-Id Stage 1 78.10% 91.82% 94.41%
Landmark-Id Stage 2 89.53% 95.96% 96.98%

coordinates. The minimal visible landmarks in MLA is set to 2
(out of possible 3) for the synthetic dataset and 3 (out of 5) for
the manta ray dataset. The probability of missing a landmark
is 50%.

The model is trained on the training subset. The test accu-
racy is obtained on new identities never seen during training.
The test accuracy is computed by retrieving predictions from
the gallery set for each image in the query set. We use top-1,
top-5 and top-10 test accuracy for model evaluation.

E. Results

1) Landmark-Id vs baseline: The baseline results are ob-
tained with only RGB images as input. Landmark-Id model
outperforms the baseline model on both synthetic and real
datasets that demonstrates that additional pose information is
beneficial for learning discriminative embeddings, see Tables I
and II.

Landmark-Id model reaches 89.53% top-1 accuracy versus
63.81% top-1 accuracy of baseline model on the synthetic
data (Table I). The real data is more challenging. Baseline
model demonstrates 44.00% top-1 accuracy while Landmark-
Id model goes up to 62.04% (Table II).

We evaluate top-1 accuracy on the test set during training
every 10 epochs on the synthetic dataset, see Figure 7.
Landmark-Id model at Stage 1 (heatmap input with no re-
construction) shows higher accuracy than the baseline model.
Stage 2 with auxiliary heatmap reconstruction further boosts
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TABLE II
ACCURACY OF RE-IDENTIFICATION ON MANTA RAY DATASET.

Landmark-Id OUTPERFORMS THE BASELINE RE-IDENTIFICATION MODEL.
STAGE 1 IS THE MODEL TRAINED WITH ADDITIONAL HEATMAP INPUT AND

STAGE 2 IS THE MODEL WITH THE HEATMAP RECONSTRUCTION BLOCK.

Model Top-1 Top-5 Top-10
Baseline Reid 44.00% 78.60% 84.70%
Landmark-Id Stage 1 52.67% 80.11% 86.18%
Landmark-Id Stage 2 62.04% 89.82% 91.96%

TABLE III
SENSITIVITY OF Landmark-Id TO UNCERTAINTY IN LANDMARK

LOCATIONS IS ANALYSED WITH THREE SIZES OF HEATMAPS: 5%, 10%
AND 20% OF THE IMAGE SIZE. THE MODEL SHOWS ALMOST EQUAL

PERFORMANCE FOR HEATMAPS WITH THE BLOB RADIUS UP TO ±10% OF
THE IMAGE SIZE.

Model Top-1 Top-5 Top-10
Landmark-Id, hm 5% 86.13% 93.12% 95.82%
Landmark-Id, hm 10% 84.72% 92.84% 95.31%
Landmark-Id, hm 20% 66.62% 83.18% 88.85%

the performance. Landmark-Id model without reconstruction
block outperforms the baseline model. Adding the heatmap
reconstruction block is useful as it promotes usage of pose
information during feature extraction and improves accuracy
on both synthetic and real data.

The above results are obtained with no noise in landmark
coordinates and heatmaps of 5% of the image size. We analyse
the sensitivity of the model to uncertainty and noise in the next
section.

2) Sensitivity to uncertainty in landmark locations: We
investigate the sensitivity of the model to uncertainty in
landmark locations by training and evaluating the model on
the synthetic dataset with different settings for the size of the
bright blob in heatmaps. Three experiments are conducted with
the radius of the blob 5%, 10% and 20% of the image size
(see Figure 4). NLA adds noise to heatmaps shifting the center
from the actual landmark location. The blob with a radius of
r% means that the average noise in a landmark location is
±r% of the image size.

Noise of 5% and 10% in landmark locations slightly de-
creases the accuracy (Table III). The noise of ±20% decreases
the top-1 accuracy to 66.62%. This is a high level of uncer-
tainty because the blob with the radius 20% of the image
size covers almost a quarter of the image. We conclude that a
landmark detection model should have at most 10% error to
predict landmark coordinates useful for re-identification.

TABLE IV
MLA (MISSING LANDMARK AUGMENTATION) IMPROVES ROBUSTNESS OF

Landmark-Id TO NOT VISIBLE LANDMARKS. EVALUATED ON REAL
DATASET OF MANTA RAY IMAGES.

Model Top-1 Top-5 Top-10
Landmark-Id, with MLA 62.04% 89.82% 91.96%
Landmark-Id, no MLA 55.30% 87.47% 89.12%

3) Sensitivity to missing landmarks: To evaluate the sensi-
tivity of Landmark-Id model to missing landmarks, we train
the model without the MLA augmentation. The synthetic
dataset has most of the landmarks visible at all times so we
use real data in this experiment. The manta ray dataset has
around 50% images with all five landmarks visible, 30% of
images with four landmarks visible and the rest with three and
less visible landmarks.

Without MLA augmentation top-1 accuracy drops to
55.30% from 62.04% on manta ray dataset (Table IV).

V. CONCLUSION

We demonstrated that the additional input of body land-
marks improves learning of discriminative embeddings. This
method is robust to uncertainty in landmark locations and
tolerates errors in landmark coordinates up to 10% of the
image size.

We will conduct experiments on other real datasets (e.g.,
ATRW [9], ELPephants [7]). In the future, we plan to inves-
tigate how to train an accurate body landmark predictor on a
small dataset and integrate it with the re-identification model.
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