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Abstract

Virtual try-on has garnered interest as a neural render-
ing benchmark task to evaluate complex object transfer and
scene composition. Recent works in virtual clothing try-on
feature a plethora of possible architectural and data rep-
resentation choices. However, they present little clarity on
quantifying the isolated visual effect of each choice, nor do
they specify the hyperparameter details that are key to ex-
perimental reproduction. Our work, ShineOn, approaches
the try-on task from a bottom-up approach and aims to shine
light on the visual and quantitative effects of each exper-
iment. We build a series of scientific experiments to iso-
late effective design choices in video synthesis for virtual
clothing try-on. Specifically, we investigate the effect of
different pose annotations, self-attention layer placement,
and activation functions on the quantitative and qualitative
performance of video virtual try-on. We find that Dense-
Pose annotations not only enhance face details but also
decrease memory usage and training time. Next, we find
that attention layers improve face and neck quality. Fi-
nally, we show that GELU and ReLU activation functions
are the most effective in our experiments despite the ap-
peal of newer activations such as Swish and Sine. We will
release a well-organized code base, hyperparameters, and
model checkpoints to support the reproducibility of our re-
sults. We expect our extensive experiments and code to
greatly inform future design choices in video virtual try-on.
Our code may be accessed at https://github.com/
andrewjong/ShineOn-Virtual-Tryon.

1These authors equally contributed to this paper.

1. Introduction
The age of the internet has led to an unprecedented con-

sumer shift to online marketplaces. With the convenience
and wide selection provided by online stores, shopping is
easier than ever. However, purchasing clothes online re-
mains a difficult proposition because end-consumers can-
not accurately judge clothing fit and appearance on them-
selves. Constant returns of ill-fitted, unflattering clothing
negatively impact the environment through wasted shipping
and packaging. Fortunately, this problem has the poten-
tial to be alleviated with emerging virtual try-on technology.
Virtual try-on aims to let users quickly visualize themselves
in different outfits through a camera and digital display. Be-
ing able to achieve a high-quality, real-time fashion virtual
try-on system may boost online retail sales, as well as cut
down on the carbon footprint produced by packaging and
returns.

Beyond the product application, the academic neural
rendering community also has a vested interest in virtual
try-on, as it serves as a benchmark task to evaluate complex
object transfer and scene composition. This complexity is
embodied in the criteria to accurately maintain the user’s
identity, render the cloth product at the appropriate location,
follow the user’s body proportions, preserve cloth texture
detail, exhibit smooth temporal dynamics, establish tempo-
ral consistency, and blend well with the scene’s lighting.

Many virtual try-on works that emerged in the past three
years explore deep learning methods. These mostly focus
on image try-on [33, 36, 4, 39, 24], and only recently has
there been an exploration of video-based try-on [16, 5].

There has been substantial work towards virtual try-on,
including image-image translation, perceptual loss, and the
improvement of human parsing techniques. Image-image
translation [13] serves to pivotal in transferring a cloth to a
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target image. Common losses like perceptual loss [6, 15]
are highly effective in retaining quality transfer. The prolif-
eration of fashion datasets [21, 23, 7, 8] and human parsing
techniques such as cloth segmentation, body segmentation
[23, 7], pose annotation [9], and more have increasingly im-
proved in quality. These techniques are critical for robust
virtual try-on.

We want to develop a deep, scientific understanding of
video virtual try-on and display transparency in our meth-
ods to enable more great work in the field of neural render-
ing, and specifically virtual try-on. We aim to shed light
on the workings of virtual try-on and lead to meaningful
insights on how to improve it. In particular, we test the ef-
fectiveness of DensePose pose annotations, self-attention,
activation functions, and optical flow. We accumulate the
results of our studies and compare our resulting ShineOn
approach with existing try-on methods.

The specific contributions of this paper are (1) we
present transparent, comprehensive bottom-up experiments
testing pose annotations, self-attention, activation func-
tions, and optical flow, (2) demonstrate a decrease in mem-
ory usage, training time, and improved face detail transfer
by using DensePose pose annotations rather than CocoPose
pose annotations, and (3) propose ShineOn, the accumula-
tion of our most effective methods for practical video virtual
try-on. At the time of writing, ShineOn is the only public
video virtual try-on codebase readily available for scientific
verification and reproducibility, which is critical for the fu-
ture of try-on works.

2. Related Works
2.1. Image Virtual Try-on

There has been a large proliferation of publicly available
datasets [21, 23, 7, 8] that have pushed forward the multiple-
component tasks of try-on mechanics. These datasets are of
great importance to advanced tasks, such as human pars-
ing, cloth segmentation, body segmentation, pose estima-
tion. These annotations led to more robust human parsing
models, such as SSL and JPPNet [8, 20].

Quite a few proposed network architectures have been
developed to accomplish body and cloth segmentation [23,
7]. Pose information has been embedded through Coco-
Pose, and more recently through DensePose [9].

Realistic virtual try-on requires transferring of high-level
structures such as cloth pattern, design, text, and texture. In
addition to L1 loss, perceptual and feature losses [6, 15, 43,
3] consist of important components to address this issue.

The history of virtual try-on methods and deep learn-
ing dates back to 2017. These methods are dependent
on effective and generalizable human parsing methods.
From Jetchev and Bergmann’s Conditional Analogy GAN
[14], virtual try-on has seen significant growth in the years

[10, 33, 27, 22, 36, 4]. These methods were iteratively im-
proved by introducing perceptual loss, removing adversarial
loss, and experiment with different network architectures to
synthesize more detailed virtual try-on outputs. The general
architecture for these methods is a two-stage approach that
involves cloth warping and person rendering. Some virtual
try-on networks employ more than two stages, which we
found unnecessary. A two-stage approach has enough ex-
pressiveness for the model to learn how to do virtual try-on.

2.2. Video Virtual Try-on

Given the significant development for virtual try-on with
images, the next natural step is to investigate virtual try-
on for video. Video try-on would allow a user to easily
examine the clothing’s appearance on their body at multiple
angles, instead of processing individual images. However,
video try-on raises new challenges, such as how to handle
temporal consistency [19, 42] between video frames.

FW-GAN [5] requires a video of a reference person
wearing the desired clothes. This was collected in a new
dataset, VVT [5], which was obtained from scraping fash-
ion walk videos on fashion websites. The image of the user
is then warped to match the pose of the reference, and the
desired clothes from the reference are composited with the
warped user.

2.3. Attention and Activations Functions

Attention and transformers [38, 40, 32] have shown
to work plenty in achieving world-class performance in
the machine translation task. The notion of self-attention
demonstrated the ability to model long-range dependencies
in an interpretable way. Image transformers [25] and self-
attention for convolution neural networks and generative
adversarial networks [2, 1] began to popularize. It gave way
to self-attention in image-image translation. However, self-
attention has not been used for the virtual try-on task yet,
our work will verify its power to model the longer-range
dependencies when transferring the garment to the model
person.

ReLU networks were suggested to have a bias towards
learning low-frequency information [26]. Similarly, litera-
ture [30, 37, 30, 31] show that smoother activation functions
are more effective at achieving robust results for represent-
ing and reconstructing media.

3. Problem Formulation and Challenges
3.1. Problem Formulation

Try-on Task for Inference. Given a desired cloth product
image c, a video of a user with n frames V (v1, . . . , vn),
video annotation type at ∈ A, and each annotation type
generated for every frame A(at1 , . . . , atn), we develop a
model to synthesize a new video V ′, in which the user from
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Figure 1: Visualization of ShineOn Architecture. The input person representation p and warped cloth w are fed into the
U-Net model with self-attention. The output of the U-Net, after masking, is the person and warped cloth composed together.
For experiments with Flow, we add the top branch to finally compose with a flow-warped previous frame.

video V is realistically wearing cloth c. See Figure 2 for
details.

It is important to note that our formulation is fundamen-
tally different that that posed in our closest related work,
FW-GAN [5]. FW-GAN proposes to input only a single user
image u instead of inputting a video of the user. The output
V ′ then synthesizes the user to follow an arbitrary keypoint
pose sequence that is parsed from a separate video. See
Figure 2 for this comparison.

Figure 2: Problem formulation of ShineOn (ours, left) com-
pared to FW-GAN’s [5] (right). Dashed arrows show that
the annotations At are parsed from the source frames in V .
The key difference is that our formulation directly treats the
video as the user input, whereas [5] uses a separate still user
image and reposes the user to the video’s key points. This
means the compared results feature different users (Left:
blonde hair, Caucasian, and blue shorts. Right: black hair,
Asian, and black jeans).

We argue that our formulation is more practical from an
applications standpoint. In application, a user may want to
see the clothes at different angles on their body and move
their bodies as they wish to instantaneously change the
view. When applied in real-time, this level of control corre-
sponds to looking in a real-life mirror. We adopt this in our

approach because it permits direct user control, rather than
reposing a still user image to arbitrary keypoints. This for-
mulation involving direct control lets us assume that video
frames of the user are available.

In either formulation, the synthesized video V ′ aims to
meet the criteria described in Section 1.
Reconstruction Task for Training. It is challenging to col-
lect large amounts of data with ground truth try-on pairs.
Such ground truth data would require the same person to
hold the exact same pose across two or more different out-
fits. This is already a challenge for a single person, much
less a whole dataset, as people naturally to try on differ-
ent clothes. Therefore, training for virtual try-on is often
framed as a self-supervised task.

We follow the same self-supervised reconstruction task
as our base experiment CP-VTON [33]. In the reconstruc-
tion task, the target garment that the user is wearing (e.g.
shirt) in the training video is masked out. We then train
the model to synthesize the missing garment in each frame
given its corresponding isolated cloth product image c. This
way we may calculate a loss between the synthesized and
ground truth train sample. We use several common losses,
LL1, Lmask, and LV GG, for the reconstruction task. As
stated by Pix2Pix [13], LL1 is essential to achieve image
translation, and is the reason that many modern virtual try-
on methods use these core components. Additionally, we
utilize Lmask to retain characteristic details of cloth and
alignment with the target person’s body shape. Lastly, real-
istic virtual try-on requires transferring of high-level struc-
tures such as cloth pattern, design, text, and texture; LV GG

is a vital component to address this issue.
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3.2. Dataset

We use the Video Virtual Try-on (VVT) dataset supplied
by [5] for our video virtual try on task. The VVT dataset
contains 791 videos recorded at 30 frames-per-second at
192×256 resolution, and each video has a duration between
eight and ten seconds. This results in roughly 250-300
frames per video. The train and test set contain 159,170 and
30,931 frames respectively (equivalent to 84% and 16% of
the total). Each video has a corresponding isolated cloth
product image. The VVT dataset only contains product im-
ages of upper clothes (shirts, blouses, sweaters, etc).

Because the final evaluation task of try-on is distinct
from the reconstruction training task, we choose to treat the
given test set as validation for each of our successive exper-
iments. We then examine try-on as the true test in our final
evaluation in Section 5 after all design choices are finalized.

3.3. Architecture

Our experiments start from the sequential two-module
architecture proposed by our baseline [33]. The first mod-
ule, Warp, warps the cloth product image c to the body
shape and pose of the user at each video frame in V . The
second module, Try-on Composition, produces both a raw
synthesized try-on image and a mask. It uses the mask to
compose the raw try-on with the previously warped cloth to
produce the final try-on result. We refer the reader to [33]
for details of the base architecture, and to Figure 1 for de-
tails of how we modify the architecture in our experiments.

Following [5], we use a pre-trained Warp module. We
focus on improving the Try-on module as we observed it
was responsible for textural artifacts in preliminary experi-
ments.

U-Net [29] adds skip connections between correspond-
ing encoder and decoder layers by concatenating their re-
spective outputs. More generally, U-Net has shown to ren-
der smoothly synthesized images. This makes the U-Net
architecture a good fit for image and video virtual try-on.

The U-Net model outputs a rendered person p, and com-
position maskm. The person try-on, p̂, is obtained as shown
below:

p̂ = w ∗m+ p ∗ (1−m) (1)

where w is the warped cloth.

3.4. Challenges

The U-Net architecture is effective in doing image virtual
try-on. It is able to synthesize a cloth onto a single person.
There are significant issues with generalizing image virtual
try-on to video virtual try-on. We detail several challenges
with these methods, that we address with our experiments.

The purpose of the person-representation is to feed in in-
formation to the neural network to learn the most effective

way to render a person’s image with the warped cloth. Cur-
rent methods of person representation involve using a large
tensor of images including 18-keypoint pose-annotation,
body shape image, and reserved regions annotations. These
methods depend on this large person representation to aid
the network’s learning.

The most significant issue of video virtual try-on is the
lack of high-quality cloth transfer while retaining strong
texture features of the cloth. Methods can work on trained
datasets, but fail to generalize at test time. At test time,
there is a significant lack of detail. Virtual try-on suffers
from flickering details and cloth texture distortion.

4. Experiments
We detail several experiments that we created, to judge

the efficacy and impact on video virtual try-on. The nature
of our experiments is that we test one experimental variable,
while not changing other variables. At each experiment, we
determine the result of each experiment and recommend the
most effective variable as a part of our design choices in
ShineOn.

4.1. Training Setup

In all experiments, we train the U-Net model to 10
epochs with an accumulated batch size of 64. We use the
Adam optimizer [17] with an initial learning rate of 0.0001
that decays linearly after 5 epochs. Additionally, we uti-
lize 16-bit precision training to increase training speed and
reduce GPU memory consumption.

4.2. DensePose

Figure 3: Visual Comparison between DensePose and
CocoPose DensePose annotations (top row) contain dense
3D body information in the form of UV coordinates,
whereas CocoPose annotations (bottom row) are sparse and
limited to 2D keypoints.

DensePose has been shown to model 3D body informa-
tion in the UV field, and it is an effective representation
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of body shape, body parts, and includes additional infor-
mation. We found it beneficial to replace the 18-keypoint
CocoPose pose coordinates with the DensePose pose anno-
tation, which show to be just as accurate for pose informa-
tion. The visual comparison between DensePose and Coco-
Pose, as shown in Figure 3, illustrates the increased detail
of information compared to the larger CocoPose pose an-
notation. The benefit of DensePose is that it decreases the
size of pose representation by 6 times. Since data loading is
the bottleneck of the training pipeline, this decrease signifi-
cantly decreases the training time of virtual try-on networks.

The 18-keypoint pose representation is a sparse rep-
resentation of pose information and severely slows down
training. We show a 6 times decrease in size of pose-
annotation by using DensePose [9] to represent pose-
information. Additionally, we also show that DensePose
retains far more face details than using CocoPose as a pose
annotation. Figure 6a provides clear quantitative analysis of
the effects of using DensePose annotations.

4.3. Self-Attention

Figure 4: Self-Attention Layer for Video Virtual Try-on
Self-attention layers is implemented by feeding in the input
representation i or a convolved feature map derived from i.
Self-attention layers have been shown to model long-range
dependencies, and attend to important spatial regions [41].

Self-attention has been repeatedly used to model long-
range dependencies, express interpretable results, and more
recently, attend to visual and spatial regions of importance.
There have been object detection, image generation, and
many more computer vision tasks that use self-attention to
achieve state-of-the-art performance, respectively.

Within our UNet model, we utilize self-attention layers
within our encoder-decoder architecture. The self-attention
layers are strategically placed where the input feature map
depths are greatest so that the attention module has the ca-
pacity to learn the most important features to attend to. Self-
attention is computed as:

f(q, k, v) = softmax(qk)′ ∗ v (2)

where q, k and v are query, key and value, respectively.
Figure 1 shows our application of self-attention to virtual

try-on. We feed in a person representation p, or a downsam-
pled representation of p.

As shown in Figure 6b, self-attention does not enable
the network to retain more detail of the transferred cloth.
There is an improvement of stronger features of and neck
details. As opposed to some recommendations [41], we use
self-attention where the feature map depth is greatest. This
design choice retains similar quality for virtual try-on and
reduces the size of the model.

4.4. Frequency Robustness

Recent literature suggests that ReLU networks are in-
effective at rendering and recovering images with high-
frequency information. In the garment transfer and virtual
try-on domain, preserving high-frequency information cor-
responds to preserving clothing details and texture informa-
tion. SIREN and Fourier Features [31, 30] use sine annota-
tions and activation functions, respectively, to retain high-
frequency information. Smooth Adversarial Learning [37]
shows that smooth gradients for activation functions will
lead to more robust models. We hypothesize that smoother
activation functions, as shown in Figure 5, will lead to more
high-frequency information being transferred to the target
person.

In this paper, we test several activation functions, ReLU,
GELU, Swish, and Sine, [28, 18, 11, 31], to see the effect
on virtual try-on video synthesis. Through our experiments,
we determine that ReLU, GELU, and Swish perform sim-
ilarly on quantitative metrics as per Figure 6c. However,

Figure 5: Activation Functions and Their Derivatives
From left to right and top to bottom, the activation func-
tions are ReLU, GELU, Swish, and Sine. These activation
functions and their derivatives visualize the discontinuity of
the ReLU function’s gradient, smooth nature of GELU and
Swish activation function and their gradients, and erratic na-
ture of Sine function’s gradient.
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(a) Effect of DensePose (b) Effect of Attention (c) Effect of Activation Functions (d) Effect of Optical Flow

Figure 6: Quantitative Comparisons of DensePose, Self-Attention, Activation Functions, and Optical Flow. We show
the mean and standard deviation of metrics across all videos in the VVT dataset for the reconstruction task. We observe
that DensePose significantly improves performance over CocoPose. Self-Attention and GELU activation function improve
performance over their alternatives. Lastly, Optical Flow causes video virtual try-on to be worse.

qualitative inspection reveals that GELU synthesizes more
accurate face and neck features. Contrary to recent litera-
ture [26], ReLU also synthesizes similar quality results. On
the other hand, the Sine activation function performs poorly
in the virtual try-on task.

4.5. Optical Flow

To improve temporal consistency, we take inspiration
from [34, 5] and experiment with optical flow to improve
temporal consistency between frames. In particular, we
use flow directional annotations to warp the previous gen-
erated frame into the current timestep. A mask is then used
to compose the warped frame with the originally synthe-
sized result. We utilize a mask penalty, LF weighted by
λF = 1× 104 to constrain the learned flow mask. Our flow
annotations are generated from FlowNet2 [12].

During experiments, we find that flow causes issues with
the general quality of generated images; specifically, flow
introduces undesired artifacts to the video. The decreased
quality is quantified by Figure 6d. For this reason, we omit
flow in our reported best-performing result.

5. Results
We present the results of our bottom-up experiments.

Our experiments show that the best-performing and most
compatible model uses DensePose pose annotations, self-
attention layers, and GeLU or ReLU activation function.
We use this model to qualitatively and quantitatively com-
pare with existing baselines.

5.1. Evaluation Metrics

In the field of virtual try-on, evaluation metrics are of
high importance. Given the visual nature of virtual try-on,
quantitative metrics do not tell the whole story. However,

quantitative metrics are good at judging the overall quality
of the output.
Structural Similarity Index (SSIM). SSIM is a perceptual
metric that quantifies image quality caused by image pro-
cessing. SSIM is often used in analyzing quality between
videos. SSIM [35] is defined by

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3)

where µ is the average, σ2 is the variance, and c1 and c2
are constants used to stabilize the calculation. For our case,
we use the multiscale SSIM metric, which applies SSIM
across all input image channels, because it has been shown
to perform better than vanilla SSIM.
Peak Signal-to-Noise Ratio (PSNR). PSNR is used to
measure the quality of image reconstruction. Generally, this
is used in the context of quality of image compression. We
find that PSNR is a useful quantitative metric for judging
the quality of a reconstructed image. PSNR is defined by

PSNR(x, y) = 10log(
MAX2

i

MSE(x, y)
) (4)

where MAX is largest pixel value in the input images, and
MSE is defined as the mean square error between the x and
y. Similar to SSIM, PSNR cannot be the standalone metric
to judge the quality of try-on. That being said, PSNR is a
sufficient approximation to human perception of image and
video quality. Therefore, it is part of the comparison tools
we use, for its general ability to judge and compare between
good-quality and bad-quality videos.

5.2. Quantitative Results

Through our bottom-up experiment structure, we deter-
mine the best method as per quantitative and qualitative
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analysis and determine the best-performing model as Shi-
neOn. We used ShineOn methods and compared to existing
try-on methods, CP-VTON and FW-GAN [33, 5], to syn-
thesize video virtual-try on results and compare. Using the
SSIM and PSNR metrics, we calculate the mean and stan-
dard deviation at each frame across the three methods that
we compare. Given that our problem statement is different
from FW-GAN, Figure 7 reports these metrics and demon-
strates that our method quantitatively outperforms existing
try-on methods.

Figure 7: Quantitative Comparison with Existing Try-
On Methods. We use SSIM and PSNR are our quantitative
metrics to compare with CP-VTON and FW-GAN [33, 5].
We note, for completeness, that our problem statement dif-
fers from FW-GAN. While that makes our approach more
applicable for practical use, the quantitative comparison is
incomplete.

5.3. Qualitative Results

Qualitative inspection and comparison are absolutely vi-
tal to judging the effectiveness of video virtual try-on. Due
to the importance of visual inspection in virtual try-on, qual-
itative criteria must be properly defined to evaluate the ef-
fectiveness of our presented methods. These criteria are
quality of body parts, quality of cloth synthesis, and tempo-
ral consistency. We present visual comparisons in Table 1.
Our ShineOn methods outperform the CP-VTON baseline.
Our methods demonstrate strong body and face synthesis,
better cloth transfer and texture, and temporal consistency.

Using the qualitative criteria to compare our methods
with FW-GAN, we find that our method retains stronger
face and body detail. It should be noted that our model’s
higher quality face detail arises from the differing problem
formulations. Insofar as ShineOn and FW-GAN are video
virtual try-on methods, this comparison stands. ShineOn
preserves shirt designs more consistently to the product im-
age, while the shirt designs in FW-GAN tend to be scat-
tered. The weaknesses of our ShineOn are that it fails to
generate video virtual try-on results with complete neck de-
tails. Furthermore, cloth try-on is increasingly misaligned
during the frames where the camera is zoomed in on the
person subject. The failure case of zoomed-in images is
not specific to our network. FW-GAN also fails to effec-
tively synthesize cloth for zoomed-in frames. Even though
FW-GAN provides temporal smoothness due to temporal
discriminators, it struggles with temporal consistency.

6. Conclusion
We methodically illuminate the effect of several design

choices for practical video virtual try-on. Our series of
bottom-up experiments examine the outcomes of pose an-
notation choice, self-attention, activation functions, and op-
tical flow. The strengths and weaknesses of these design
outcomes are compared to existing work. Importantly, we
release our code, hyperparameters, and model checkpoints
to the public, not only to support experiment reproducibility
but also as a framework for future works.

Within our experimental scope, we identify the design
choices that result in the highest quality try-on. Ordered by
importance: (1) DensePose annotations improve face detail
and decrease required memory and training time, (2) self-
attention slightly benefits face and body feature quality, and
(3) ReLU and GELU activations perform equally well, but
not Swish nor Sine. We also identify that our design choice
using optical flow improves temporal smoothness but intro-
duced artifacts. Our methodical approach to analyzing sim-
ple design choices results in significant improvement over
the CP-VTON image try-on baseline. Though our best re-
sult struggles with neck details, it preserves user identity
and shirt design better than FW-GAN.

For future work, we recommend investigating issues
with synthesizing the neck. We also suggest improving the
cloth warping module, as it fails to handle 3D orientation
and geometric information of the cloth (e.g. differentiat-
ing between inside and outside). Future work may consider
improving global temporal consistency instead of only lo-
cal smoothness. Finally, as demonstrated here, we encour-
age reproducibility via methodical experiments supported
by public code.
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ID & Frame
Num.

Cloth (Input)
FW-GAN

User Image
(Input)

FW-GAN
VVT User

Video
(Input)

CP-VTON
ShineOn:

DensePose,
Attn, GELU

4he21d00f-
g11: frame

040

4he21d00f-
g11: frame

125

4he21d00f-
k11: frame

040

4he21d00f-
k11: frame

125

an621da9d-
q11: frame

040

an621da9d-
q11: frame

125

g1021d05g-
k11: frame

040

g1021d05g-
k11: frame

150

Table 1: Qualitative try-on results comparing FW-GAN, CP-VTON (retrained on VVT), and the best ShineOn model that
uses DensePose, Attention, and GeLU. As explained in Section 3.1, FW-GAN reposes a still user image (column 3), while
we directly use the user video frame (column 5). ShineOn better preserves user identity (face quality and other body parts),
target cloth color, and target cloth texture design. However, ShineOn suffers from neck synthesis on zoomed views; we
recommend exploring this issue in future work.
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